CN112492537A - 一种用于输变电设备物联网的微功率无线接入方法与装置 - Google Patents

一种用于输变电设备物联网的微功率无线接入方法与装置 Download PDF

Info

Publication number
CN112492537A
CN112492537A CN202011228955.4A CN202011228955A CN112492537A CN 112492537 A CN112492537 A CN 112492537A CN 202011228955 A CN202011228955 A CN 202011228955A CN 112492537 A CN112492537 A CN 112492537A
Authority
CN
China
Prior art keywords
frame
control channel
sensing terminal
service
sink node
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011228955.4A
Other languages
English (en)
Other versions
CN112492537B (zh
Inventor
秦剑华
路永玲
刘洪�
胡成博
王真
貟超
郑敏
贾骏
张国江
徐玲铃
陶风波
黄强
刘子全
朱雪琼
谭冲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
Shanghai Institute of Microsystem and Information Technology of CAS
State Grid Jiangsu Electric Power Co Ltd
Electric Power Research Institute of State Grid Jiangsu Electric Power Co Ltd
Original Assignee
State Grid Corp of China SGCC
Shanghai Institute of Microsystem and Information Technology of CAS
State Grid Jiangsu Electric Power Co Ltd
Electric Power Research Institute of State Grid Jiangsu Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, Shanghai Institute of Microsystem and Information Technology of CAS, State Grid Jiangsu Electric Power Co Ltd, Electric Power Research Institute of State Grid Jiangsu Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN202011228955.4A priority Critical patent/CN112492537B/zh
Publication of CN112492537A publication Critical patent/CN112492537A/zh
Priority to PCT/CN2021/128290 priority patent/WO2022095863A1/zh
Priority to US17/621,247 priority patent/US11736969B2/en
Application granted granted Critical
Publication of CN112492537B publication Critical patent/CN112492537B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/35Services specially adapted for particular environments, situations or purposes for the management of goods or merchandise
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0215Traffic management, e.g. flow control or congestion control based on user or device properties, e.g. MTC-capable devices
    • H04W28/0221Traffic management, e.g. flow control or congestion control based on user or device properties, e.g. MTC-capable devices power availability or consumption
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • H04W28/065Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information using assembly or disassembly of packets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/38Services specially adapted for particular environments, situations or purposes for collecting sensor information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/02Hybrid access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/04Scheduled access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0866Non-scheduled access, e.g. ALOHA using a dedicated channel for access
    • H04W74/0883Non-scheduled access, e.g. ALOHA using a dedicated channel for access for un-synchronized access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种用于输变电设备物联网的微功率无线接入方法与装置,本发明方法涉及时间同步、业务信道接入、控制信道配置信息接入和突发信息接入过程;时间同步中由汇聚节点根据传感终端随机发送的业务信息所处的时隙确定延迟等参数,传感终端根据参数调整相应帧的发送时间;业务信道接入过程采用单向上报为主的模式,使得传感器工作时间最小化;在控制信道实现有限的双向通信,支持对传感器周期、阈值等参数配置,针对重要的告警信息,在控制信道上支持重传机制,提高了告警业务的可靠性。本发明能够为输变电设备物联网高频次、小数据量、低功耗的设备状态感知传感器提供标准化接入,能够满足微功耗传感器长寿命和免维护运行需求。

Description

一种用于输变电设备物联网的微功率无线接入方法与装置
技术领域
本发明涉及一种用于输变电设备物联网的微功率无线接入方法与装置,属于输变电设备物联网传感器接入领域。
背景技术
随着物联网、无线通信等技术发展,无线传感网在输变电智能运检业务中的应用需求不断增加。相对传统有线监测,无线传输可以有效解决带电体、无法布线等应用场景状态感知数据无法传输的问题,同时简化传感器结构,促进传感器小型化、低成本,实现快速安装、即装即用。输变电设备物联网总体架构分为四个层级:感知层、网络层、平台层和应用层,如图1所示。
其中感知层由各类物联网传感器、网络节点组成,分为传感器层与数据汇聚层两部分,实现传感信息采集和汇聚。传感器层由各类物联网传感器组成,用于采集不同类型的设备状态量,并通过网络将数据上传至汇聚节点。物联网传感器分为微功率无线传感器、低功耗无线传感器、有线传感器三类;数据汇聚层由汇聚节点、接入节点等网络节点组成,各类节点装备构成微功率/低功耗无线传感网和有线传输网络全兼容、业务场景全覆盖的传感器网络。
但随着无线传感网的逐步应用,暴露出三方面的问题:1)现有物联网感知装置大多采用私有协议,无法相互兼容替代,导致传感网系统大量重复建设;2)无线频谱资源应用混乱,相互干扰严重;国家正在加强无线通信设备管理,私有协议存在合法性风险;3)在输变电复杂现场环境中,尤其在封闭箱体、带电导体等对传感器功耗要求苛刻、更换困难等环境下,传感器采用通用无线传感网技术(BLE、LORA等)在功耗控制、传输距离等方面无法完全满足业务需求。
发明内容
发明目的:针对上述现有技术存在的问题,考虑到目前电力行业在输变电设备状态感知业务领域尚无统一的微功耗窄带无线通信协议,本发明基于实际输变电业务实际需求开展物理层通信体制选型和链路层协议自主设计,提供一种用于输变电设备物联网的微功率无线接入方法与装置,以满足温度、倾角、压力等小数据量、频繁传输的微功耗传感器长寿命(6年以上)和免维护运行需求。
技术方案:为实现上述发明目的,本发明采用如下技术方案:
一种用于输变电设备物联网的微功率无线接入方法,适用于输变电设备物联网的传感终端,包括时间同步过程,业务信道接入过程,控制信道配置信息接入过程,以及控制信道突发信息接入过程;
所述时间同步过程包括:传感终端先随机发送业务信道信息帧,由汇聚节点根据传感终端业务信息所处的时隙确定延迟参数;传感终端再发送控制信道请求帧,并接收汇聚节点返回的含有延迟参数、业务周期长度参数和控制周期长度参数的控制信道应答帧,根据接收到的参数调整业务信道信息帧和控制信道请求帧的发送时间;
所述业务信道接入过程包括:在业务信道的固定时隙,传感终端进行无回复的单向传输,完成业务信息的传输;传感终端从休眠状态中激活,监测业务信道,若为忙,则进入休眠状态,根据业务周期长度等待下一次激活;若为空闲,则随机退避一个随机退避时长后向汇聚节点发送业务信道信息帧后,进入休眠状态,根据业务周期长度等待下一次激活;
所述控制信道配置信息接入过程包括:传感终端在固定的配置时隙被激活向汇聚节点发送控制信道请求帧,然后进入等待接收状态,长度为等待回复周期;传感终端每成功接收到一个控制信道应答帧后,进入下一个等待回复周期,等待接收下一帧;传感终端成功接收到控制信道应答终帧后,回复控制信道确认帧;
所述控制信道突发信息接入过程包括:传感终端需要上报突发情况时被激活,在控制信道立刻发送控制信道突发帧,进入等待回复周期;若传感终端没有成功接收到控制信道确认帧,则使用重传机制,直到传感终端成功接收到控制信道确认帧或重传次数达到重传上限;
上述业务信道信息帧、控制信道请求帧、控制信道应答帧、控制信道应答终帧、控制信道确认帧以及控制信道突发帧通过MAC层帧头中的帧类型字段区分。
进一步地,所述控制信道配置信息接入过程中,传感终端发送异常时,传感终端在发送完控制信道请求帧后,进入等待接收状态;传感终端在等待回复周期内没有收到回复,则进入休眠状态,根据控制周期长度等待下一次激活;
所述控制信道突发信息接入过程中,传感终端在等待回复周期内没有收到相应的控制信道确认帧,立刻重新发送控制信道突发帧;若在最大重传次数内接收到控制信道确认帧,则停止重发,进入休眠状态;若达到最大次数但没有接收到控制信道确认帧,则进入休眠状态。
一种用于输变电设备物联网的微功率无线接入方法,适用于输变电设备物联网的汇聚节点,包括时间同步过程,业务信道接入过程,控制信道配置信息接入过程,以及控制信道突发信息接入过程;
所述时间同步过程包括:汇聚节点根据传感终端随机发送的业务信道信息帧所处的时隙确定延迟参数;在接收到传感终端的控制信道请求帧后,将保存在汇聚节点的延迟参数、业务周期长度参数和控制周期长度参数记录在控制信道应答帧中回复给传感终端;
所述业务信道接入过程包括:汇聚节点一直处于等待接收状态,成功接收到传感终端发送的业务信道信息帧后,若传感终端的地址不在黑名单中,则向上层传输该数据;若传感终端的地址在黑名单中,则丢弃此帧;若汇聚节点收到既不在白名单也不在黑名单中的传感终端发送的业务信息,则汇聚节点认为该传感终端为新加入的传感终端,汇聚节点接收该传感终端的业务信息,之后由上层决定该传感终端在当前汇聚节点中的黑白名单属性;
所述控制信道配置信息接入过程包括:汇聚节点在正确接收到传感终端发送的控制信道请求帧后与白名单中的传感终端地址进行匹配;若匹配成功,则汇聚节点向传感终端发送控制信道应答帧或者控制信道应答终帧;若匹配不成功,则汇聚节点继续处于等待接收状态;当汇聚节点需要回复的内容大于一帧的长度时,则连续发送多帧,最后一帧发送控制信道应答终帧,汇聚节点按序发送控制信道应答帧和控制信道应答终帧后,进入等待接收状态;
所述控制信道突发信息接入过程包括:若汇聚节点成功接收到传感终端发送的控制信道突发帧并完成匹配,则回复控制信道确认帧;若汇聚节点没有接收成功,则汇聚节点继续处于等待接收状态;
上述业务信道信息帧、控制信道请求帧、控制信道应答帧、控制信道应答终帧、控制信道确认帧以及控制信道突发帧通过MAC层帧头中的帧类型字段区分。
一种用于输变电设备物联网的微功率无线接入方法,包括时间同步过程,业务信道接入过程,控制信道配置信息接入过程,以及控制信道突发信息接入过程;
所述时间同步过程包括:传感终端先随机发送业务信道信息帧,汇聚节点根据接收到的传感终端业务信息所处的时隙确定延迟参数;传感终端再发送控制信道请求帧,汇聚节点接收到控制信道请求帧后,将保存的延迟参数、业务周期长度参数和控制周期长度参数记录在控制信道应答帧中回复给传感终端;传感终端根据接收到的参数调整业务信道信息帧和控制信道请求帧的发送时间;
所述业务信道接入过程包括:在业务信道的固定时隙,传感终端进行无回复的单向传输,完成业务信息的传输;传感终端从休眠状态中激活,监测业务信道,若为忙,则进入休眠状态,根据业务周期长度等待下一次激活;若为空闲,则随机退避一个随机退避时长后向汇聚节点发送业务信道信息帧后,进入休眠状态,根据业务周期长度等待下一次激活;汇聚节点一直处于等待接收状态,成功接收到传感终端发送的业务信道信息帧后,若传感终端的地址不在黑名单中,则向上层传输该数据;若传感终端的地址在黑名单中,则丢弃此帧;若汇聚节点收到既不在白名单也不在黑名单中的传感终端发送的业务信息,则汇聚节点认为该传感终端为新加入的传感终端,汇聚节点接收该传感终端的业务信息,之后由上层决定该传感终端在当前汇聚节点中的黑白名单属性;
所述控制信道配置信息接入过程包括:传感终端在固定的配置时隙被激活向汇聚节点发送控制信道请求帧,然后进入等待接收状态,长度为等待回复周期;汇聚节点在正确接收到传感终端发送的控制信道请求帧后与白名单中的传感终端地址进行匹配;若匹配成功,则汇聚节点向传感终端发送控制信道应答帧或者控制信道应答终帧;若匹配不成功,则汇聚节点继续处于等待接收状态;当汇聚节点需要回复的内容大于一帧的长度时,则连续发送多帧,最后一帧发送控制信道应答终帧;传感终端每成功接收到一个控制信道应答帧后,进入下一个等待回复周期,等待接收下一帧;传感终端成功接收到控制信道应答终帧后,回复控制信道确认帧;汇聚节点按序发送控制信道应答帧和控制信道应答终帧后,进入等待接收状态;
所述控制信道突发信息接入过程包括:传感终端需要上报突发情况时被激活,在控制信道立刻发送控制信道突发帧,进入等待回复周期;若汇聚节点成功接收到传感终端发送的控制信道突发帧并完成匹配,则回复控制信道确认帧;若汇聚节点没有接收成功,则汇聚节点继续处于等待接收状态;若传感终端没有成功接收到控制信道确认帧,则使用重传机制,直到传感终端成功接收到控制信道确认帧或重传次数达到重传上限;
上述业务信道信息帧、控制信道请求帧、控制信道应答帧、控制信道应答终帧、控制信道确认帧以及控制信道突发帧通过MAC层帧头中的帧类型字段区分。
进一步地,所述MAC层帧头还包括通信信令指示、加密指示、MAC层负载长度和传感终端ID字段;对于业务信道信息帧、控制信道突发帧省略传感终端检测数据或告警数据中的传感终端ID,只保留MAC帧头中的传感终端ID。
进一步地,为减少传输的交互次数,把多个通信指令组合成单帧进行发送,单个控制信道应答帧或控制信道应答终帧承载的数据不能超过MAC负载上限。
进一步地,传感终端与汇聚节点间物理层通信支持LORA、BLE和ZigBee,选用2.4GHz频段和470M~510MHz频段。
一种用于输变电设备物联网传感终端的微功率无线接入装置,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述计算机程序被加载至处理器时实现所述的适用于输变电设备物联网的传感终端的微功率无线接入方法。
一种用于输变电设备物联网汇聚节点的微功率无线接入装置,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述计算机程序被加载至处理器时实现所述的适用于输变电设备物联网汇聚节点的微功率无线接入方法。
一种用于输变电设备物联网的微功率无线接入装置,包括所述的用于输变电设备物联网传感终端的微功率无线接入装置,以及所述的用于输变电设备物联网汇聚节点的微功率无线接入装置。
有益效果:本发明采用异步通信方式,由传感器发起的随机上报机制,传感器无需监听节点消息,绝大部分时间处于休眠状态,有效降低传感器功耗;本发明以单向业务为主,根据状态监测业务特点,对于主要的普通检测数据,在业务信道采用单向上报为主的模式,使得传感器工作时间最小化;本发明支持双向配置,在控制信道实现有限的双向通信,支持对传感器周期、阈值等参数配置;本发明支持告警重传机制,针对重要的告警信息,在控制信道上支持重传机制,提高了告警业务的可靠性。本发明针对输变电设备物联网实际应用场景,既能最大限度降低功耗又能满足业务可靠传输、双向配置需求,能够很好地用于输变电设备物联网高频次、小数据量(k级以下)、μA级功耗的设备状态感知传感器(如温度、温湿度、形变、倾角等传感器)标准化接入。
附图说明
图1为输变电设备物联网总体架构图。
图2为数据链路层与物理层帧结构关系。
图3为时隙划分示意图。
图4为业务信道传输过程图。
图5为控制信道配置信息请求与响应过程图。
图6为传感终端请求发送异常情况图。
图7为汇聚节点应答发送异常情况图。
图8为传感终端确认回复异常情况图。
图9为控制信道突发信息请求和响应过程图。
图10为传感终端突发帧发送异常情况图。
图11为汇聚节点确认帧发送异常情况图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例仅只是本发明的一部分实施例,而不是全部的实施例。基于本发明的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的其他所有实施例,都属于本发明保护的范围。
本发明实施例公开的一种用于输变电设备物联网的微功率无线接入方法,适用于输变电设备物联网的传感终端,包括时间同步过程,业务信道接入过程,控制信道配置信息接入过程,以及控制信道突发信息接入过程。
时间同步过程包括:传感终端先随机发送业务信道信息帧,由汇聚节点根据传感终端业务信息所处的时隙确定延迟参数;传感终端再发送控制信道请求帧,并接收汇聚节点返回的含有延迟参数、业务周期长度参数和控制周期长度参数的控制信道应答帧,根据接收到的参数调整业务信道信息帧和控制信道请求帧的发送时间;
业务信道接入过程包括:在业务信道的固定时隙,传感终端进行无回复的单向传输,完成业务信息的传输;传感终端从休眠状态中激活,监测业务信道,若为忙,则进入休眠状态,根据业务周期长度等待下一次激活;若为空闲,则随机退避一个随机退避时长后向汇聚节点发送业务信道信息帧后,进入休眠状态,根据业务周期长度等待下一次激活;
控制信道配置信息接入过程包括:传感终端在固定的配置时隙被激活向汇聚节点发送控制信道请求帧,然后进入等待接收状态,长度为等待回复周期;传感终端每成功接收到一个控制信道应答帧后,进入下一个等待回复周期,等待接收下一帧;传感终端成功接收到控制信道应答终帧后,回复控制信道确认帧;
控制信道突发信息接入过程包括:传感终端需要上报突发情况时被激活,在控制信道立刻发送控制信道突发帧,进入等待回复周期;若传感终端没有成功接收到控制信道确认帧,则使用重传机制,直到传感终端成功接收到控制信道确认帧或重传次数达到重传上限。
本发明实施例公开的一种用于输变电设备物联网的微功率无线接入方法,适用于输变电设备物联网的汇聚节点,包括时间同步过程,业务信道接入过程,控制信道配置信息接入过程,以及控制信道突发信息接入过程;
时间同步过程包括:汇聚节点根据传感终端随机发送的业务信道信息帧所处的时隙确定延迟参数;在接收到传感终端的控制信道请求帧后,将保存在汇聚节点的延迟参数、业务周期长度参数和控制周期长度参数记录在控制信道应答帧中回复给传感终端;
业务信道接入过程包括:汇聚节点一直处于等待接收状态,成功接收到传感终端发送的业务信道信息帧后,若传感终端的地址不在黑名单中,则向上层传输该数据;若传感终端的地址在黑名单中,则丢弃此帧;若汇聚节点收到既不在白名单也不在黑名单中的传感终端发送的业务信息,则汇聚节点认为该传感终端为新加入的传感终端,汇聚节点接收该传感终端的业务信息,之后由上层决定该传感终端在当前汇聚节点中的黑白名单属性;
控制信道配置信息接入过程包括:汇聚节点在正确接收到传感终端发送的控制信道请求帧后与白名单中的传感终端地址进行匹配;若匹配成功,则汇聚节点向传感终端发送控制信道应答帧或者控制信道应答终帧;若匹配不成功,则汇聚节点继续处于等待接收状态;当汇聚节点需要回复的内容大于一帧的长度时,则连续发送多帧,最后一帧发送控制信道应答终帧,汇聚节点按序发送控制信道应答帧和控制信道应答终帧后,进入等待接收状态;
控制信道突发信息接入过程包括:若汇聚节点成功接收到传感终端发送的控制信道突发帧并完成匹配,则回复控制信道确认帧;若汇聚节点没有接收成功,则汇聚节点继续处于等待接收状态。
结合上述传感终端和汇聚节点,本发明实施例公开的一种用于输变电设备物联网的微功率无线接入方法,包括时间同步过程,业务信道接入过程,控制信道配置信息接入过程,以及控制信道突发信息接入过程;
时间同步过程包括:传感终端先随机发送业务信道信息帧,汇聚节点根据接收到的传感终端业务信息所处的时隙确定延迟参数;传感终端再发送控制信道请求帧,汇聚节点接收到控制信道请求帧后,将保存的延迟参数、业务周期长度参数和控制周期长度参数记录在控制信道应答帧中回复给传感终端;传感终端根据接收到的参数调整业务信道信息帧和控制信道请求帧的发送时间;
业务信道接入过程包括:在业务信道的固定时隙,传感终端进行无回复的单向传输,完成业务信息的传输;传感终端从休眠状态中激活,监测业务信道,若为忙,则进入休眠状态,根据业务周期长度等待下一次激活;若为空闲,则随机退避一个随机退避时长后向汇聚节点发送业务信道信息帧后,进入休眠状态,根据业务周期长度等待下一次激活;汇聚节点一直处于等待接收状态,成功接收到传感终端发送的业务信道信息帧后,若传感终端的地址不在黑名单中,则向上层传输该数据;若传感终端的地址在黑名单中,则丢弃此帧;若汇聚节点收到既不在白名单也不在黑名单中的传感终端发送的业务信息,则汇聚节点认为该传感终端为新加入的传感终端,汇聚节点接收该传感终端的业务信息,之后由上层决定该传感终端在当前汇聚节点中的黑白名单属性;
控制信道配置信息接入过程包括:传感终端在固定的配置时隙被激活向汇聚节点发送控制信道请求帧,然后进入等待接收状态,长度为等待回复周期;汇聚节点在正确接收到传感终端发送的控制信道请求帧后与白名单中的传感终端地址进行匹配;若匹配成功,则汇聚节点向传感终端发送控制信道应答帧或者控制信道应答终帧;若匹配不成功,则汇聚节点继续处于等待接收状态;当汇聚节点需要回复的内容大于一帧的长度时,则连续发送多帧,最后一帧发送控制信道应答终帧;传感终端每成功接收到一个控制信道应答帧后,进入下一个等待回复周期,等待接收下一帧;传感终端成功接收到控制信道应答终帧后,回复控制信道确认帧;汇聚节点按序发送控制信道应答帧和控制信道应答终帧后,进入等待接收状态;
控制信道突发信息接入过程采用随机双向且具有停等重传机制的交互方式,包括:传感终端需要上报突发情况时被激活,在控制信道立刻发送控制信道突发帧,进入等待回复周期;若汇聚节点成功接收到传感终端发送的控制信道突发帧并完成匹配,则回复控制信道确认帧;若汇聚节点没有接收成功,则汇聚节点继续处于等待接收状态;若传感终端没有成功接收到控制信道确认帧,则使用重传机制,直到传感终端成功接收到控制信道确认帧或重传次数达到重传上限。
下面对本发明实施例中涉及到的具体通信协议做详细说明。本发明所涉及的输变电设备物联网微功率无线网通信协议设计主要分为物理层设计和链路层设计。其中物理层通信体制选型:基于传感器主流厂家的工作基础,选用LORA、BLE、ZigBee物理层方式,一方面以上三种通信芯片具备低功耗的特点,其休眠电流小于1uA,同时发送功率和接收功率为数十mA级别,可满足窄带物联网业务需求,另一方面兼容当前主流传感器厂家的硬件配置;频段合法性:满足无委会的微功率频段使用规定,选用2.4GHz频段和470M~510MHz频段,具体对应为2.4G LORA,470M LORA,2.4G BLE5.0,2.4G ZigBee,其中LORA具有远距离传输优势。
网络拓扑结构包含汇聚节点和传感终端,网络配置为星型网络模型,即多个传感终端与一个汇聚节点直接相连,本网络模型支持两种通信传输,分别为单向传输和双向传输。单向传输指汇聚节点与传感终端在一个单独的信道上直接相连,传感终端通过上行链路上传数据,单向传输只能在传感终端发起,汇聚节点进行接收。双向传输指传感终端和汇聚节点通过给定信道的上行链路和下行链路进行数据传输,多个传感终端有序接入同一个汇聚节点时,双向传输由传感终端在上行链路发起,汇聚节点在下行链路上进行应答。
物理层的帧结构如表1所示。对于CSS物理层,物理层头、物理层头校验、以及物理层负载校验字段为必选;对于IEEE802.15.4物理层,不需要物理层头校验字段和物理层负载校验字段,物理层头为必选;对于BLE5.0物理层,不需要物理层头校验字段,物理层头和物理层负载校验字段为必选。物理层共设置2个工作频段:470-510MHz频段和2400-2483.5MHz频段。
表1物理层帧结构
Figure BDA0002764527330000101
数据链路层在物理层提供服务的基础上向上层提供服务,数据链路层与物理层的帧结构关系如图2所示。传输数据采用帧结构作为基本单元,帧结构见表2,物理层负载长度为9到264字节,用来记录物理层需要传输的数据。物理层负载的循环冗余校验(CRC)。
表2物理层负载结构
字段名称 MAC层头 MAC层负载 信息完整度校验
字段长度 (8字节) (0-255字节) (1字节)
其中MAC层头描述帧的类型、负载字段的长度和传感终端ID等配置信息。MAC层负载承载MAC层传输的数据。此字段的数据结构根据帧类型字段的定义进行结构组织和编码。信息完整度校验用于对MAC层头和MAC层负载进行校验,判断发送数据是否被第三方篡改。校验方法是将MAC层头和MAC层负载以1字节为单位进行累加,累加结果作为信息完整度校验字段的值填入信息完整度校验字段。
MAC层头由帧类型(MType)、通信信令指示(CC_Ind)、加密指示(Key_If)、MAC层负载长度(Length)和传感终端ID等字段组成,见表3。
表3 MAC层头结构
Figure BDA0002764527330000102
帧类型字段长度为4比特,定义帧的具体类型和功能。帧类型的具体编码及对应的含义见表4。
表4帧类型内容
比特序列 帧类型(英文) 帧类型(中文)
0b0000 MESSAGE 业务信道信息帧
0b0001 REQ 控制信道请求帧
0b0010 RSP 控制信道应答帧
0b0011 RSP_END 控制信道应答终帧
0b0100 BURST 控制信道突发帧
0b0101 ACK 控制信道确认帧
其他 RFU 保留备用
通信信令指示(CC_Ind)用于指示MAC负载是业务或通信指令;取值0b1表示控制报文,取值0b0表示是通信指令。该指示只在控制信道应答帧(RSP帧)或控制信道应答终帧(RPS_END帧)中有效。加密指示字段表明发送的MAC层负载和信息完整度校验是否进行了加密,长度为3比特:取值0表示不加密;取值1表示加密。MAC层负载长度字段定义了MAC层负载字段的字节长度,此字段长度为1字节,因此MAC层负载字段的长度为0到255字节。传感终端ID是传感终端设备在网络中的唯一标识,每个传感终端都会被分配一个唯一的传感终端地址。传感终端ID字段的长度为6字节。业务信道信息帧(MESSAGE)为在业务信道中传输的一种帧的类型,其功能主要为将发送端的数据按照指定的数据格式以及传输规则有序地传输给接收端,用于传感终端上报监测数据报文。为减少数据传输量,省略检测数据中的传感终端ID,只保留MAC帧头中的传感终端ID。控制信道突发帧(BURST)为在控制信道中传输的一种帧的类型,用于传感终端上报告警数据报文。为减少数据传输量,省略告警数据中的传感终端ID,只保留MAC帧头中的传感终端ID。
控制信道请求帧(REQ)为在控制信道中传输的一种帧的类型,其功能主要为发送端以一定的传输规则向接收端发送信息,并请求回复。发送端根据需求将数据写入请求数据类型字段。控制信道请求帧的MAC层负载字段的结构由信息类型和保留备用组成。控制信道应答帧可承载通信指令或者控制报文。控制信道应答帧(RSP)是在控制信道中传输的一种帧的类型,其功能主要为接收端在接收到控制信道请求帧后,根据控制信道请求帧的信息类型字段向发送端进行控制信息的回复。通信指令和控制报文不能在同一个的RSP帧或控制信道应答终帧(RSP_END)内传输。MAC帧头中的通信信令指示取值0b0。
为减少传输的交互次数,把多个通信指令组合成单帧进行发送,单帧的数据结构见表5,单个RSP帧或RPS_END帧承载的数据不能超过MAC负载上限,即255字节。每个通信指令数据由通信指令类型和通信指令内容组成,见表6,其中通信指令类型和内容字段的定义见表7。
表5通信信令数据结构
Figure BDA0002764527330000121
表6通信信令数据结构
Figure BDA0002764527330000122
表7通信信令数据结构
Figure BDA0002764527330000123
其中业务周期长度定义为发送端发送业务信息的周期。控制周期长度定义为发送端发送控制信息请求的周期,以业务周期(默认或配置后的业务周期)为单位。控制周期为0时,发送端不发射控制信息请求帧;控制周期为1时,每个业务周期发送1次控制信道请求帧,不发送业务信道信息帧;控制周期为m时,每m个业务周期,发送一次控制信道请求帧,发送m-1次业务信道信息帧。延迟时间定义为业务信息发送时刻的时间偏移量。最大随机扰动时长定义为发送端发送时刻偏离发射基准时刻的最大允许范围,以5ms为单位。随机扰动时长与延时配合使用,确定发送端的发射时刻。业务信道频点用于控制业务信道的频点,默认业务信道频点不支持动态配置,默认业务信道被配置在固定的频点,并且采用默认的物理层配置。传感终端可以在汇聚节点的指派下,从默认业务信道频点转移到其它业务信道频点下进行通信。物理层参数配置用于指定业务信道和控制信道的物理层参数配置编号,默认物理层参数不支持动态配置。传感终端可以在汇聚节点的指派下,按指定的物理层参数配置编号进行配置。REQ帧等待回复周期定义为发送端发送REQ帧后等待回复的时间。BURST帧等待回复周期定义为发送端发送BURST帧后等待回复的时间。
MAC帧头中的通信信令指示(CC_Ind)取值0b1。MAC层负载内容承载控制报文。为减少数据传输量,省略报文中的传感终端ID,只保留MAC帧头中的传感终端ID。控制信道应答终帧(RSP_END)为控制信道应答帧的扩展。当发送端回复控制信道应答帧时,表明发送端发送的信息还没有结束,此后还会有信息发送。当发送端回复控制信道应答终帧时,表明此次发送的信息已经结束,此后没有新帧发送。控制信道应答终帧的MAC层负载字段与控制信道应答帧相同。控制信道确认帧为在控制信道中传输的一种帧的类型,其功能主要为接收端在接收到需要确认回复的帧后,向发送端发送控制信道确认帧进行确认。控制信道确认帧的使用情况见表8。控制信道确认帧的MAC层负载字段由控制信道确认帧类型(ACK_Type)和数据(DATA)字段组成。控制信道确认帧类型字段定义了控制信道确认帧的类型,长度为1字节;数据字段为控制信道确认帧需要传输的数据,长度为0到254字节。
表8控制信道确认帧的使用
发送帧类型 是否需要回复ACK帧(Y/N)
业务信道信息帧 N
控制信道请求帧 N
控制信道应答帧 N
控制信道应答终帧 Y
控制信道突发帧 Y
保留备用帧是用来保留以备使用者需要增加新的定义帧所准备的一种帧的类型。使用者可以根据需要添加的功能,在不与现有的帧发生冲突的情况下,定义设计此帧的结构和编码形式。新的帧格式和编码必须在收发双方设备中同时更新,确保收发双方通信的可靠性。保留备用帧的使用增加了协议的可扩展性。
在上述物理层选型和MAC层协议字段设计的基础上,下面对本发明实施例公开的用于输变电设备物联网的微功率无线接入方法的具体实施进行详细说明。
一、时间同步
本发明采用FDMA的技术将频段分为业务信道和控制信道两种信道。在每个业务信道上,采用模糊TDMA机制解决信息接入的问题。在每个信道进行详细的时间划分,配置相应的时间参数。可配置的时间参数类型及名称如表9所示。这些参数均可通过控制信道的接入过程进行配置。
表9时间可配参数类型及名称
Figure BDA0002764527330000141
其中业务周期长度(Message_Cycle)定义为发送端发送业务信息的周期,即发送端连续两次发送业务信息的时间间隔。业务周期时隙数(Time_Slot)定义为一个业务周期内所划分的时隙的个数。控制周期长度(Control_Cycle)定义为发送端发送控制信息请求的周期,即发送端连续两次发送控制信息的时间间隔。等待回复周期(Wait_Cycle)定义为发送端等待回复的时间,即发送端在发送完需要等待回复的帧后,处于等待接收状态的时间。连续帧发送间隔(Transmission_Interval)定义为发送端发送连续多个控制信道应答帧(RSP)时,帧之间的发送间隔。此参数需要小于发送端等待回复时间(Wait_Cycle)。最大随机扰动时长(Random_Pert)定义为发送端控制发送时刻随机数的绝对值的最大值,默认最大随机扰动时长为5ms,也就是随机扰动值为-5~+5ms内的随机数。延迟(Delay)用于调整业务信道信息帧(MESSAGE)的发送时刻,在下次业务时刻延后对应的时间后再发送。
本发明采用模糊时隙同步的方案进行时间同步,减小传感终端的能耗。由汇聚节点将时间分段,再将每段时间平均分成多个时隙,且时隙的数量远远小于网络中传感终端的数量。同时每个时隙的长度大于单个传感终端发送一次业务信息的时间长度,因此每个时隙可以容纳多个传感终端。具体时隙划分如图3所示。
时间同步的过程是:汇聚节点根据接收到的传感终端业务信息所处的时隙,确定延迟、业务周期长度和控制周期长度三个参数。汇聚节点根据传感器上报的时刻,结合业务周期长度,可以统计所占用时隙资源;综合考虑已在线的传感器情况,通过控制信道应答帧,调整传感器所处的时隙,降低冲突概率。具体而言,传感终端先随机发送业务信道信息帧(MESSAGE),汇聚节点接收到业务信道信息帧(MESSAGE)后,记录接收到的时间,汇聚节点计算下一次发送业务信道信息帧(MESSAGE)的时刻与此时刻的间隔,即延迟参数。汇聚节点在接收到传感终端的控制信道请求帧(REQ)后,将保存在汇聚节点的延迟参数、业务周期长度参数和控制周期长度参数记录在控制信道应答帧(RSP)中回复给传感终端。传感终端根据以上的参数,调整业务信道信息帧(MESSAGE)和控制信道请求帧(REQ)的发送时间。通过以上参数的交互,完成时间的同步。
二、业务信道接入
汇聚节点中存储两个传感终端列表,分别为白名单和黑名单,初始化时两个名单均为空。接入初始化过程如下:
a)白名单记录汇聚节点需要进行控制的传感终端地址。当汇聚节点收到传感终端发送的控制信道请求帧(REQ)后,若此传感终端的地址在白名单中,则汇聚节点向该传感终端回复控制信道应答帧(RSP)或者控制信道应答终帧(RSP_END);若此传感终端的地址不在白名单中,则丢弃此帧;
b)黑名单中记录汇聚节点不进行业务信息转发的传感终端地址。当汇聚节点收到传感终端发送的业务信道信息帧(MESSAGE)后,若传感终端的地址不在黑名单中,则向上层(即数据应用层)传输该数据;若传感终端的地址在黑名单中,则丢弃此帧;
c)若汇聚节点收到既不在白名单也不在黑名单中的传感终端发送的业务信息,则汇聚节点认为该传感终端为新加入的传感终端。汇聚节点接收该传感终端的业务信息,之后由上层决定该传感终端在当前汇聚节点中的黑白名单属性。
在业务信道中,采用模糊TDMA的机制来解决大量传感终端的随机接入。具体接入过程如图4所示,具体接入过程为:
a)在业务信道的固定时隙,传感终端进行无回复的单向传输,完成业务信息的传输;
b)在业务信道上,传感终端在特定时隙从休眠状态中激活,监测业务信道,若为忙,则进入休眠状态,根据业务周期长度等待下一次激活;若为空闲,则随机退避一个随机退避时长(Random_backoff)后向汇聚节点发送业务信道信息帧后,进入休眠状态,根据业务周期长度等待下一次激活。
c)汇聚节点一直处于等待接收状态,若成功接收到传感终端发送的业务信道信息帧,则保存该业务信息(根据具体黑白名单规则进行处理);若接收不成功,则丢弃该业务信道信息帧。
三、控制信道配置信息接入
控制信道配置信息请求与响应过程如图5所示,具体接过程为:
a)传感终端在固定的配置时隙被激活向汇聚节点发送控制信道请求帧,然后进入等待接收状态,长度为等待回复周期(Wait_Cycle)。
b)汇聚节点在正确接收到传感终端发送的控制信道请求帧后与白名单中的传感终端地址进行匹配。若匹配成功,则汇聚节点向传感终端发送控制信道应答帧或者控制信道应答终帧;若匹配不成功,则汇聚节点继续处于等待接收状态。
c)当汇聚节点需要回复的内容大于一帧的长度时,则连续发送多帧,前N-1帧发送控制信道应答帧(RSP),发送间隔为连续帧发送间隔(Transmission_Interval),最后一帧发送控制信道应答终帧(RSP_END)。
d)传感终端每成功接收到一个控制信道应答帧(RSP)后,进入下一个等待回复周期(Wait_Cycle),等待接收下一帧。
e)传感终端成功接收到控制信道应答终帧(RSP_END)后,回复控制信道确认帧(ACK)。
传感终端发送异常指传感终端发送的控制信道请求帧(REQ)由于传输错误或者匹配错误,汇聚节点没有接收成功。传感终端发送异常时,传感终端在发送完控制信道请求帧(REQ)后,进入等待接收状态。传感终端在等待回复周期(Wait_Cycle)内没有收到回复,则进入休眠状态,根据控制周期长度等待下一次激活,汇聚节点继续处于等待接收状态,如图6所示。
汇聚节点发送异常指汇聚节点发送的控制信道应答帧(RSP)或者控制信道应答终帧(RSP_END)由于传输错误或者匹配错误,传感终端没有接收成功。汇聚节点发送异常时,传感终端在等待回复周期(Wait_Cycle)内没有收到回复,则进入休眠状态,根据控制周期长度等待下一次激活,汇聚节点按序发送控制信道应答帧(RSP)和控制信道应答终帧(RSP_END)后,进入等待接收状态,如图7所示。
传感终端回复异常指传感终端回复的控制信道确认帧(ACK)由于传输错误或者匹配错误,汇聚节点没有接收成功。传感终端回复异常时,传感终端在成功接收到控制信道应答终帧(RSP_END)后,向汇聚节点回复控制信道确认帧(ACK),然后进入休眠状态,根据控制周期长度等待下一次激活,汇聚节点在发送完控制信道应答终帧(RSP_END)后,进入等待接收状态,如图8所示。
四、控制信道突发信息接入
控制信道突发信息接入过程适用于突发性业务的传输,其采用随机双向且具有停等重传机制的交互方式。传感终端需要上报突发情况时被激活,在控制信道立刻发送控制信道突发帧(BURST),进入等待回复周期(Wait_Cycle);若汇聚节点成功接收并完成匹配,则回复控制信道确认帧(ACK);若汇聚节点没有接收成功,则汇聚节点继续处于等待接收状态;传感终端没有成功接收到控制信道确认帧(ACK),则使用重传机制,直到传感终端成功接收到控制信道确认帧(ACK)或重传次数达到重传上限,控制信道突发信息请求和响应过程如图9所示。
传感终端突发帧发送异常指当传感终端发送的控制信道突发帧(BURST)由于传输错误或者匹配错误,汇聚节点没有接收成功。传感终端在等待回复周期(Wait_Cycle)内没有收到相应的控制信道确认帧(ACK),立刻重新发送控制信道突发帧(BURST),重复上述操作;若在最大重传次数内接收到控制信道确认帧(ACK),则停止重发,进入休眠状态;若达到最大次数但没有接收到控制信道确认帧(ACK),则进入休眠状态。默认最大重传次数为3;汇聚节点一直处于等待接收状态,成功收到控制信道突发帧(BURST),则回复控制信道确认帧(ACK),如图10所示。
汇聚节点确认帧发送异常指汇聚节点发送的控制信道确认帧(ACK)由于传输错误或者匹配错误,传感终端没有接收成功。传感终端在等待回复周期(Wait_Cycle)内没有收到相应的控制信道确认帧(ACK),立刻重新发送控制信道突发帧(BURST),重复上述操作;若在最大重传次数内接收到控制信道确认帧(ACK),则停止重传,进入休眠状态;若达到最大次数但没有成功接收到控制信道确认帧(ACK),则进入休眠状态;汇聚节点一直处于等待接收状态,成功收到控制信道突发帧(BURST),则回复控制信道确认帧(ACK),如图11所示。
基于相同的发明构思,本发明实施例公开的一种用于输变电设备物联网传感终端的微功率无线接入装置,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述计算机程序被加载至处理器时实现上述的适用于输变电设备物联网的传感终端的微功率无线接入方法。
基于相同的发明构思,本发明实施例公开的一种用于输变电设备物联网汇聚节点的微功率无线接入装置,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述计算机程序被加载至处理器时实现上述的适用于输变电设备物联网汇聚节点的微功率无线接入方法。
基于相同的发明构思,本发明实施例公开的一种用于输变电设备物联网的微功率无线接入装置,包括上述用于输变电设备物联网传感终端的微功率无线接入装置,以及用于输变电设备物联网汇聚节点的微功率无线接入装置。

Claims (10)

1.一种用于输变电设备物联网的微功率无线接入方法,适用于输变电设备物联网的传感终端,其特征在于,包括时间同步过程,业务信道接入过程,控制信道配置信息接入过程,以及控制信道突发信息接入过程;
所述时间同步过程包括:传感终端先随机发送业务信道信息帧,由汇聚节点根据传感终端业务信息所处的时隙确定延迟参数;传感终端再发送控制信道请求帧,并接收汇聚节点返回的含有延迟参数、业务周期长度参数和控制周期长度参数的控制信道应答帧,根据接收到的参数调整业务信道信息帧和控制信道请求帧的发送时间;
所述业务信道接入过程包括:在业务信道的固定时隙,传感终端进行无回复的单向传输,完成业务信息的传输;传感终端从休眠状态中激活,监测业务信道,若为忙,则进入休眠状态,根据业务周期长度等待下一次激活;若为空闲,则随机退避一个随机退避时长后向汇聚节点发送业务信道信息帧后,进入休眠状态,根据业务周期长度等待下一次激活;
所述控制信道配置信息接入过程包括:传感终端在固定的配置时隙被激活向汇聚节点发送控制信道请求帧,然后进入等待接收状态,长度为等待回复周期;传感终端每成功接收到一个控制信道应答帧后,进入下一个等待回复周期,等待接收下一帧;传感终端成功接收到控制信道应答终帧后,回复控制信道确认帧;
所述控制信道突发信息接入过程包括:传感终端需要上报突发情况时被激活,在控制信道立刻发送控制信道突发帧,进入等待回复周期;若传感终端没有成功接收到控制信道确认帧,则使用重传机制,直到传感终端成功接收到控制信道确认帧或重传次数达到重传上限;
上述业务信道信息帧、控制信道请求帧、控制信道应答帧、控制信道应答终帧、控制信道确认帧以及控制信道突发帧通过MAC层帧头中的帧类型字段区分。
2.根据权利要求1所述的用于输变电设备物联网的微功率无线接入方法,其特征在于,所述控制信道配置信息接入过程中,传感终端发送异常时,传感终端在发送完控制信道请求帧后,进入等待接收状态;传感终端在等待回复周期内没有收到回复,则进入休眠状态,根据控制周期长度等待下一次激活;
所述控制信道突发信息接入过程中,传感终端在等待回复周期内没有收到相应的控制信道确认帧,立刻重新发送控制信道突发帧;若在最大重传次数内接收到控制信道确认帧,则停止重发,进入休眠状态;若达到最大次数但没有接收到控制信道确认帧,则进入休眠状态。
3.一种用于输变电设备物联网的微功率无线接入方法,适用于输变电设备物联网的汇聚节点,其特征在于,包括时间同步过程,业务信道接入过程,控制信道配置信息接入过程,以及控制信道突发信息接入过程;
所述时间同步过程包括:汇聚节点根据传感终端随机发送的业务信道信息帧所处的时隙确定延迟参数;在接收到传感终端的控制信道请求帧后,将保存在汇聚节点的延迟参数、业务周期长度参数和控制周期长度参数记录在控制信道应答帧中回复给传感终端;
所述业务信道接入过程包括:汇聚节点一直处于等待接收状态,成功接收到传感终端发送的业务信道信息帧后,若传感终端的地址不在黑名单中,则向上层传输该数据;若传感终端的地址在黑名单中,则丢弃此帧;若汇聚节点收到既不在白名单也不在黑名单中的传感终端发送的业务信息,则汇聚节点认为该传感终端为新加入的传感终端,汇聚节点接收该传感终端的业务信息,之后由上层决定该传感终端在当前汇聚节点中的黑白名单属性;
所述控制信道配置信息接入过程包括:汇聚节点在正确接收到传感终端发送的控制信道请求帧后与白名单中的传感终端地址进行匹配;若匹配成功,则汇聚节点向传感终端发送控制信道应答帧或者控制信道应答终帧;若匹配不成功,则汇聚节点继续处于等待接收状态;当汇聚节点需要回复的内容大于一帧的长度时,则连续发送多帧,最后一帧发送控制信道应答终帧,汇聚节点按序发送控制信道应答帧和控制信道应答终帧后,进入等待接收状态;
所述控制信道突发信息接入过程包括:若汇聚节点成功接收到传感终端发送的控制信道突发帧并完成匹配,则回复控制信道确认帧;若汇聚节点没有接收成功,则汇聚节点继续处于等待接收状态;
上述业务信道信息帧、控制信道请求帧、控制信道应答帧、控制信道应答终帧、控制信道确认帧以及控制信道突发帧通过MAC层帧头中的帧类型字段区分。
4.一种用于输变电设备物联网的微功率无线接入方法,其特征在于,包括时间同步过程,业务信道接入过程,控制信道配置信息接入过程,以及控制信道突发信息接入过程;
所述时间同步过程包括:传感终端先随机发送业务信道信息帧,汇聚节点根据接收到的传感终端业务信息所处的时隙确定延迟参数;传感终端再发送控制信道请求帧,汇聚节点接收到控制信道请求帧后,将保存的延迟参数、业务周期长度参数和控制周期长度参数记录在控制信道应答帧中回复给传感终端;传感终端根据接收到的参数调整业务信道信息帧和控制信道请求帧的发送时间;
所述业务信道接入过程包括:在业务信道的固定时隙,传感终端进行无回复的单向传输,完成业务信息的传输;传感终端从休眠状态中激活,监测业务信道,若为忙,则进入休眠状态,根据业务周期长度等待下一次激活;若为空闲,则随机退避一个随机退避时长后向汇聚节点发送业务信道信息帧后,进入休眠状态,根据业务周期长度等待下一次激活;汇聚节点一直处于等待接收状态,成功接收到传感终端发送的业务信道信息帧后,若传感终端的地址不在黑名单中,则向上层传输该数据;若传感终端的地址在黑名单中,则丢弃此帧;若汇聚节点收到既不在白名单也不在黑名单中的传感终端发送的业务信息,则汇聚节点认为该传感终端为新加入的传感终端,汇聚节点接收该传感终端的业务信息,之后由上层决定该传感终端在当前汇聚节点中的黑白名单属性;
所述控制信道配置信息接入过程包括:传感终端在固定的配置时隙被激活向汇聚节点发送控制信道请求帧,然后进入等待接收状态,长度为等待回复周期;汇聚节点在正确接收到传感终端发送的控制信道请求帧后与白名单中的传感终端地址进行匹配;若匹配成功,则汇聚节点向传感终端发送控制信道应答帧或者控制信道应答终帧;若匹配不成功,则汇聚节点继续处于等待接收状态;当汇聚节点需要回复的内容大于一帧的长度时,则连续发送多帧,最后一帧发送控制信道应答终帧;传感终端每成功接收到一个控制信道应答帧后,进入下一个等待回复周期,等待接收下一帧;传感终端成功接收到控制信道应答终帧后,回复控制信道确认帧;汇聚节点按序发送控制信道应答帧和控制信道应答终帧后,进入等待接收状态;
所述控制信道突发信息接入过程,包括:传感终端需要上报突发情况时被激活,在控制信道立刻发送控制信道突发帧,进入等待回复周期;若汇聚节点成功接收到传感终端发送的控制信道突发帧并完成匹配,则回复控制信道确认帧;若汇聚节点没有接收成功,则汇聚节点继续处于等待接收状态;若传感终端没有成功接收到控制信道确认帧,则使用重传机制,直到传感终端成功接收到控制信道确认帧或重传次数达到重传上限;
上述业务信道信息帧、控制信道请求帧、控制信道应答帧、控制信道应答终帧、控制信道确认帧以及控制信道突发帧通过MAC层帧头中的帧类型字段区分。
5.根据权利要求1-4任一项所述的用于输变电设备物联网的微功率无线接入方法,其特征在于,所述MAC层帧头还包括通信信令指示、加密指示、MAC层负载长度和传感终端ID字段;对于业务信道信息帧、控制信道突发帧省略传感终端检测数据或告警数据中的传感终端ID,只保留MAC帧头中的传感终端ID。
6.根据权利要求1-4任一项所述的用于输变电设备物联网的微功率无线接入方法,其特征在于,为减少传输的交互次数,把多个通信指令组合成单帧进行发送,单个控制信道应答帧或控制信道应答终帧承载的数据不能超过MAC负载上限。
7.根据权利要求1-4任一项所述的用于输变电设备物联网的微功率无线接入方法,其特征在于,传感终端与汇聚节点间物理层通信支持LORA、BLE和ZigBee,选用2.4GHz频段和470M~510MHz频段。
8.一种用于输变电设备物联网传感终端的微功率无线接入装置,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述计算机程序被加载至处理器时实现根据权利要求1-2任一项所述的用于输变电设备物联网的微功率无线接入方法。
9.一种用于输变电设备物联网汇聚节点的微功率无线接入装置,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述计算机程序被加载至处理器时实现根据权利要求3任一项所述的用于输变电设备物联网的微功率无线接入方法。
10.一种用于输变电设备物联网的微功率无线接入装置,其特征在于,包括根据权利要求8所述的用于输变电设备物联网传感终端的微功率无线接入装置,以及权利要求9所述的用于输变电设备物联网汇聚节点的微功率无线接入装置。
CN202011228955.4A 2020-11-06 2020-11-06 一种用于输变电设备物联网的微功率无线接入方法与装置 Active CN112492537B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202011228955.4A CN112492537B (zh) 2020-11-06 2020-11-06 一种用于输变电设备物联网的微功率无线接入方法与装置
PCT/CN2021/128290 WO2022095863A1 (zh) 2020-11-06 2021-11-03 一种用于输变电设备物联网的微功率无线接入方法与装置
US17/621,247 US11736969B2 (en) 2020-11-06 2021-11-03 Micro-power wireless access method and apparatus for internet of things for power transmission and transformation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011228955.4A CN112492537B (zh) 2020-11-06 2020-11-06 一种用于输变电设备物联网的微功率无线接入方法与装置

Publications (2)

Publication Number Publication Date
CN112492537A true CN112492537A (zh) 2021-03-12
CN112492537B CN112492537B (zh) 2022-08-19

Family

ID=74928609

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011228955.4A Active CN112492537B (zh) 2020-11-06 2020-11-06 一种用于输变电设备物联网的微功率无线接入方法与装置

Country Status (3)

Country Link
US (1) US11736969B2 (zh)
CN (1) CN112492537B (zh)
WO (1) WO2022095863A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113179498A (zh) * 2021-04-29 2021-07-27 国网电力科学研究院武汉南瑞有限责任公司 一种输变电在线监测数据自组网通信方法及系统
WO2022095863A1 (zh) * 2020-11-06 2022-05-12 国网江苏省电力有限公司电力科学研究院 一种用于输变电设备物联网的微功率无线接入方法与装置
CN114900755A (zh) * 2022-07-12 2022-08-12 北京智芯半导体科技有限公司 数据传输方法、装置、电子设备及可读存储介质
CN114945147A (zh) * 2022-07-12 2022-08-26 北京智芯半导体科技有限公司 低功耗传感器网络信道调整方法、装置、电子设备及介质
CN115499727A (zh) * 2022-10-14 2022-12-20 南京国电南思科技发展股份有限公司 一种压板在线监测的无线通信方法及计算机设备
CN115550431A (zh) * 2022-08-31 2022-12-30 山东爱普电气设备有限公司 一种基于电力物联网终端的单方向数据传输方法及系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115175123B (zh) * 2022-09-08 2022-11-18 中赣通信(集团)有限公司 基于业务的可变监测网络及其运营方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180115947A1 (en) * 2015-05-14 2018-04-26 Lg Electronics Inc. Method for operating in power saving mode in wireless lan system and apparatus therefor
CN110519008A (zh) * 2019-07-31 2019-11-29 国网江苏省电力有限公司电力科学研究院 无线传感器网络数据传输方法和装置、可读存储介质

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102857327B (zh) * 2012-04-16 2014-12-03 华为技术有限公司 一种数据传输方法和装置
CN102740365B (zh) * 2012-06-28 2014-11-12 东南大学 一种适用于无线传感器网络的单流批量数据采集方法
US9288752B2 (en) * 2013-10-10 2016-03-15 At&T Intellectual Property I, L.P. Method and apparatus for reducing energy consumption of radio communications in a wireless sensor network
CN107835527B (zh) * 2017-12-19 2020-05-05 河海大学 一种基于分时休眠的无线传感器网络通信方法
JP2020072334A (ja) * 2018-10-30 2020-05-07 セイコーエプソン株式会社 センサーデータ処理システム及びセンサーデータ同期システム
CN109495957B (zh) * 2018-12-14 2021-07-30 重庆邮电大学 一种基于二次碰撞概率模型的自适应异步无线唤醒方法
CN109949559A (zh) * 2019-01-21 2019-06-28 河南工程学院 基于无线传感网络的微功率抄表系统及设备
CN112492537B (zh) * 2020-11-06 2022-08-19 国网江苏省电力有限公司电力科学研究院 一种用于输变电设备物联网的微功率无线接入方法与装置
CN112995938A (zh) * 2020-12-31 2021-06-18 上海遨有信息技术有限公司 一种电力物联网领域传感器同步采集方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180115947A1 (en) * 2015-05-14 2018-04-26 Lg Electronics Inc. Method for operating in power saving mode in wireless lan system and apparatus therefor
CN110519008A (zh) * 2019-07-31 2019-11-29 国网江苏省电力有限公司电力科学研究院 无线传感器网络数据传输方法和装置、可读存储介质

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022095863A1 (zh) * 2020-11-06 2022-05-12 国网江苏省电力有限公司电力科学研究院 一种用于输变电设备物联网的微功率无线接入方法与装置
CN113179498A (zh) * 2021-04-29 2021-07-27 国网电力科学研究院武汉南瑞有限责任公司 一种输变电在线监测数据自组网通信方法及系统
CN114900755A (zh) * 2022-07-12 2022-08-12 北京智芯半导体科技有限公司 数据传输方法、装置、电子设备及可读存储介质
CN114945147A (zh) * 2022-07-12 2022-08-26 北京智芯半导体科技有限公司 低功耗传感器网络信道调整方法、装置、电子设备及介质
CN115550431A (zh) * 2022-08-31 2022-12-30 山东爱普电气设备有限公司 一种基于电力物联网终端的单方向数据传输方法及系统
CN115499727A (zh) * 2022-10-14 2022-12-20 南京国电南思科技发展股份有限公司 一种压板在线监测的无线通信方法及计算机设备
CN115499727B (zh) * 2022-10-14 2024-02-20 南京国电南思科技发展股份有限公司 一种压板在线监测的无线通信方法及计算机设备

Also Published As

Publication number Publication date
WO2022095863A1 (zh) 2022-05-12
CN112492537B (zh) 2022-08-19
US11736969B2 (en) 2023-08-22
US20220361032A1 (en) 2022-11-10

Similar Documents

Publication Publication Date Title
CN112492537B (zh) 一种用于输变电设备物联网的微功率无线接入方法与装置
US10827420B2 (en) System and method for dynamically configurable air interfaces
TWI387380B (zh) 處理排程資訊回報的方法及通訊裝置
US20060034317A1 (en) Method and apparatus for transmitting ACK frame
CN102685913B (zh) 无线通讯系统中改善上行链路传输的方法
CN102577268B (zh) 基于mac报头类型信息传送mac pdu的设备和方法
US8811379B2 (en) Control apparatus and control method
WO2006041673A2 (en) Wireless local area network medium access control extensions for station power efficiency and resource management
EP2613468B1 (en) Method for uplink transmitting of radio link control (rlc) layer and evolved node b (enb)
CN110572481A (zh) 基于LoRa通信的智能化机电设备数据交互方法与系统
EP2693816A1 (en) Method and device for use in frame acknowledgement
CN111294775B (zh) 一种大规模mtc与h2h共存场景中基于h2h动态特性的资源分配方法
JP7238169B2 (ja) ダウンリンク制御情報の送信方法、装置及び読み取り可能な記憶媒体
WO2010123308A2 (en) Method for transmiting and receiving group deletion information
CN113439402B (zh) 一种译码方法、装置及系统
WO2022082530A1 (zh) 通信方法及装置
WO2021212286A1 (zh) 物理下行控制信道传输方法、装置及存储介质
US20230014946A1 (en) Transmission Padding Efficiency Improvement
KR100631742B1 (ko) Ack 프레임 전송 방법 및 장치
Bankov et al. Performance evaluation of channel access in NB-Fi networks
KR102271243B1 (ko) 저전력 무선 통신을 이용한 데이터 수집 방법 및 이를 수행하는 링커-게이트웨이 시스템
WO2021184270A1 (zh) 混合自动重传请求应答信息传输方法、装置及存储介质
CN111970703A (zh) NB-IoT中的一种上行通信资源优化的方法
CN101895999B (zh) 一种Iub接口二类适配链路参数的自动配置方法及装置
WO2023125331A1 (zh) 通信方法和通信装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant