CN112495395B - 基于非晶化结合阳离子掺杂改性的负载型贵金属催化剂及制备方法与应用 - Google Patents

基于非晶化结合阳离子掺杂改性的负载型贵金属催化剂及制备方法与应用 Download PDF

Info

Publication number
CN112495395B
CN112495395B CN202011493792.2A CN202011493792A CN112495395B CN 112495395 B CN112495395 B CN 112495395B CN 202011493792 A CN202011493792 A CN 202011493792A CN 112495395 B CN112495395 B CN 112495395B
Authority
CN
China
Prior art keywords
noble metal
catalyst
metal catalyst
cation
supported noble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011493792.2A
Other languages
English (en)
Other versions
CN112495395A (zh
Inventor
王平
陈木华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN202011493792.2A priority Critical patent/CN112495395B/zh
Publication of CN112495395A publication Critical patent/CN112495395A/zh
Application granted granted Critical
Publication of CN112495395B publication Critical patent/CN112495395B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8993Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)

Abstract

本发明属于催化材料技术领域,公开了一种基于非晶化结合阳离子掺杂改性的负载型贵金属催化剂及制备方法与应用。所述催化剂由贵金属活性相和阳离子掺杂的非晶铁氧化物载体相组成,贵金属活性相以细小纳米颗粒形式弥散分布于氧化物载体相表面。本发明通过阳离子掺杂结合非晶化提升氧化物载体的氧缺陷含量,进而与细小弥散分布于载体的贵金属活性相组合构筑协同催化活性位;此外,超薄的纳米片结构在有效提高贵金属分散度的同时,可进一步改善催化剂的传质性能。基于此,非晶化结合阳离子掺杂改性的负载型贵金属催化剂的综合性能接近目前报道的相应负载型贵金属催化剂。

Description

基于非晶化结合阳离子掺杂改性的负载型贵金属催化剂及制 备方法与应用
技术领域
本发明属于催化材料技术领域,具体涉及一种基于非晶化结合阳离子掺杂改性的负载型贵金属催化剂及制备方法与应用。
背景技术
甲醛是最常见的室内空气污染物之一,因其具有与体内蛋白质等生物质发生反应而引起生物质变性的高化学反应活性,长期暴露于含有低浓度甲醛的环境中可引起慢性中毒,甚至导致鼻咽癌和白血病等严重疾病,对人体健康造成严重的危害。因此,研究开发安全高效的甲醛防治技术具有重要意义。在现有的甲醛净化技术中,催化氧化法因其能在温和的条件下将甲醛完全催化氧化为二氧化碳(CO2)和水(H2O)且具有能耗低和普适性强的优点,被认为是最具前景的甲醛消除技术。发展安全高效的甲醛氧化催化剂是推进催化氧化消除甲醛技术实际应用的关键。
当前常用于甲醛催化氧化的催化剂主要有两类,非贵金属催化剂(MnO2,CeO2和Co3O4等)和负载型贵金属催化剂(Pt,Au,Pd和Ag等)。目前非贵金属催化剂依然难以实现在室温环境下实现对甲醛的完全氧化;而负载型贵金属催化剂则展现出优异的低温催化性能,其可在室温下实现甲醛的完全氧化,展现出非常好的应用前景。因此,尽管贵金属催化剂存在资源稀缺与成本高昂的问题,但其表现出的优异的低温催化活性是非贵金属催化剂难以替代的。近年来,设计合成兼具高活性和低成本的负载型贵金属催化剂已成为发展甲醛催化氧化技术的主流趋势。根据文献报道,对负载型贵金属催化剂的改性主要集中于组分调制和结构优化,常采用掺杂和复合以及结构纳米化、形貌控制和缺陷调变等策略。但总体而言,贵金属催化剂仍普遍存在活性偏低、贵金属组分利用率偏低(体现为单位质量贵金属催化反应速率较低),长期工作稳定性和耐湿性欠佳等问题[J.Hazard.Mater.395(2020)122628],因此发展先进的负载型贵金属催化剂设计理念与可控合成方法仍是推进甲醛催化氧化技术实用化进程中亟待解决的关键问题。
发明内容
针对以上现有技术存在的缺点和不足,本发明的首要目的在于提供一种基于非晶化结合阳离子掺杂改性的负载型贵金属催化剂。本发明催化剂具有超薄纳米片形貌,高度弥散分布的贵金属纳米颗粒和富含氧空位的特征,兼具高本征催化活性和丰富的活性位点,可在室温条件下高效且稳定地催化甲醛氧化分解,综合催化性能接近迄今报道的最优催化剂。
本发明的另一目的在于提供上述基于非晶化结合阳离子掺杂改性的负载型贵金属催化剂的制备方法。该方法原料易得、操作简便、便于量产。
本发明目的通过以下技术方案实现:
一种基于非晶化结合阳离子掺杂改性的负载型贵金属催化剂,由贵金属活性相和非晶态金属氧化物载体相组成,贵金属活性相以细小纳米颗粒形式弥散分布于非晶态金属氧化物载体相表面。
优选地,所述贵金属是指Pt、Pd、Ir、Rh中的至少一种;所述非晶态金属氧化物载体相为阳离子掺杂的铁氧化物。
进一步优选地,所述铁氧化物掺杂的阳离子为W、Mo、Mn阳离子中的至少一种。
优选地,所述贵金属活性相的颗粒尺寸为1~2nm;所述非晶态金属氧化物载体相的纳米片厚度为1.5-5nm。
上述基于非晶化结合阳离子掺杂改性的负载型贵金属催化剂的制备方法,包括如下制备步骤:
将乙酰丙酮铁(Fe(acac)3)、乙酰丙酮贵金属盐和过渡金属羰基配合物分散于乙二醇中,先后经超声、搅拌,溶剂热反应后冷却至室温,所得沉淀物经充分清洗、干燥后制得基于非晶化结合阳离子掺杂改性的负载型贵金属催化剂。
优选地,所述乙酰丙酮贵金属盐是指乙酰丙酮铂(Pt(acac)2)、乙酰丙酮钯(Pd(acac)2)、乙酰丙酮铱(Ir(acac)3)和乙酰丙酮铑(Rh(acac)3)中至少一种。
优选地,所述过渡金属羰基配合物是指六羰基钨(W(CO)6)、六羰基钼(Mo(CO)6)和羰基锰(Mn(CO)5)中至少一种。
优选地,所述乙酰丙酮铁的浓度为0.1-0.4M,乙酰丙酮贵金属盐的浓度为0.001-0.003M,过渡金属羰基配合物的浓度为0.01-0.04M。
优选地,所述超声时间为1-3小时,所述搅拌时间为1-12小时;
优选地,所述溶剂热反应的温度为100-150℃,时间为24-48h。
优选地,所述清洗是指分别用超纯水、无水乙醇和丙酮清洗。
上述的一种基于非晶化结合阳离子掺杂改性的负载型贵金属催化剂在甲醛催化氧化中的应用。
本发明的原理为:对于甲醛催化氧化催化剂,催化剂对氧分子的活化能力与提供的活性位点数量是影响催化性能的关键。贵金属具有较好的活化氧分子产生活性氧的能力,通常表现出优异的甲醛催化氧化活性;对于负载型贵金属催化剂,载体的物理化学性质与结构特征对负载的贵金属的分散状态及其表面化学态具有重要影响,是影响催化剂催化性能的关键因素之一。此外,载体的表面化学态及结构特征对甲醛分子的吸附亦具有显著的影响。本发明所提供的催化剂在设计思路上优化载体的成份、物相及形貌以提高负载型贵金属催化剂的催化性能,并提供了简单易行的制备方法加以实现。本发明采用溶剂热法一步合成了具有阳离子掺杂的非晶铁氧化物纳米片负载贵金属催化剂。贵金属活性相与氧化物载体组合构筑协同催化活性位,其中贵金属活性相提供分解氧分子产生活性氧物种的活性位,氧化物载体提供甲醛吸附位点与促进水分子解离产生活性羟基物种。在本发明的催化剂中,超薄纳米片有利于贵金属活性相的分散,使之能够得到高度弥散分布的贵金属活性相;同时,非晶氧化物因其原子排布的无序性使其具有丰富的缺陷结构;此外,异价阳离子的掺杂通过电荷平衡机制可进一步提高载体的氧缺陷含量。高度弥散的贵金属结合丰富的氧空位为甲醛催化氧化提供了大量的活性位点与吸附位点,协同地提高了甲醛催化氧化的活性。综上,本发明所提供的甲醛催化氧化催化剂兼具高本征活性和丰富的活性位。
相对于现有技术,本发明具有如下优点及有益效果:
(1)本发明提供的方法与材料有效的兼具优化本征活性和活性位数量。通过调控载体的结晶性与组分有效引入大量的氧空位,进而与高度弥散的贵金属组合构筑协同催化活性位;此外,超薄的纳米片结构在有效提高贵金属的分散度的同时,可进一步改善催化剂的传质性能。
(2)本发明的制备方法原料易得、工艺简单、便于量产。
(3)本发明所得负载型贵金属催化剂可在室温条件下实现甲醛完全氧化去除且其具有较高的贵金属利用率(反应速率高达68.3μmol gPt -1s-1);此外,其表现出优异的稳定性和耐湿性,综合催化性能接近目前报道的最优负载型贵金属催化剂。
附图说明
图1为本发明实施例1中所得1.5wt%Pt负载于W掺杂的非晶铁氧化物催化剂(记为:Pt/a-Fe0.08WOx)的X射线衍射图。
图2为本发明实施例1中所得催化剂Pt/a-Fe0.08WOx的透射电镜形貌图(a);选区电子衍射图谱(b)和高角环形暗场-扫描透射电子显微照片(c)。
图3a为本发明实施例1中所得催化剂Pt/a-Fe0.08WOx在O1s区域的的X射线光电子能谱图。
图3b为本发明实施例1中所得催化剂Pt/a-Fe0.08WOx在Fe 2p区域的的X射线光电子能谱图。
图3c为本发明实施例1中所得催化剂Pt/a-Fe0.08WOx在W 4f区域的的X射线光电子能谱图。
图3d为本发明实施例1中所得催化剂Pt/a-Fe0.08WOx在Pt 4f区域的的X射线光电子能谱图。
图4为本发明实施例1中所得催化剂Pt/a-Fe0.08WOx的甲醛催化氧化性能图。
图5为本发明实施例1中所得催化剂Pt/a-Fe0.08WOx的稳定性与耐湿性测试结果图。
图6为本发明实施例2中所得1.5wt%Pd负载于W掺杂的非晶铁氧化物催化剂(记为:Pd/a-Fe0.08WOx)的X射线衍射图。
图7为本发明实施例2中所得催化剂Pd/a-Fe0.08WOx的透射电镜形貌图(a)和高角环形暗场-扫描透射电子显微图(b)。
图8为本发明实施例2中所得催化剂Pd/a-Fe0.08WOx的甲醛催化氧化性能图。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式和保护范围不限于此。
实施例1
(1)催化剂制备:
Pt/a-Fe0.08WOx催化剂的合成:将2.0mmol Fe(acac)3、0.015mmol Pt(acac)2和0.20mmol W(CO)6分散于10mL EG中,先后经超声、搅拌各1小时后置于容积为30ml聚四氟乙烯反应釜中,经120℃恒温反应36小时后自然冷却至室温,所得沉淀物经充分清洗(分别用超纯水、无水乙醇和丙酮清洗)、干燥后制得目标催化剂Pt/a-Fe0.08WOx
(2)催化剂的物相/结构/元素化学态表征:
本实施例所得催化剂Pt/a-Fe0.08WOx的X射线衍射和选区电子衍射图分别如图1和图2(b)所示。结合XRD和选区电子衍射分析证明,制得的催化剂Pt/a-Fe0.08WOx为非晶相。透射电镜观察(图2(a))发现,该Pt/a-Fe0.08WOx具有超薄的纳米片结构,其片层厚度约2nm。根据高角环形暗场-扫描透射电子显微分析(图2(c)),纳米片表面弥散分布着大量的Pt纳米晶,尺寸约为1~2nm。
根据X射线光电子能谱分析(图3),所得催化剂Pt/a-Fe0.08WOx的O1s谱表明该催化剂表面存在大量的氧空位;此外,Fe 2p与W 4f谱中均存在相应低价态的Fe2+和W5+信号,进一步确证了催化剂表面存在氧空位。Pt 4f谱图证明Pt主要以金属态Pt0存在于氧化物表面。
(3)本实施例所得催化剂Pt/a-Fe0.08WOx催化性能测试:
不同温度下催化剂的催化活性变化(图4)表明,Pt/a-Fe0.08WOx催化剂具有优异的催化反应活性,在20℃下即可将120ppm的甲醛完全催化氧化为CO2和H2O,说明其具有优异的低温催化活性;此外,其表现出较高的催化反应速率(68.3μmol gPt -1s-1),催化活性与目前报道的负载型Pt催化剂相当。甲醛催化氧化反应条件:原料为120ppm甲醛与高纯空气混合气,气体体积空速为600L gcat -1h-1
图5给出了Pt/a-Fe0.08WOx催化剂的稳定性与耐湿型测试结果,在不同湿度条件下,经过24小时等温(25℃)测试,催化剂活性未现衰退,说明催化剂具备优异的稳定性与耐湿型。甲醛催化氧化反应条件:原料为120ppm甲醛与高纯空气混合气,气体体积空速为900Lgcat -1h-1
实施例2
(1)催化剂制备:
本实施例的合成方法中,仅将Pt(acac)2更换为Pd(acac)2,其余制备条件与实施例1一致。
(2)催化剂的物相/结构表征:
本实施例所得催化剂Pd/a-Fe0.08WOx的X射线衍射如图6所示。根据XRD分析,制得的催化剂Pd/a-Fe0.08WOx为非晶相。
透射电镜观察(图7a)发现该催化剂结构与实施例1一致,为纳米片形貌。此外,根据高角环形暗场-扫描透射电子显微分析(图7b),纳米片表面弥散分布着大量的Pd纳米晶,尺寸约为1~2nm。
(3)本实施例所得目标催化剂Pd/a-Fe0.08WOx催化性能测试:
不同温度下催化剂的催化性能变化(图8)表明,Pd/a-Fe0.08WOx催化剂具有较高的催化反应活性,在35℃时即可将120ppm的甲醛完全催化氧化为CO2和H2O,表明该催化剂具有较好的低温催化活性,与目前报道的负载型Pd催化剂的活性相当。甲醛催化氧化反应条件:原料为120ppm甲醛与高纯空气混合气,气体体积空速为600L gcat -1h-1
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其它的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (8)

1.一种基于非晶化结合阳离子掺杂改性的负载型贵金属催化剂,其特征在于,所述基于非晶化结合阳离子掺杂改性的负载型贵金属催化剂由贵金属活性相和非晶态金属氧化物载体相组成,贵金属活性相以弥散的纳米颗粒形式分布于非晶态金属氧化物载体相表面;
所述贵金属是指Pt、Pd、Ir、Rh中的至少一种;所述非晶态金属氧化物载体相为阳离子掺杂的铁氧化物;
所述铁氧化物掺杂的阳离子为W、Mo、Mn阳离子中的至少一种。
2.根据权利要求1所述的一种基于非晶化结合阳离子掺杂改性的负载型贵金属催化剂,其特征在于,所述贵金属活性相的颗粒尺寸为1~2nm;所述非晶态金属氧化物载体相的纳米片厚度为1.5-5nm。
3.权利要求1~2任一项所述的一种基于非晶化结合阳离子掺杂改性的负载型贵金属催化剂的制备方法,其特征在于,包括如下制备步骤:
将乙酰丙酮铁Fe(acac)3、乙酰丙酮贵金属盐和过渡金属羰基配合物分散于乙二醇中,经超声、搅拌,溶剂热反应后冷却至室温,所得沉淀物经清洗、干燥后制得基于非晶化结合阳离子掺杂改性的负载型贵金属催化剂。
4.根据权利要求3所述的一种基于非晶化结合阳离子掺杂改性的负载型贵金属催化剂的制备方法,其特征在于,所述乙酰丙酮贵金属盐是指乙酰丙酮铂Pt(acac)2、乙酰丙酮钯Pd(acac)2、乙酰丙酮铱Ir(acac)3和乙酰丙酮铑Rh(acac)3中至少一种;所述过渡金属羰基配合物是指六羰基钨W(CO)6、六羰基钼Mo(CO)6和羰基锰Mn(CO)5中至少一种。
5.根据权利要求3所述的一种基于非晶化结合阳离子掺杂改性的负载型贵金属催化剂的制备方法,其特征在于,所述乙酰丙酮铁的浓度为0.1-0.4M,乙酰丙酮贵金属盐的浓度为0.001-0.003M,过渡金属羰基配合物的浓度为0.01-0.04M。
6.根据权利要求3所述的一种基于非晶化结合阳离子掺杂改性的负载型贵金属催化剂的制备方法,其特征在于,所述超声时间为1-3小时,所述搅拌时间为1-12小时;所述清洗是指分别用超纯水、无水乙醇和丙酮清洗。
7.根据权利要求3所述的一种基于非晶化结合阳离子掺杂改性的负载型贵金属催化剂的制备方法,其特征在于,所述溶剂热反应的温度为100-150℃,时间为24-48h。
8.权利要求1~2任一项所述的一种基于非晶化结合阳离子掺杂改性的负载型贵金属催化剂在甲醛催化氧化中的应用。
CN202011493792.2A 2020-12-16 2020-12-16 基于非晶化结合阳离子掺杂改性的负载型贵金属催化剂及制备方法与应用 Active CN112495395B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011493792.2A CN112495395B (zh) 2020-12-16 2020-12-16 基于非晶化结合阳离子掺杂改性的负载型贵金属催化剂及制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011493792.2A CN112495395B (zh) 2020-12-16 2020-12-16 基于非晶化结合阳离子掺杂改性的负载型贵金属催化剂及制备方法与应用

Publications (2)

Publication Number Publication Date
CN112495395A CN112495395A (zh) 2021-03-16
CN112495395B true CN112495395B (zh) 2022-04-22

Family

ID=74922134

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011493792.2A Active CN112495395B (zh) 2020-12-16 2020-12-16 基于非晶化结合阳离子掺杂改性的负载型贵金属催化剂及制备方法与应用

Country Status (1)

Country Link
CN (1) CN112495395B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115557469B (zh) * 2022-09-19 2024-03-22 华东理工大学 一种非晶态贵金属氧化物材料及其制备方法与应用
CN115814850A (zh) * 2022-12-13 2023-03-21 北京航空航天大学 一种具有层状超晶格结构的铂系纳米片及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105126871A (zh) * 2015-09-02 2015-12-09 厦门大学 一种处理有机小分子的废水催化剂及其制备方法
CN111389412A (zh) * 2020-03-04 2020-07-10 华南理工大学 基于载体形貌改性的负载型贵金属催化剂及制备与应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105126871A (zh) * 2015-09-02 2015-12-09 厦门大学 一种处理有机小分子的废水催化剂及其制备方法
CN111389412A (zh) * 2020-03-04 2020-07-10 华南理工大学 基于载体形貌改性的负载型贵金属催化剂及制备与应用

Also Published As

Publication number Publication date
CN112495395A (zh) 2021-03-16

Similar Documents

Publication Publication Date Title
Wang et al. Ru/CeO2 catalyst with optimized CeO2 support morphology and surface facets for propane combustion
Dey et al. Cobalt doped CuMnOx catalysts for the preferential oxidation of carbon monoxide
Sasirekha et al. Photocatalytic performance of Ru doped anatase mounted on silica for reduction of carbon dioxide
Liu et al. Oxygen vacancies enhanced HCHO oxidation on a novel NaInO2 supported Pt catalyst at room temperature
KR102100522B1 (ko) 수소의 제조를 위한 금속성 황화물에 기반한 복합 광촉매
CN112495395B (zh) 基于非晶化结合阳离子掺杂改性的负载型贵金属催化剂及制备方法与应用
Singh et al. Non-oxidative coupling of methane over Pd-loaded gallium oxide photocatalysts in a flow reactor
Tahay et al. Synthesis of cubic and hexagonal ZnTiO3 as catalyst support in steam reforming of methanol: Study of physical and chemical properties of copper catalysts on the H2 and CO selectivity and coke formation
Sun et al. Production of syngas via CO2 methane reforming process: effect of cerium and calcium promoters on the performance of Ni-MSC catalysts
Wang et al. CeO2 nanorods decorated with Pt nanoparticles as catalysts for oxidative elimination of formaldehyde
CN110787822A (zh) 一种四氧化三钴催化剂及其制备方法和应用
Yu et al. Synthesis and characterization of iron-based catalyst on mesoporous titania for photo-thermal FT synthesis
Meilin et al. Activity and deactivation behavior of Au/LaMnO3 catalysts for CO oxidation
Cheng et al. Sol–gel citrate procedure to synthesize Ag/Co 3 O 4 catalysts with enhanced activity for propane catalytic combustion
CN111389412B (zh) 基于载体形貌改性的负载型贵金属催化剂及制备与应用
Dey et al. To optimized various parameters of Hopcalite catalysts in the synthetic processes for low temperature CO oxidation
Podila et al. Influence of Ce substitution in LaMO3 (M= Co/Ni) perovskites for COx-free hydrogen production from ammonia decomposition
CN115770612A (zh) 一种用于二氧化碳加氢制备甲醇的催化剂及其制备方法和应用
Papavasiliou et al. Mesoporous CuO/TiO2 catalysts prepared by the ammonia driven deposition precipitation method for CO preferential oxidation: Effect of metal loading
El-Salamony et al. Enhanced direct methanation of CO2 using Ni-based catalysts supported on ZrO2, CeO2-ZrO2, and La2O3-ZrO2: The effect of support material on the reducible NiO-interacted species and catalytic activity
Alshehri et al. Low temperature oxidation of carbon monoxide over mesoporous Au-Fe 2 O 3 catalysts
CN113546659B (zh) 采用配位法的高分散CeCN-urea-N2材料及其制备方法和应用
Meng et al. Modifying Y zeolite with chloropropyl for improving Cu load on Y zeolite as a super Cu/Y catalyst for toluene oxidation
Shang et al. Insights into the Mn-doping effects on the catalytic performance of ZnCrAlOy/SAPO-34 bifunctional catalyst for the direct conversion of syngas to light olefins
Xu et al. Enhanced methane combustion performance over zinc-aided Co3O4 by engineering the reactivity of active oxygen species

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant