CN112500683B - 一种采用碱--超声溶胶凝胶法改性提高黄麻环氧树脂复合材料性能的方法 - Google Patents
一种采用碱--超声溶胶凝胶法改性提高黄麻环氧树脂复合材料性能的方法 Download PDFInfo
- Publication number
- CN112500683B CN112500683B CN202010545655.2A CN202010545655A CN112500683B CN 112500683 B CN112500683 B CN 112500683B CN 202010545655 A CN202010545655 A CN 202010545655A CN 112500683 B CN112500683 B CN 112500683B
- Authority
- CN
- China
- Prior art keywords
- jute
- woven fabric
- fiber non
- jute fiber
- epoxy resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 240000000491 Corchorus aestuans Species 0.000 title claims abstract description 137
- 235000011777 Corchorus aestuans Nutrition 0.000 title claims abstract description 137
- 235000010862 Corchorus capsularis Nutrition 0.000 title claims abstract description 137
- 239000002131 composite material Substances 0.000 title claims abstract description 36
- 239000003822 epoxy resin Substances 0.000 title claims abstract description 32
- 229920000647 polyepoxide Polymers 0.000 title claims abstract description 32
- 238000000034 method Methods 0.000 title claims abstract description 24
- 238000003980 solgel method Methods 0.000 title claims abstract description 9
- 239000000835 fiber Substances 0.000 claims abstract description 121
- 239000004745 nonwoven fabric Substances 0.000 claims abstract description 89
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 23
- 230000004048 modification Effects 0.000 claims abstract description 21
- 238000012986 modification Methods 0.000 claims abstract description 21
- 230000002787 reinforcement Effects 0.000 claims abstract description 16
- 239000011159 matrix material Substances 0.000 claims abstract description 11
- 229920005989 resin Polymers 0.000 claims abstract description 10
- 239000011347 resin Substances 0.000 claims abstract description 10
- 239000000243 solution Substances 0.000 claims description 40
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 36
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 24
- 239000012153 distilled water Substances 0.000 claims description 17
- 230000008569 process Effects 0.000 claims description 14
- 238000003756 stirring Methods 0.000 claims description 14
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims description 12
- -1 polypropylene Polymers 0.000 claims description 10
- 238000006243 chemical reaction Methods 0.000 claims description 7
- 239000002994 raw material Substances 0.000 claims description 7
- 238000002791 soaking Methods 0.000 claims description 7
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 6
- 239000004743 Polypropylene Substances 0.000 claims description 6
- 239000003513 alkali Substances 0.000 claims description 6
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 6
- 239000003153 chemical reaction reagent Substances 0.000 claims description 6
- 238000005520 cutting process Methods 0.000 claims description 6
- 229920001155 polypropylene Polymers 0.000 claims description 6
- 238000004080 punching Methods 0.000 claims description 6
- 238000005303 weighing Methods 0.000 claims description 6
- 238000004140 cleaning Methods 0.000 claims description 4
- 238000001035 drying Methods 0.000 claims description 4
- 239000000428 dust Substances 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims description 4
- 239000003795 chemical substances by application Substances 0.000 claims description 3
- 238000001816 cooling Methods 0.000 claims description 3
- 238000002347 injection Methods 0.000 claims description 3
- 239000007924 injection Substances 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 238000001721 transfer moulding Methods 0.000 claims description 3
- 230000003014 reinforcing effect Effects 0.000 claims description 2
- 239000002105 nanoparticle Substances 0.000 abstract description 4
- 238000010521 absorption reaction Methods 0.000 abstract description 3
- 239000011148 porous material Substances 0.000 abstract description 2
- 230000003746 surface roughness Effects 0.000 abstract description 2
- 238000009745 resin transfer moulding Methods 0.000 abstract 1
- 239000004698 Polyethylene Substances 0.000 description 4
- 230000032683 aging Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 235000019441 ethanol Nutrition 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 238000007789 sealing Methods 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- 238000005452 bending Methods 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229920002488 Hemicellulose Polymers 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003733 fiber-reinforced composite Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M11/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
- D06M11/32—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
- D06M11/36—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
- D06M11/38—Oxides or hydroxides of elements of Groups 1 or 11 of the Periodic Table
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M11/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
- D06M11/77—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof
- D06M11/79—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof with silicon dioxide, silicic acids or their salts
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/03—Polymer mixtures characterised by other features containing three or more polymers in a blend
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/14—Polymer mixtures characterised by other features containing polymeric additives characterised by shape
- C08L2205/16—Fibres; Fibrils
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M2101/00—Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
- D06M2101/02—Natural fibres, other than mineral fibres
- D06M2101/04—Vegetal fibres
- D06M2101/06—Vegetal fibres cellulosic
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M2101/00—Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
- D06M2101/16—Synthetic fibres, other than mineral fibres
- D06M2101/18—Synthetic fibres consisting of macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D06M2101/20—Polyalkenes, polymers or copolymers of compounds with alkenyl groups bonded to aromatic groups
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Reinforced Plastic Materials (AREA)
Abstract
本发明提供了一种采用碱‑超声溶胶凝胶法改性提高黄麻/环氧树脂复合材料性能的方法。通过将黄麻纤维制成具有三维网状结构的非织造布,然后对其进行碱‑超声溶胶凝胶法改性处理,使黄麻纤维孔隙率增加,比表面积增大,形成的纳米粒子填充在黄麻纤维的孔隙与沟槽中,降低吸水率,提高黄麻纤维表面粗糙度,从而增加了黄麻纤维与树脂基体的界面结合强度。然后将经过改性处理后的黄麻纤维非织造布作为增强体,以环氧树脂为基体,采用RTM工艺制备出力学性能显著提升的黄麻/环氧树脂复合材料。
Description
技术领域
本发明属于纤维增强复合材料加工技术领域,涉及一种采用碱-超声溶胶凝胶法改性提高黄麻/环氧树脂复合材料性能的方法
背景技术
随着“绿色、环保”理念的深入人心,复合材料将向着环境友好性、可持续性等方向发展。黄麻纤维由于具有较高的比模量和比强度、来源广泛价廉、可再生、可降解、可回收的优良性能和特点,可生产强度大、重量轻的复合材料,近年来在复合材料领域得到了较多地关注和研究。黄麻纤维复合材料用途广泛,可应用于汽车内饰、汽车外板、吸音隔热、建筑材料等领域。但在黄麻复合材料制备中,如果直接将黄麻纤维作为增强体制备复合材料,黄麻纤维中的纤维素、半纤维素等含有大量亲水性的羟基,加之纤维素大分子链间强烈的氢键作用,使黄麻纤维表现出较强的极性和亲水性,导致其与疏水性树脂基体间的界面相容性不佳的问题。从而使得制备的复合材料性能降低。因此如果较好地解决此项问题,可有效提升最终复合材料的综合性能。
非织造布是一种不需要纺纱织布而形成的织物,其是将定向或随机排列的纤维通过摩擦、抱合或粘合,制成的片状物或纤网。本发明制备的干法针刺非织造布其黄麻纤维在网中呈三维结构,做为复合材料的增强体有利于克服层间强度低的问题,同时具有生产流程短、成本低的优点。因此将黄麻纤维制成非织造布,采用碱-超声溶胶凝胶处理方式对黄麻纤维进行改性作为增强体,能有效提高最终制备复合材料的力学性能。
发明内容
本发明的目的是提供一种碱-超声溶胶凝胶法改性提高黄麻/环氧树脂复合材料性能的方法,通过其改性处理后,一方面利用微纳米粒子独特的表面效应,填充在麻纤维的孔隙与沟槽中,减少黄麻纤维的毛细效应,降低吸水率,使黄麻纤维与树脂基体的界面结合得以改善;另一方面微纳米粒子附着在黄麻纤维的表面提高了其表面粗糙度,在黄麻纤维表面与树脂基体之间产生机械锁结效应,从而提高了黄麻纤维与树脂基体的界面结合强度,最终提高了黄麻/环氧树脂复合材料力学性能。
本发明提供的技术方案如下:
一种采用碱--超声溶胶凝胶法改性提高黄麻/环氧树脂复合材料性能的方法,依次包括以下步骤:
步骤1制备黄麻纤维非织造布,其工艺流程为:纤维原料→混合开松→梳理成网→铺网→针刺加固→黄麻纤维非织造布;
步骤2黄麻纤维非织造布清洁预处理:将黄麻纤维非织造布放置于50℃蒸馏水中浸泡20min~30min,以除去非织造布表面的灰尘与杂质,取出后,将其放置于80℃的烘箱中,干燥6小时后取出备用;
步骤3将所述步骤2中得到的黄麻纤维非织造布碱改性处理:配制浓度为3%~7%的氢氧化钠溶液,裁剪所述步骤2中得到的黄麻纤维非织造布并称重,所述黄麻纤维非织造布与所述氢氧化钠溶液的质量配比为1:40,将所述步骤2中得到的黄麻纤维非织造布在所述氢氧化钠溶液中分别浸泡1h~3h后取出,用蒸馏水和冰醋酸洗涤,直至冲洗液呈中性,将其放置于90℃的烘箱中干燥6h后取出,得到碱处理黄麻纤维非织造布;
步骤4将所述步骤3得到的黄麻纤维非织造布超声溶胶凝胶改性处理:将浓度为0.5%~2.5%的氨水加入400ml无水乙醇中,超声搅拌10min,记为溶液①,将20mlTEOS试剂加入到100ml无水乙醇中,并加入一定量的蒸馏水(TEOS:蒸馏水为1:1),超声搅拌10min,记为溶液②,将溶液②滴入溶液①中,用聚乙烯薄膜密封烧杯口,超声搅拌1h后,为溶液③,将所述步骤3处理后的黄麻纤维非织造布试样浸入溶液③中,并将其放置于40℃~80℃的水浴锅中反应6h,将处理后的黄麻非织造布取出,室温陈放24h,分别用蒸馏水和乙醇清洗3次和1次后置于90℃烘箱中5h取出,得到碱-超声溶胶凝胶处理黄麻纤维非织造布;
步骤5黄麻/环氧树脂复合材料制备:将所述步骤4得到碱-超声溶胶凝胶处理黄麻纤维非织造布作为增强体,以环氧树脂为基体,采用RTM(树脂转移模塑成型)工艺制备出黄麻/环氧树脂复合材料,环氧树脂与固化剂按照100:85的质量比进行混合,从反应釜注入铺好增强体的模具内,注射温度设定55℃。第一阶段固化温度为90℃,时间2小时,第二阶段固化温度为110℃,时间1小时;第三阶段固化温度为135℃,时间6小时,冷却至室温后进行脱模即制成碱-超声溶胶凝胶法改性黄麻/环氧树脂复合材料。
进一步的,所述步骤1制备黄麻纤维非织造布的工艺流程中黄麻纤维含量不低于85%,加上聚丙烯纤维总含量之和为100%,加固过程中针刺密度为150~300刺/cm2,针刺深度5~11mm。
与现有技术相比该发明的有益效果如下:本发明采用碱-超声溶胶凝胶处理方式对黄麻纤维进行改性,通过改善黄麻纤维与树脂基体之间的相容性,从而提高了黄麻纤维与树脂基体的界面结合强度,能有效提高黄麻/环氧树脂复合材料的力学性能;该方法具有原料安全、成本低廉、工艺简单、效果显著等优点。本发明提供了如下技术方案:
附图说明
图1是实施例1改性后黄麻纤维非织造布电镜照片。
图2是实施例2制备的黄麻/环氧树脂复合材料改性前后拉伸性能图。
图3是实施例3制备的黄麻/环氧树脂复合材料改性前后的弯曲性能图。
图4是实施例4制备的黄麻/环氧树脂复合材料改性前后的压缩性能图。
具体实施方式
下面结合具体的实施例,对本发明的技术方案进行清楚、完整的描述。显然,所描述的实施例仅仅是本发明的一部分实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面结合具体的实施例,对本发明的技术方案进行清楚、完整的描述。显然,所描述的实施例仅仅是本发明的一部分实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。实施例中使用的材料、化学试剂均可通过购买获得。
下面结合附图和具体实施方式对本发明作进一步的说明。
实施例1
步骤1制备黄麻纤维非织造布,其工艺流程为:纤维原料→混合开松→梳理成网→铺网→针刺加固→黄麻纤维非织造布;其中黄麻纤维含量为90%,聚丙烯纤维含量为10%,针刺密度为150刺/cm2,针刺深度11mm。
步骤2黄麻纤维非织造布清洁预处理:将黄麻纤维非织造布放置于50℃蒸馏水中浸泡30min,以除去非织造布表面的灰尘与杂质,取出后,将其放置于80℃的烘箱中,干燥6小时后取出备用。
步骤3将所述步骤2中得到的黄麻纤维非织造布碱改性处理:配制浓度为3%的氢氧化钠溶液,裁剪所述步骤2中得到的黄麻纤维非织造布并称重,所述黄麻纤维非织造布与所述氢氧化钠溶液的质量配比为1:40,将所述步骤2中得到的黄麻纤维非织造布在所述氢氧化钠溶液中分别浸泡1h后取出,用蒸馏水和冰醋酸洗涤,直至冲洗液呈中性,将其放置于90℃的烘箱中干燥6h后取出,得到碱处理黄麻纤维非织造布。
步骤4将所述步骤3得到的黄麻纤维非织造布超声溶胶凝胶改性处理:将浓度为0.5%的氨水加入400ml无水乙醇中,超声搅拌10min,记为溶液①,将20mlTEOS试剂加入到100ml无水乙醇中,并加入一定量的蒸馏水(TEOS:蒸馏水为1:1),超声搅拌10min,记为溶液②,将溶液②滴入溶液①中,用聚乙烯薄膜密封烧杯口,超声搅拌1h后,为溶液③,将所述步骤3处理后的黄麻纤维非织造布试样浸入溶液③中,并将其放置于40℃的水浴锅中反应6h,将处理后的黄麻非织造布取出,室温陈放24h,分别用蒸馏水和乙醇清洗3次和1次后置于90℃烘箱中5h取出,得到碱-超声溶胶凝胶处理黄麻纤维非织造布。
步骤5黄麻/环氧树脂复合材料制备:将所述步骤4得到碱-超声溶胶凝胶处理黄麻纤维非织造布作为增强体,以环氧树脂为基体,采用RTM(树脂转移模塑成型)工艺制备出黄麻/环氧树脂复合材料,环氧树脂与固化剂按照100:85的质量比进行混合,从反应釜注入铺好增强体的模具内,注射温度设定55℃。第一阶段固化温度为90℃,时间2小时,第二阶段固化温度为110℃,时间1小时;第三阶段固化温度为135℃,时间6小时,冷却至室温后进行脱模即制成碱-超声溶胶凝胶法改性黄麻/环氧树脂复合材料。
实施例2
步骤1制备黄麻纤维非织造布,其工艺流程为:纤维原料→混合开松→梳理成网→铺网→针刺加固→黄麻纤维非织造布;其中黄麻纤维含量为90%,聚丙烯纤维含量为10%,针刺密度为200刺/cm2,针刺深度5mm。
步骤2同实施例1中的步骤2。
步骤3将所述步骤2中得到的黄麻纤维非织造布碱改性处理:配制浓度为3%的氢氧化钠溶液,裁剪所述步骤2中得到的黄麻纤维非织造布并称重,所述黄麻纤维非织造布与所述氢氧化钠溶液的质量配比为1:40,将所述步骤2中得到的黄麻纤维非织造布在所述氢氧化钠溶液中分别浸泡3h后取出,用蒸馏水和冰醋酸洗涤,直至冲洗液呈中性,将其放置于90℃的烘箱中干燥6h后取出,得到碱处理黄麻纤维非织造布。
步骤4将所述步骤3得到的黄麻纤维非织造布超声溶胶凝胶改性处理:将浓度为2.5%的氨水加入400ml无水乙醇中,超声搅拌10min,记为溶液①,将20mlTEOS试剂加入到100ml无水乙醇中,并加入一定量的蒸馏水(TEOS:蒸馏水为1:1),超声搅拌10min,记为溶液②,将溶液②滴入溶液①中,用聚乙烯薄膜密封烧杯口,超声搅拌1h后,为溶液③,将所述步骤3处理后的黄麻纤维非织造布试样浸入溶液③中,并将其放置于80℃的水浴锅中反应6h,将处理后的黄麻非织造布取出,室温陈放24h,分别用蒸馏水和乙醇清洗3次和1次后置于90℃烘箱中5h取出,得到碱-超声溶胶凝胶处理黄麻纤维非织造布。
步骤5同实施例1中的步骤5。
实施例3
步骤1制备黄麻纤维非织造布,其工艺流程为:纤维原料→混合开松→梳理成网→铺网→针刺加固→黄麻纤维非织造布;其中黄麻纤维含量为85%,聚丙烯纤维含量为15%,针刺密度为200刺/cm2,针刺深度9mm。
步骤2黄麻纤维非织造布清洁预处理:将黄麻纤维非织造布放置于50℃蒸馏水中浸泡20min,以除去非织造布表面的灰尘与杂质,取出后,将其放置于80℃的烘箱中,干燥6小时后取出备用。
步骤3将所述步骤2中得到的黄麻纤维非织造布碱改性处理:配制浓度为7%的氢氧化钠溶液,裁剪所述步骤2中得到的黄麻纤维非织造布并称重,所述黄麻纤维非织造布与所述氢氧化钠溶液的质量配比为1:40,将所述步骤2中得到的黄麻纤维非织造布在所述氢氧化钠溶液中分别浸泡1h后取出,用蒸馏水和冰醋酸洗涤,直至冲洗液呈中性,将其放置于90℃的烘箱中干燥6h后取出,得到碱处理黄麻纤维非织造布。
步骤4将所述步骤3得到的黄麻纤维非织造布超声溶胶凝胶改性处理:将浓度为2.5%的氨水加入400ml无水乙醇中,超声搅拌10min,记为溶液①,将20mlTEOS试剂加入到100ml无水乙醇中,并加入一定量的蒸馏水(TEOS:蒸馏水为1:1),超声搅拌10min,记为溶液②,将溶液②滴入溶液①中,用聚乙烯薄膜密封烧杯口,超声搅拌1h后,为溶液③,将所述步骤3处理后的黄麻纤维非织造布试样浸入溶液③中,并将其放置于60℃的水浴锅中反应6h,将处理后的黄麻非织造布取出,室温陈放24h,分别用蒸馏水和乙醇清洗3次和1次后置于90℃烘箱中5h取出,得到碱-超声溶胶凝胶处理黄麻纤维非织造布。
步骤5同实施例1中的步骤5。
实施例4
步骤1制备黄麻纤维非织造布,其工艺流程为:纤维原料→混合开松→梳理成网→铺网→针刺加固→黄麻纤维非织造布;其中黄麻纤维含量为85%,聚丙烯纤维含量为15%,针刺密度为300刺/cm2,针刺深度7mm。
步骤2同实施例3中的步骤2。
步骤3将所述步骤2中得到的黄麻纤维非织造布碱改性处理:配制浓度为5%的氢氧化钠溶液,裁剪所述步骤2中得到的黄麻纤维非织造布并称重,所述黄麻纤维非织造布与所述氢氧化钠溶液的质量配比为1:40,将所述步骤2中得到的黄麻纤维非织造布在所述氢氧化钠溶液中分别浸泡2h后取出,用蒸馏水和冰醋酸洗涤,直至冲洗液呈中性,将其放置于90℃的烘箱中干燥6h后取出,得到碱处理黄麻纤维非织造布。
步骤4将所述步骤3得到的黄麻纤维非织造布超声溶胶凝胶改性处理:将浓度为1.5%的氨水加入400ml无水乙醇中,超声搅拌10min,记为溶液①,将20mlTEOS试剂加入到100ml无水乙醇中,并加入一定量的蒸馏水(TEOS:蒸馏水为1:1),超声搅拌10min,记为溶液②,将溶液②滴入溶液①中,用聚乙烯薄膜密封烧杯口,超声搅拌1h后,为溶液③,将所述步骤3处理后的黄麻纤维非织造布试样浸入溶液③中,并将其放置于60℃的水浴锅中反应6h,将处理后的黄麻非织造布取出,室温陈放24h,分别用蒸馏水和乙醇清洗3次和1次后置于90℃烘箱中5h取出,得到碱-超声溶胶凝胶处理黄麻纤维非织造布。
步骤5同实施例1中的步骤5。
从实施例1改性后黄麻纤维非织造布电镜照片(图1),可以看出经过改性后黄麻纤维表面有沟槽,而且在纤维表面沟槽中沉积了大量的微纳米粒子。从实施例2制备的黄麻/环氧树脂复合材料改性前后拉伸性能图(图2),实施例3制备的黄麻/环氧树脂复合材料改性前后的弯曲性能图(图3)和实施例4制备的黄麻/环氧树脂复合材料改性前后的压缩性能图(图4),可以看出改性后的复合材料力学性能有显著的提高。
Claims (1)
1.一种采用碱--超声溶胶凝胶法改性提高黄麻/环氧树脂复合材料性能的方法,其特征在于,依次包括以下步骤:步骤1制备黄麻纤维非织造布,其工艺流程为:纤维原料→混合开松→梳理成网→铺网→针刺加固→黄麻纤维非织造布;步骤2 黄麻纤维非织造布清洁预处理:将黄麻纤维非织造布放置于50℃蒸馏水中浸泡20min~30min,以除去非织造布表面的灰尘与杂质,取出后,将其放置于80℃的烘箱中,干燥6 小时后取出备用; 步骤3 将所述步骤2 中得到的黄麻纤维非织造布碱改性处理:配制浓度为3%~7%的氢氧化钠溶液,裁剪所述步骤2 中得到的黄麻纤维非织造布并称重,所述黄麻纤维非织造布与所述氢氧化钠溶液的质量配比为1:40,将所述步骤2 中得到的黄麻纤维非织造布在所述氢氧化钠溶液中分别浸泡1h~3h 后取出,用蒸馏水和冰醋酸洗涤,直至冲洗液呈中性,将其放置于90℃的烘箱中干燥6h 后取出,得到碱处理黄麻纤维非织造布; 步骤4 将所述步骤3 得到的黄麻纤维非织造布超声溶胶凝胶改性处理:将浓度为0.5%~2.5% 的氨水加入400ml 无水乙醇中,超声搅拌10min,记为溶液①,将20mlTEOS 试剂加入到100ml 无水乙醇中,并加入一定量的蒸馏水,其中TEOS:蒸馏水的比例为1:1,超声搅拌10min,记为溶液②,将溶液②滴入溶液①中,用聚乙烯薄膜密封烧杯口,超声搅拌1h 后,为溶液③,将所述步骤3 处理后的黄麻纤维非织造布试样浸入溶液③中,并将其放置于40℃~80℃的水浴锅中反应6h,将处理后的黄麻非织造布取出,室温陈放24h,分别用蒸馏水和乙醇清洗3 次和1 次后置于90℃烘箱中5h取出,得到碱-超声溶胶凝胶处理黄麻纤维非织造布; 步骤5 黄麻/环氧树脂复合材料制备:将所述步骤4 得到碱-超声溶胶凝胶处理黄麻纤维非织造布作为增强体,以环氧树脂为基体,采用RTM(树脂转移模塑成型)工艺制备出黄麻/环氧树脂复合材料,环氧树脂与固化剂按照100:85 的质量比进行混合,从反应釜注入铺好增强体的模具内,注射温度设定55℃,第一阶段固化温度为90℃,时间2小时,第二阶段固化温度为110℃,时间1小时;第三阶段固化温度为135℃,时间6 时,冷却至室温后进行脱模即制成碱-超声溶胶凝胶法改性黄麻/环氧树脂复合材料,所述步骤1制备黄麻纤维非织造布的工艺流程中黄麻纤维含量不低于85%,加上聚丙烯纤维总含量之和为100%,加固过程中针刺密度为150~300 刺/cm2,针刺深度5~11mm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010545655.2A CN112500683B (zh) | 2020-06-16 | 2020-06-16 | 一种采用碱--超声溶胶凝胶法改性提高黄麻环氧树脂复合材料性能的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010545655.2A CN112500683B (zh) | 2020-06-16 | 2020-06-16 | 一种采用碱--超声溶胶凝胶法改性提高黄麻环氧树脂复合材料性能的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112500683A CN112500683A (zh) | 2021-03-16 |
CN112500683B true CN112500683B (zh) | 2022-11-29 |
Family
ID=74953357
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010545655.2A Active CN112500683B (zh) | 2020-06-16 | 2020-06-16 | 一种采用碱--超声溶胶凝胶法改性提高黄麻环氧树脂复合材料性能的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112500683B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113022043A (zh) * | 2021-04-06 | 2021-06-25 | 安徽农业大学 | 一种汽车顶棚材料及其制备方法 |
CN114196165B (zh) * | 2021-12-31 | 2023-07-18 | 石狮市中纺学服装及配饰产业研究院 | 一种改性黄麻纤维增强生物基环氧树脂复合材料的制备方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5446231A (en) * | 1977-09-21 | 1979-04-12 | Nippon Yusen Kk | Hard coating |
KR20150051166A (ko) * | 2013-11-01 | 2015-05-11 | 한국에너지기술연구원 | 고치수 안정성 및 고내열성을 갖는 무기섬유 강화 유-무기 하이브리드 이온교환막 및 그 제조방법 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101491947B (zh) * | 2009-01-08 | 2012-03-28 | 浙江金元亚麻有限公司 | 麻机织物增强复合材料板材的制造工艺 |
CN102797110B (zh) * | 2012-08-16 | 2015-04-15 | 绍兴文理学院 | 一种热压型黄麻增强复合材料的制备方法 |
US20150192739A1 (en) * | 2014-01-07 | 2015-07-09 | Gary A. Miller | Method for manufacturing multi-fiber bundles |
CN105671937A (zh) * | 2016-01-23 | 2016-06-15 | 武汉理工大学 | 一种用作环保型复合材料增强体的苎麻纤维的改性方法 |
CN110938286A (zh) * | 2018-09-21 | 2020-03-31 | 广西大学 | 一种纳米粒子包覆麻纤维增强环氧树脂复合材料及其制备方法 |
-
2020
- 2020-06-16 CN CN202010545655.2A patent/CN112500683B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5446231A (en) * | 1977-09-21 | 1979-04-12 | Nippon Yusen Kk | Hard coating |
KR20150051166A (ko) * | 2013-11-01 | 2015-05-11 | 한국에너지기술연구원 | 고치수 안정성 및 고내열성을 갖는 무기섬유 강화 유-무기 하이브리드 이온교환막 및 그 제조방법 |
Also Published As
Publication number | Publication date |
---|---|
CN112500683A (zh) | 2021-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ahmad et al. | Mechanical properties of natural as well as synthetic fiber reinforced concrete: a review | |
CN109403022B (zh) | 具有亲水性或疏水性的气凝胶/非织物复合材料的制备方法及其产品 | |
CN112500683B (zh) | 一种采用碱--超声溶胶凝胶法改性提高黄麻环氧树脂复合材料性能的方法 | |
Ishak et al. | The effect of sea water treatment on the impact and flexural strength of sugar palm fibre reinforced epoxy composites | |
Sreekala et al. | Effect of fibre surface modification on water-sorption characteristics of oil palm fibres | |
Prasanna Venkatesh et al. | Tensile, flexual, impact and water absorption properties of natural fibre reinforced polyester hybrid composites | |
Pinto et al. | Evaluation of surface treatment and fabrication methods for jute fiber/epoxy laminar composites | |
Kushwaha et al. | The studies on performance of epoxy and polyester-based composites reinforced with bamboo and glass fibers | |
Sarikanat | The influence of oligomeric siloxane concentration on the mechanical behaviors of alkalized jute/modified epoxy composites | |
Shen et al. | Mechanical and acoustic properties of jute fiber-reinforced polypropylene composites | |
CN106555358B (zh) | 一种对氨基苯甲酸无损改性碳纤维增强纸基湿式摩擦材料的制备方法 | |
Ji et al. | Environment-friendly wood fibre composite with high bonding strength and water resistance | |
Wu et al. | A review of recent developments in application of plant fibers as reinforcements in concrete | |
Park et al. | Phenyl silane treatment and carding process to improve the mechanical, thermal, and water-absorption properties of regenerated cellulose lyocell/polylactic acid bio-composites | |
Ammayappan et al. | Effect of lac treatment on mechanical properties of jute fabric/polyester resin based biocomposite | |
Hammood | Effect of erosion on water absorption and morphology for treated date palm fiber-reinforced polyester composites | |
CN104446333A (zh) | 一种pp纤维增强二氧化硅凝胶材料的制备方法 | |
DE10300979A1 (de) | Ultraleichte Verbundwerkstoffe | |
Islam et al. | Assessing the consequences of water retention on the structural integrity of jute fiber and its composites: a review | |
JP4354328B2 (ja) | 木質成形体および木質成形体の製造方法 | |
CN115434140A (zh) | 一种植物纤维表面的改性方法 | |
Wimmer et al. | Plant-Fiber and wood-based functional materials | |
Bajuri et al. | Effect of impregnation on hybrid mesoporous silica/kenaf reinforced epoxy composites in term of flexural, compressive and water absorption properties | |
Nath et al. | Noise reduction analysis through biomaterial based acoustic material | |
CN111617706A (zh) | 一种Al2O3-B2O3-SiO2复合溶胶、核壳结构活性炭纤维及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |