CN112495393B - 一种精细调控负载型合金催化剂及其制备方法与应用 - Google Patents

一种精细调控负载型合金催化剂及其制备方法与应用 Download PDF

Info

Publication number
CN112495393B
CN112495393B CN202011359533.0A CN202011359533A CN112495393B CN 112495393 B CN112495393 B CN 112495393B CN 202011359533 A CN202011359533 A CN 202011359533A CN 112495393 B CN112495393 B CN 112495393B
Authority
CN
China
Prior art keywords
catalyst
solution
metal
preparation
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011359533.0A
Other languages
English (en)
Other versions
CN112495393A (zh
Inventor
王平
施青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN202011359533.0A priority Critical patent/CN112495393B/zh
Publication of CN112495393A publication Critical patent/CN112495393A/zh
Application granted granted Critical
Publication of CN112495393B publication Critical patent/CN112495393B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/894Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/394Metal dispersion value, e.g. percentage or fraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/342Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electric, magnetic or electromagnetic fields, e.g. for magnetic separation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

本发明属于不可逆储氢材料领域,公开了一种精细调控负载型合金催化剂及其制备方法与应用。所述催化剂包括金属合金活性相和金属氧化物基体相,金属合金活性相以超小纳米颗粒形式高度分散在金属氧化物基体相表面。根据需要调整不同的贵金属前驱体盐的溶液PH值,将贵金属前驱体盐单层吸附在固溶体基底上,所得产物在还原性气氛下进行热处理反应,得到高分散纳米合金催化剂。本发明的制备方法原料易得、工艺简单、易于量产。制得的催化剂兼具高本征催化活性、丰富的活性位点和优异的稳定性,可在碱性条件下高效催化水合肼分解制氢。

Description

一种精细调控负载型合金催化剂及其制备方法与应用
技术领域
本发明属于不可逆储氢材料领域,具体涉及一种精细调控负载型合金催化剂及其制备方法与应用。
背景技术
能源短缺、环境污染以及全球气候变暖给人类社会的可持续发展带来了前所未有的挑战。优化能源结构和开发利用高效转化技术是解决当前危机的重要途径。氢是一种清洁高效的可再生能源,氢能的利用对“氢经济”的发展至为重要,研究和开发高储氢性能且有规模应用前景的储氢材料是氢能高效利用的前提条件。根据不同的充放氢方式,储氢材料可大致可分为物理储氢材料和化学储氢材料。其中,化学储氢材料的氢含量远远高于物理储氢材料,特别是水合肼(N2H4·H2O)作为是一种新型化学储氢材料,具有储氢容量高(8wt%)、材料成本低、便于贮运以及制氢反应不产生固体副产物等突出优点,使其受到广泛关注。虽然如此,却因N2H4·H2O具有毒性,使其实际应用受到严重阻碍,但根据Tanaka的报道,可通过水合肼与含羰基聚合物反应形成固体腙来解决这一问题。腙十分安全,可在与温水接触时释放出一水合肼。
N2H4作为N2H4·H2O的有效储氢成分,其分解有两条竞争性路径:N2H4→N2+2H2,3N2H4→4NH3+N2。从储氢应用角度,需要选择性促进其完全分解。由此可以看出,N2H4·H2O化学储氢技术的关键在于研发兼具高活性、高制氢选择性、高稳定的高效催化剂。研究发现,Ni基合金贵金属催化剂(Ni-Pt/Ni-Ir/Ni-Ru等)具有优异的催化活性和制氢选择性,然而贵金属价格昂贵,资源匮乏,使其商业应用受到严重阻碍。因此,在保证催化活性的前提下降低催化剂成本是一种最优策略。一般来说,多相催化反应发生在催化剂表面,其催化性能主要由表面而非本体行为决定,例如,Wang课题组通过共沉淀法制备的Ni-Pt/CeO2催化剂,在30℃时,反应速率能够达到353h-1,虽然表观活性不错,但实际本征活性很低。因为大量活性位点被载体CeO2包裹起来,实际起催化作用的只有暴露在载体表面的活性位点(Int.J.Hydrogen Energy,2017,42,5684)。因此,开发先进的方法来精细调控负载型合金催化剂是合金贵金属催化剂发展的有效途径。对于制备含贵金属的催化剂使用表面调控的方法,可以在不影响催化性能的前提下降低贵金属负载同时降低成本,这在化学工业上也有巨大的应用潜力。因此,开发一种精细调控高性能催化剂具有重要的意义。
发明内容
针对以上现有技术存在的缺点和不足之处,本发明的首要目的在于提供一种适用于水合肼分解制氢的贵金属催化剂制备及应用。本发明催化剂具有高本征催化活性、丰富的活性位点和优异的稳定性。研究表明,该催化剂可在碱性条件下高效地催化水合肼分解制氢。
本发明的另一目的在于提供上述基于精细调控贵金属水合肼分解制氢催化剂的制备方法。该方法制备工艺简便、便于量产、可应用于其他催化材料领域。
本发明目的通过以下技术方案实现:
一种精细调控负载型合金催化剂,包括双金属合金活性相和金属氧化物基体相,双金属合金活性相以超小纳米颗粒形式高度均匀分布于金属氧化物基体相表面。
优选地,所述金属氧化物基体相为La系La、Ce中的一种金属氧化物,所述金属合金活性相是指过渡金属Fe、Co、Ni、Cu中的一种与贵金属Pt、Ir、Ru、Rh、Pd中的一种金属进行合金化得到的活性相;进一步优选的,所述金属合金活性相是指Ni-Pt、Ni-Ir、Ni-Ru、Ni-Rh、Ni-Pd、Co-Pt、Co-Ir、Co-Ru、Co-Rh、Co-Pd二元合金。
优选地,所述金属合金活性相的颗粒尺寸为1~2nm。
优选地,所述氧化物基体相为纳米结构。
催化剂制备方法可分为水热-静电吸附-还原热处理三步,首先采用水热方法合成纳米结构固溶体相,然后通过静电吸附将贵金属前驱体单层吸附于基体相表面,最后通过调控还原热处理条件,使活性金属从固溶体中原位析出,同时与被还原的贵金属合金化,制得具有纳米结构特征的负载型合金化催化剂。
上述基于精细调控负载型合金催化剂的制备方法,包括如下制备步骤:
(1)将基体金属盐和活性金属盐溶解于乙醇中,加入沉淀剂搅拌进行反应0~4h,然后80~180℃水热反应,得到纳米结构催化剂前驱体,离心干燥得到固溶体;
(2)调制贵金属盐溶液pH值,通过静电吸附法将贵金属盐单层吸附于步骤(1)所述固溶体表面,抽滤干燥;
(3)步骤(2)中产物在还原性气氛300~600℃温度下进行热处理反应,活性金属从固溶体基底中原位析出与同时被还原的贵金属合金化,得到负载型合金目标催化剂。
优选的,步骤(1)所述沉淀剂选自草酸二甲酯、尿素、氢氧化钠、四甲基氢氧化铵中的一种;步骤(1)所述水热反应在聚四氟乙烯的水热釜中进行。
优选的,步骤(2)所述贵金属盐溶液的PH值根据步骤(1)的固溶体等电点确定,贵金属盐用量由固溶体的比表面积及质量确定,按单层最大吸附量1000m2L-1计算,贵金属盐的浓度为1mM;所述静电吸附为室温25℃。
优选的,步骤(1)所述基体金属盐是指La、Ce中的一种金属的硝酸盐、硫酸盐、醋酸盐;活性金属盐是指Fe、Co、Ni、Cu中的一种金属的硝酸盐、硫酸盐、醋酸盐;步骤(2)所述贵金属盐是指Pt、Ir、Pd、Ru、Rh中一种贵金属的氯酸盐、硝酸盐。
优选的,步骤(1)所述搅拌反应的温度为25~80℃;反应时间为0~2h。
优选地,步骤(1)所述基体金属盐的浓度为10~100mM,活性金属盐的浓度优选为1~10mM,沉淀剂的浓度为100~500mM。
优选地,步骤(1)所述水热反应的时间为5~12h。
优选地,步骤(3)所述还原气氛是指氢气。
优选地,步骤(3)所述热处理反应的时间为1~2h。
上述的精细调控负载型合金催化剂在催化水合肼分解制氢中的应用。
本发明的原理为:目前,大多数水合肼分解制氢催化剂的制备方法,如共沉淀法、化学还原法等,所制备的催化剂都是较为均匀的纳米合金颗粒,这种‘一锅法’的制备方法,使大部分催化活性位点包覆在体相,即贵金属利用效率低。从实际应用的角度来看,在不影响催化性能的前提下降低贵金属负载同时降低成本,是解决该问题的有效途径。为进一步探索表面引入贵金属的有效方法,提高贵金属的利用效率并获得高性能催化剂。本发明在设计思路上进行优化,并提供了简单易行的制备方法加以实现。该催化剂制备方法可分为水热-静电吸附-还原热处理三步,首先以含有过渡金属盐的乙醇溶液为起始原料,采用水热方法合成具有高比表面积纳米结构的固溶体相,为合成高性能催化剂奠定材料组成与结构基础;然后通过静电吸附法,调节合适的PH值范围,将贵金属前驱体单层吸附于基体相表面,最后通过调控还原热处理条件,使活性金属从固溶体中原位析出,同时与被还原改性贵金属合金化,制得具有纳米结构特征的负载型合金化催化剂。原位析出的金属合金相使金属合金更均匀分散,增加活性位数量的同时提高本征活性。综上,本发明所提供的水合肼分解制氢催化剂具高本征活性、丰富的活性位点和优异的稳定性。
相对于现有技术,本发明具有如下优点及有益效果:
(1)本发明区别于传统方法的关键之处在于提高贵金属的利用率,从而降低材料成本。在合成具有纳米结构的基底固溶体基础上,通过表面调控的方法(静电吸附法)对负载的贵金属进行表面精细调控和条件优化,表面单层吸附的贵金属与基底固溶体原位析出双重设计,使得金属合金相以超小纳米颗粒形式高度均匀分布金属氧化物基底表面。在热处理过程中发生的原位双金属合金相,不仅可以提高催化剂的本征活性,而且能够最大程度增加活性位数量。
(2)本发明的制备方法原料易得、工艺简单、易于量产。
(3)本发明提供了高性能负载型合金催化剂,可在碱性条件下高效催化水合肼分解反应,具有高活性、100%制氢选择性和优异的稳定性。
附图说明
图1为本发明实施例1中所得水热态样品CeNi0.1Ox与目标催化剂样品Ni0.10Pt0.022/CeO2的X射线衍射图。
图2为发明实施例1中所得目标催化剂样品Ni0.10Pt0.022/CeO2的透射电镜形貌图(a)、选区电子衍射图(a中插图)和高分辨电镜照片图(b)。
图3a为本发明实施例1中目标催化剂样品Ni0.10Pt0.022/CeO2的Ni 2p的X射线光电子能谱图。
图3b为本发明实施例1中目标催化剂样品Ni0.10Pt0.022/CeO2的Pt 4f的X射线光电子能谱图。
图4为本发明实施例1中样品CeNi0.1Ox、Pt0.022/CeO2、Ni0.10Pt0.022/CeO2的H2-TPR数据图。
图5为本发明实施例1中不同PH制备条件下得到的目标催化剂Ni0.10Pt0.022/CeO2在含有0.5M水合肼和2.0M氢氧化钠溶液中的对N2H4·H2O分解动力学测试图。
图6a为本发明实施例1中样品CeNi0.1Ox及CeO2的等电点测试图。
图6b为不同PH值条件下对CeNi0.1Ox样品吸附铂盐的含量图。
图7为本发明实施例1中最优PH值条件下制备的目标催化剂Ni0.10Pt0.022/CeO2在含有0.5M水合肼和2.0M氢氧化钠溶液中的对N2H4·H2O分解循环测试图。
图8为本发明实施例2中所得水热态样品CeCo0.1Ox与目标催化剂样品Co0.10Ir0.022/CeO2的X射线衍射图。
图9为发明实施例2中所得目标催化剂样品Co0.10Ir0.022/CeO2的透射电镜形貌图(a)、选区电子衍射图(a中插图)和高分辨电镜照片图(b)。
图10为本发明实施例2中目标催化剂Co0.10Ir0.022/CeO2在含有0.5M水合肼和2.0M氢氧化钠溶液中的对N2H4·H2O分解循环测试图。
图11为本发明实施例1的催化剂Ni0.10Pt0.022/CeO2的对肼分解的催化过程示意图。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式和保护范围不限于此。
水合肼分解制氢体系测试及相关计算方法如下:
1.催化剂催化性能测试装置
催化剂样品置于50mL双颈圆底烧瓶中,水浴恒温(指定温度)下测试。通过向上述圆底烧瓶中注入一定浓度的水合肼(碱溶液)启动反应,同时开启磁力搅拌,以减少异相催化反应中传质对性能测试结果的影响。N2H4·H2O分解所产生的气体通过装有稀酸的孟氏洗瓶,吸收不完全分解反应所产生的NH3。通过排水法,经电子天平(精度0.01g)实时称重,由电脑记录(数据采集间隔可根据需要选择)称重数据。典型的测试条件为,反应溶液体积2mL,N2H4·H2O浓度0.5M,NaOH浓度2M,反应温度30-80℃,催化剂用量与N2H4·H2O摩尔比为1/20。值得注意的是,测试时,需等待系统内气体热平衡后再进行测试。另外,在由排水质量转换成生成气体摩尔量时,需考虑环境温度对气体体积的影响。
2.催化剂催化性能指标
(1)催化活性计算。在水合肼催化制氢体系中,常用反应速率R(Reaction rate)来表示,如式(1)所示。
Figure BDA0002803620410000061
其中,nmetal为催化剂活性金属相的摩尔量,nN2H4为反应进行50%时N2H4·H2O分解摩尔量,t为反应一半的时间。根据此式,反应速率可理解为单位催化剂量在单位时间内分解水合肼的量。一般在实际计算过程中,会将催化剂中所有金属元素计算在内,得出催化剂的表观催化活性。
(2)制氢选择性计算。催化剂制氢选择性是衡量N2H4·H2O分解制氢体系的储氢容量的重要指标。根据N2H4·H2O分解反应总式:
3N2H4→4(1-X)NH3+(1+2X)N2↑+6XH2↑ (2)
Figure BDA0002803620410000071
其中,n(N2+H2)为产生N2和H2的总摩尔量,n(N2H4)为N2H4·H2O的摩尔量,Y为两者之比。根据式(2-3)可计算制氢选择性X。
(3)催化剂耐久性计算。催化剂耐久性是衡量催化剂寿命的重要指标,在N2H4·H2O分解制氢体系实用中尤为重要。目前主要的评估方法是,计算循环使用后催化剂的活性保持率。
实施例1
催化剂的制备可分为水热-静电吸附-还原热处理三步,第一步:将2mmol的Ce(NO3)3·6H2O和0.2mmol Ni(NO3)2·6H2O完全溶解于20ml的乙醇溶液中,在60℃恒温水浴条件下搅拌,另取6.5mmol四甲基氢氧化铵(TMAH)完全溶于5mL乙醇溶液中后逐滴加入上述金属前驱体盐溶液,60℃恒温搅拌反应2h。然后将反应溶液转移至50mL的聚四氟乙烯内衬不锈钢高压釜中,经80℃恒温陈化12h。而后,通过离心洗涤干燥即可得到固溶体CeNi0.1Ox;第二步:使用盐酸或者氢氧化钠溶液将H2PtCl6或者[Pt(NH3)4]Cl2溶液(1mM)的初始PH值调节到3.5左右(吸附后最终pH值约为3.66),然后按比表面积与溶液体积比称量一定质量的CeNi0.1Ox(1000m2·L-1)加入H2PtCl6或者[Pt(NH3)4]Cl2溶液中搅拌1小时后,经过滤干燥,得到中间产物;第三步,所得产物在H2气氛升温至300℃,以10℃/min-1升温速率恒温1小时,使金属Ni从基体析出,同时与被还原出的金属Pt合金化得到目标催化剂Ni0.10Pt0.022/CeO2。制备好的催化剂样品储存在充满Ar气氛的手套箱中,以尽量减少氧化。
本实施例所得催化剂的物相/结构表征:
(1)本实施例所得水热态样品CeNi0.1Ox及目标催化剂Ni0.10Pt0.022/CeO2的X射线衍射图如图1所示,两个样品均表现出CeO2的物相,但都没有观察到Ni,Pt,或者Ni-Pt合金的物相,这说明此方法制备的催化剂颗粒尺寸极小或者为非晶相,当然,也不排除Ni,Pt含量太低以至于超出XRD的检出限。为进一步确认样品的物相,我们通过选区电子衍射及高分辨电镜进行分析(图2),表征结果显示,目标催化剂Ni0.10Pt0.022/CeO2只能观察到5nm左右的CeO2颗粒,这些结果与XRD一致,这是由于超小Ni-Pt合金纳米颗粒高度分散在基底CeO2的表面。
(2)本实施例所得目标催化剂Ni0.10Pt0.022/CeO2的X射线光电子能谱如图3a、图3b所示:从图3a可见,Ni 2p谱表现出较强的Ni2+信号和较弱的Ni0信号,而图3b中Pt 4f谱中则表现出以金属态为主Pt0信号和少量的Pt2+信号。通过XPS的结果清楚地证实了Ni0.10Pt0.022/CeO2催化剂样品中Ni和Pt元素的存在。随后,通过H2-TPR证实了Ni-Pt合金的存在,如图4,对于样品CeNi0.1Ox,在260℃左右出现的还原峰是Ni2+物种,类似地,对于样品Pt0.022/CeO2,在188℃左右出现的还原峰是Pt2+物种,而对于目标催化剂Ni0.10Pt0.022/CeO2样品,Ni2+的还原峰出现在210℃附近,这是由于氢气溢流现象使Ni2+物种的还原温度降低,说明催化剂中的Pt-Ni原子位置接近,即该样品中存在Ni-Pt合金。
本实施例所得目标催化剂Ni0.10Pt0.022/CeO2的催化性能测试及性能分析:
(1)图11是本实施例催化剂Ni0.10Pt0.022/CeO2的对肼分解的催化过程示意图。
静电吸附法是制备均匀合金纳米催化剂最有效的方法之一。一般认为溶液pH是控制吸附贵金属是制备催化剂的主变量之一。因此,首先研究了pH值对制备的Ni0.10Pt0.022/CeO2催化剂对水合肼催化分解性能的影响。如图5所示,不同pH值的H2PtCl6或[Pt(NH3)4]Cl2溶液制备的催化剂对肼分解的催化性能有显著差异。这里需要指出的是,含铂前驱体盐的选择是由等电点决定的。图6(a)显示了1000m2/L溶液中基体的pH值变化数据,最终pH值的平台是等电点,CeO2和CeNi0.1Ox的等电点分别为6.2和6.8。根据静电吸附机理,CeO2或CeNi0.1Ox基体在等电点以下的溶液中吸附六氯铂阴离子[PtCl6]2-,而在等电点以上的溶液中吸附的是四胺合铂阳离子[Pt(NH3)4]2+。从图5中可以发现,当H2PtCl6溶液pH值为3.66时,Ni0.10Pt0.022/CeO2催化剂的性能最佳,N2H4·H2O完全分解,最大反应速率为406h-1。这是因为铂的吸附量随H2PtCl6或[Pt(NH3)4]Cl2溶液的pH值的变化而变化,进而影响目标催化剂对水合肼的催化分解性能。图6(b)显示了不同含铂前驱体在不同pH值溶液下与吸附量曲线图。当pH=3.66时,Pt的吸附量最高,这与催化N2H4·H2O分解的性能一致。
(2)本实施例所得Ni0.10Pt0.022/CeO2催化剂在反应溶液体积为2mL,含有水合肼浓度0.5M,氢氧化钠浓度为2.0M,反应温度为50℃的测试条件下,对水合肼分解制氢循环性能测试如图7所示。结果表明,该催化剂具有优异的循环稳定性,在循环10次测试后,选择性仍然为100%,活性依旧可以保持初始活性的88%,高于大多数报道的催化剂。
实施例2
(1)催化剂的制备:
为了进一步探索上述方法的普遍性,尝试改变固溶体中的溶质金属及贵金属,具体所用金属及含量为:Co(NO3)2·6H2O(0.2mmol),H2IrCl6·6H2O(0.044mmol),制备条件同实施例1,即可得到目标催化剂样品Co0.10Ir0.022/CeO2,制备好的催化剂样品储存在充满Ar气氛的手套箱中,以尽量减少氧化。
(2)催化剂的物相及结构表征:
图8为本实施例在所得目标催化剂Co0.10Ir0.022/CeO2及其前驱体CeCo0.10Ox的X射线衍射图。通过XRD表征发现两个样品均表现出CeO2的物相,但都没有观察到Ni,Ir,或者Ni-Ir合金的物相,说明此方法制备的催化剂颗粒尺寸极小或者为非晶相。为进一步确认样品的物相,我们通过选区电子衍射及高分辨电镜进行分析(图9),表征结果显示,目标催化剂Co0.10Ir0.022/CeO2只能观察到5nm左右的CeO2颗粒,这些结果与XRD一致,这是由于超小Ni-Pt合金纳米颗粒高度分散在基底CeO2的表面。
(3)催化剂性能测试:
图10为本实例所得目标催化剂Co0.1Ir0.022/CeO2催化N2H4·H2O分解制氢性能图。从图中可以看出,Co0.1Ir0.022/CeO2催化剂在2M碱液中室温条件下仅需5分钟即可催化N2H4·H2O分解制氢,反应速率高达387h-1,其催化活性与目前报道的Co-Ir双金属负载型催化剂相当;并且通过10次循环稳定测试发现,催化剂样品的催化活性和选择性均没有明显降低,优于目前报道的催化剂稳定性。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其它的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (2)

1.一种精细调控负载型合金催化剂,其特征在于,所述催化剂包括金属合金活性相和金属氧化物基体相,所述金属合金活性相以超小纳米颗粒形式弥散分布于基体金属氧化物相表面;
所述精细调控负载型合金催化剂的制备方法包括以下步骤:
催化剂的制备可分为水热-静电吸附-还原热处理三步,第一步:将2mmol的Ce(NO3)3·6H2O和0.2mmol Ni(NO3)2·6H2O完全溶解于20ml的乙醇溶液中,在60℃恒温水浴条件下搅拌,另取6.5mmol四甲基氢氧化铵完全溶于5mL乙醇溶液中后逐滴加入上述金属前驱体盐溶液,60℃恒温搅拌反应2h;然后将反应溶液转移至50mL的聚四氟乙烯内衬不锈钢高压釜中,经80℃恒温陈化12h;而后,通过离心洗涤干燥即可得到固溶体CeNi0.1Ox;第二步:使用盐酸或者氢氧化钠溶液将1mM的H2PtCl6或者[Pt(NH3)4]Cl2溶液的初始PH值调节到3.5,吸附后最终pH值为3.66,然后按1000m2·L-1的比表面积与溶液体积比称量CeNi0.1Ox加入H2PtCl6或者[Pt(NH3)4]Cl2溶液中搅拌1小时后,经过滤干燥,得到中间产物;第三步,所得产物在H2气氛升温至300℃,以10℃/min-1升温速率恒温1小时,使金属Ni从基体析出,同时与被还原出的金属Pt合金化得到目标催化剂Ni0.10Pt0.022/CeO2
或将Ni(NO3)2·6H2O替换为Co(NO3)2·6H2O,H2PtCl6或者[Pt(NH3)4]Cl2替换为H2IrCl6·6H2O。
2.权利要求1所述的精细调控负载型合金催化剂在催化水合肼分解制氢中的应用。
CN202011359533.0A 2020-11-27 2020-11-27 一种精细调控负载型合金催化剂及其制备方法与应用 Active CN112495393B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011359533.0A CN112495393B (zh) 2020-11-27 2020-11-27 一种精细调控负载型合金催化剂及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011359533.0A CN112495393B (zh) 2020-11-27 2020-11-27 一种精细调控负载型合金催化剂及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN112495393A CN112495393A (zh) 2021-03-16
CN112495393B true CN112495393B (zh) 2022-07-26

Family

ID=74967093

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011359533.0A Active CN112495393B (zh) 2020-11-27 2020-11-27 一种精细调控负载型合金催化剂及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN112495393B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113398988B (zh) * 2021-05-06 2022-08-16 华南理工大学 一种以含氮聚合物为分散剂的负载型催化剂及其制备方法与应用
CN113398950B (zh) * 2021-05-19 2022-05-24 华南理工大学 一种晶面调控的负载型纳米合金催化剂及其制备方法与应用
CN114570423B (zh) * 2021-12-27 2023-09-15 中国科学院山西煤炭化学研究所 一种合成气制乙醇、丙醇的催化剂及其制备方法和应用
CN116217536B (zh) * 2023-05-10 2023-07-21 山东新和成药业有限公司 一种佳乐麝香的合成方法及所用的催化剂

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102442646A (zh) * 2010-10-13 2012-05-09 中国科学院大连化学物理研究所 一种高容量复合储氢材料及放氢方法
CN104001505B (zh) * 2014-05-29 2016-03-30 国家纳米科学中心 类三明治空心结构金属氧化物@贵金属纳米粒子@金属氧化物催化剂、制备方法及其用途
CN104888807B (zh) * 2015-04-24 2017-04-05 华南理工大学 一种NaBH4水解制氢催化剂的再生方法
CN109225295B (zh) * 2018-08-29 2021-07-20 华南理工大学 一种表面含氮镍基合金负载型催化剂及制备与应用
CN111036227B (zh) * 2019-12-09 2022-05-24 华南理工大学 一种非贵金属水合肼分解制氢催化剂及其制备方法

Also Published As

Publication number Publication date
CN112495393A (zh) 2021-03-16

Similar Documents

Publication Publication Date Title
CN112495393B (zh) 一种精细调控负载型合金催化剂及其制备方法与应用
Filiz et al. The remarkable role of metal promoters on the catalytic activity of Co-Cu based nanoparticles for boosting hydrogen evolution: Ammonia borane hydrolysis
Gao et al. CrPd nanoparticles on NH2-functionalized metal-organic framework as a synergistic catalyst for efficient hydrogen evolution from formic acid
Leong et al. Shape‐directed platinum nanoparticle synthesis: nanoscale design of novel catalysts
Guan et al. Recent advances and perspectives on supported catalysts for heterogeneous hydrogen production from ammonia borane
Rakap et al. Hydrogen generation from the hydrolysis of ammonia borane using cobalt-nickel-phosphorus (Co–Ni–P) catalyst supported on Pd-activated TiO2 by electroless deposition
Kim et al. Shape-and composition-sensitive activity of Pt and PtAu catalysts for formic acid electrooxidation
Liu et al. The role of oxygen vacancies on Pt/NaInO2 catalyst in improving formaldehyde oxidation at ambient condition
Zhan et al. Ru/TiO2 catalyst for selective hydrogenation of benzene: Effect of surface hydroxyl groups and spillover hydrogen
Wang et al. Cobalt–copper–boron nanoparticles as catalysts for the efficient hydrolysis of alkaline sodium borohydride solution
Liu et al. Out-of-plane CoRu nanoalloy axially coupling CosNC for electron enrichment to boost hydrogen production
Yang et al. Defect-density control of platinum-based nanoframes with high-index facets for enhanced electrochemical properties
CN102631932A (zh) 用于室温下肼分解制氢的镍基金属催化剂及其制备和应用
Chen et al. Effect of Ru crystal phase on the catalytic activity of hydrolytic dehydrogenation of ammonia borane
WO2008082491A1 (en) Hydrogen generation catalysts and systems for hydrogen generation
Zou et al. A durable ruthenium catalyst for the NaBH4 hydrolysis
CN113398950B (zh) 一种晶面调控的负载型纳米合金催化剂及其制备方法与应用
Wang et al. CoMoB nanoparticles supported on foam Ni as efficient catalysts for hydrogen generation from hydrolysis of ammonia borane solution
Hansu A novel and active ruthenium based supported multiwalled carbon nanotube tungsten nanoalloy catalyst for sodium borohydride hydrolysis
CN111036227B (zh) 一种非贵金属水合肼分解制氢催化剂及其制备方法
CN107670694A (zh) 一种金属负载型催化剂及其制备方法和应用
Dai et al. Dragon fruit-like Pt-Cu@ mSiO2 nanocomposite as an efficient catalyst for low-temperature ethanol steam reforming
Asim et al. Synergetic effect of Au nanoparticles and transition metal phosphides for enhanced hydrogen evolution from ammonia-borane
Liu et al. Recent progress in intermetallic nanocrystals for electrocatalysis: From binary to ternary to high‐entropy intermetallics
Guo et al. Graphene supported Pt–Ni bimetallic nanoparticles for efficient hydrogen generation from KBH4/NH3BH3 hydrolysis

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant