CN112491317A - 一种永磁电机磁极位置的检测方法 - Google Patents

一种永磁电机磁极位置的检测方法 Download PDF

Info

Publication number
CN112491317A
CN112491317A CN202011249844.1A CN202011249844A CN112491317A CN 112491317 A CN112491317 A CN 112491317A CN 202011249844 A CN202011249844 A CN 202011249844A CN 112491317 A CN112491317 A CN 112491317A
Authority
CN
China
Prior art keywords
magnetic pole
axis
frequency
time
pole position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011249844.1A
Other languages
English (en)
Inventor
童泽文
黄洋洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Kumak Technology Co ltd
Original Assignee
SHENZHEN CUMARK NEW TECHNOLOGY CO LTD
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHENZHEN CUMARK NEW TECHNOLOGY CO LTD filed Critical SHENZHEN CUMARK NEW TECHNOLOGY CO LTD
Priority to CN202011249844.1A priority Critical patent/CN112491317A/zh
Publication of CN112491317A publication Critical patent/CN112491317A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本发明公开了一种永磁电机磁极位置的检测方法,包括以下步骤:101)磁极位置辨识:将正交的两个高频方波电压信号分别注入α轴和β轴;然后,对α轴和β轴上的高频响应电流信号进行解调,对转磁极位置进行辨识;102)磁极极性辨识:在完成磁极位置辨识后,保持高频方波电压信号注入不变,在d轴注入一个周期的低频正弦电流信号,使高频响应电流大小发生改变。通过比较低频正弦电流信号在正负峰值和正负峰值时高频响应电流信号的大小来辨识磁极极性。本发明的检测方法不会使转子产生扭动、检测准确,响应速度快。

Description

一种永磁电机磁极位置的检测方法
[技术领域]
本发明涉及永磁电机,尤其涉及一种永磁电机磁极位置的检测方法。
[背景技术]
永磁电机因其具有效率较高,转矩密度较高,电机运行噪音较小、控制性能优异等特点,得到了广泛的应用。与传统电励磁电机相比,其工作原理基本相同,区别在于其舍弃了励磁线圈,而是采用了高磁通密度的永磁体进行励磁,简化了电机本体结构,进一步地提高了电机工作效率,同时使用了电子换向电路取代了换向器电路和电刷,避免了换向火花、换向损耗等缺点;与异步电动机相比,永磁电机没有无功励磁电流损耗,因而提高了电机效率以及电机功率密度,减小了定子损耗,控制性能更优。
永磁电机启动时的平稳程度与磁极位置的准确程度密切相关,如果磁极位置与实际值偏差过大,将会导致电机在起动阶段反转,甚至会出现电机抖动的现象。一般情况下,永磁电机磁极位置信号的采集是依靠光电编码盘、旋转变压器等机械传感器来实现,而机械传感器的使用不仅增加了系统成本以及结构空间,还降低了系统的可靠性。常规的、不采用传感器的方法是注入一个已知大小和方向的直流电流并持续一段时间,产生一个固定磁场,迫使转子旋转到两个磁链同方向的位置,稳定后再起动运行,但此方法在定位过程中会使转子产生较大的扭动,有些场合是禁止电机启动时反转的。
还有电机初始磁极位置的方法是对永磁电机注入高频方波电压信号,然后通过绕组中高频响应电流与磁极位置的关系来获得磁极位置,此种方法对于凸极效应比较明显永磁电机有效,但对于凸极效应不明显的永磁电机就难以检测准确。
[发明内容]
本发明要解决的技术问题是提供一种不会使转子产生扭动、检测准确,响应速度快的电机磁极位置的检测方法。
为了解决上述技术问题,本发明采用的技术方案是,一种永磁电机磁极位置的检测方法,包括以下步骤:
101)磁极位置辨识:将正交的两个高频方波电压信号分别注入α轴和β轴;然后,对α轴和β轴上的高频响应电流信号进行解调,对转磁极位置进行辨识;
102)磁极极性辨识:在完成磁极位置辨识后,保持高频方波电压信号注入不变,在d轴注入一个周期的低频正弦电流信号,使高频响应电流大小发生改变。通过比较低频正弦电流信号在正负峰值和正负峰值时高频响应电流信号的大小来辨识磁极极性。
以上所述的检测方法,转子磁极N极位置的电角度θ等于θtemp或θtemp+π,
Figure BDA0002771259290000021
Icos为与转子位置相关的余弦电流,Isin为与转子位置相关的正弦电流。
以上所述的检测方法,
当时间t=nT时,
Figure BDA0002771259290000022
当时间t=nT+T/4时,
Figure BDA0002771259290000031
当时间t=nT+T/2时,
Figure BDA0002771259290000032
当时间t=nT+3T/4时,
Figure BDA0002771259290000033
其中,n=1,2,3,4,…,T为方波电压信号的周期;
Ld为d轴电感,Lq为q轴电感,Δixhk为k时刻与k-1时刻的x轴高频响应电流的采样电流之差,x取α或β,k=0,1,2,3。
以上所述的检测方法,当d轴注入的低频正弦电流信号为正峰值时,得到的极性辨识电流INS标记为INS +;当d轴注入的低频正弦电流信号为负峰值时,得到的极性辨识电流INS标记为INS -;如果INS +>INS -,判定磁极极性为N,转子磁极N极位置的电角度θ等于θtemp;如果INS ->INS +,判定磁极极性为S,转子磁极N极位置的电角度θ等于θtemp+π。
以上所述的检测方法,。
当时间t=nT时,
Figure BDA0002771259290000034
当时间t=nT+T/4时,
Figure BDA0002771259290000041
当时间t=nT+T/2时,
Figure BDA0002771259290000042
当时间t=nT+3T/4时,
Figure BDA0002771259290000043
其中,Ld为d轴电感和q,Lq为q轴电感。
本发明的检测方法不会使转子产生扭动、检测准确,响应速度快。
[附图说明]
下面结合附图和具体实施方式对本发明作进一步详细的说明。
图1是本发明实施例高频正交方波电压注入转子初始位置辨识原理图。
图2是本发明实施例注入的高频正交方波电压信号及电流采样序列图。
[具体实施方式]
本方法提出了一种基于高频正交方波电压注入的磁极位置辨识方法。首先,通过将正交的高频方波电压信号注入静止坐标轴,利用静止坐标轴系下高频响应电流信号辨识磁极位置,然后,在注入高频正交方波电压信号的同时,向直轴注入一个低频正弦电流信号,电机的饱和程度和交直轴电感将产生变化,引起高频响应电流变化,通过对比低频正弦电流的正负峰值附近的高频响应电流的幅值来辨识磁极极性(N极、S极)。
磁极位置辨识分为两个阶段:第一阶段完成磁极位置辨识;第二阶段完成磁极极性辨识。
在第一阶段进行磁极位置辨识时,将正交的两个方波电压信号Uαh和Uβh分别注入在α、β轴;然后,对α轴和β轴上的10kHz~16kHz的高频响应电流信号进行解调,得到磁极位置。
实现步骤:
Uαh、Uβh和iαh、iβh分别为注入在αβ轴的高频电压信号和高频响应电流信号。
一、磁极角度的计算如下:
永磁电机在αβ坐标系的高频数学模型为:
Figure BDA0002771259290000051
式中,iαh、iβh分别为αβ轴系下高频响应电流分量;θe为待求的实际的转子位置电角度;平均电感ΣL=(Ld+Lq)/2;差分电感ΔL=(Ld-Lq)/2,Ld和Lq分别为d轴与q轴的电感。
注入的高频电压信号Uαh、Uβh分别为:
Figure BDA0002771259290000052
公式2中,n=1,2,3,4,…T为一个电压方波周期。
将式(2)代入式(1)得
在t=nT时
Figure BDA0002771259290000061
在t=nT+T/4时
Figure BDA0002771259290000062
在t=nT+T/2时
Figure BDA0002771259290000063
在t=nT+3T/4时
Figure BDA0002771259290000064
公式(3)~公式(6)中
K=TVh/(4ΣL2-4ΔL2);Δixhk(x可取α和β,k=0,1,2,3)为高频响应电流之差,因注入电压信号频率远大于电机的运行频率,此高频响应电流之差等于相邻采样电流之差,即Δixhk等于k时刻与k-1时刻的采样电流之差。
为了从公式(3)~公式(6)中直接获得磁极位置信号,需要对公式(3)~公式(6)中进行信号解调。
利用公式(3)~公式(6)得到与转子位置直接相关的余弦电流Icos和正弦电流Isin
当t=nT时
Figure BDA0002771259290000071
当t=nT+T/4时
Figure BDA0002771259290000072
当t=nT+T/2时
Figure BDA0002771259290000073
当t=nT+3T/4时
Figure BDA0002771259290000074
使用公式(7)~公式(10)中的Icos和Isin求反正切获得
Figure BDA0002771259290000075
公式(11)中,θtemp为0~π之间的一个角度,转子磁极N极位置的电角度θ可能等于θtemp或θtemp+π;α轴的角度默认为0。
二、磁极极性辨识方法如下:
经第一阶段的转子磁极位置辨识后,并不能区分磁极极性(N或S),即辨识出的磁极位置电角度可能与实际的转子初始位置电角度之间存在0或者π的电角度误差。
在完成磁极位置辨识后,保持高频方波电压注入不变,在d轴注入一个周期的30Hz的低频正弦电流信号,使得电机的饱和程度和交直轴电感发生变化,进而引起高频响应电流大小发生改变。通过比较低频正弦电流的正负峰值附近的高频响应电流大小来辨识磁极极性。
当d轴注入的电流方向与永磁磁通方向一致时,随着d轴电流的增大,定子铁心饱和效应增大,会导致d轴电感Ld减小,此时的电流方向即为磁极N的方向;相反,当电流方向与磁通方向相反时,随着电流的增大,电感Ld几乎不发生变化,此时电流方向为磁极S的方向。q轴电感Lq与d轴电流的的变化趋势和Ld与d轴电流的变化趋势相同。
Icos和Isin是差分电感ΔL和位置电角度θ的函数。ΔL正比于Ld-Lq,当电机磁通饱和时,Ld和Lq均减小。为此,解调公式(3)~公式(6)的高频响应电流信号,得到极性辨识电流INS
当t=nT时
Figure BDA0002771259290000081
当t=nT+T/4时
Figure BDA0002771259290000091
当t=nT+T/2时
Figure BDA0002771259290000092
当t=nT+3T/4时
Figure BDA0002771259290000093
公式(12)~公式(15)中INS的大小与Ld和Lq均呈反比,与磁极位置无关。当电机饱和时,INS会增大。假设注入的正弦电流为正峰值、负峰值时的INS分别为INS +、INS -,如果INS +>INS -,则磁极极性为N;相反,如果INS ->INS +,磁极极性为S,需要把第一阶段辨识出的磁极位置电角度加π。
本发明以上实施例的永磁电机启动时电机磁极位置的检测方法直接通过求反正切获得磁极位置电角度,定位过程中不会使转子产生扭动、不需要通过闭环调节获得磁极位置信号,检测准确,响应速度快,在工程上已实现。

Claims (5)

1.一种永磁电机磁极位置的检测方法,其特征在于,包括以下步骤:
101)磁极位置辨识:将正交的两个高频方波电压信号分别注入α轴和β轴;然后,对α轴和β轴上的高频响应电流信号进行解调,对转磁极位置进行辨识;
102)磁极极性辨识:在完成磁极位置辨识后,保持高频方波电压信号注入不变,在d轴注入一个周期的低频正弦电流信号,使高频响应电流大小发生改变,通过比较低频正弦电流信号在正负峰值和正负峰值时高频响应电流信号的大小来辨识磁极极性。
2.根据权利要求1所述的检测方法,其特征在于,转子磁极N极位置的电角度θ等于θtemp或
Figure FDA0002771259280000011
Icos为与转子位置相关的余弦电流,Isin为与转子位置相关的正弦电流。
3.根据权利要求2所述的检测方法,其特征在于,
当时间t=nT时,
Figure FDA0002771259280000012
当时间t=nT+T/4时,
Figure FDA0002771259280000013
当时间t=nT+T/2时,
Figure FDA0002771259280000014
当时间t=nT+3T/4时,
Figure FDA0002771259280000021
其中,n=1,2,3,4,…,T为方波电压信号的周期;
Ld为d轴电感,Lq为q轴电感,Δixhk为k时刻与k-1时刻的x轴高频响应电流的采样电流之差,x取α或β,k=0,1,2,3。
4.根据权利要求3所述的检测方法,其特征在于,当d轴注入的低频正弦电流信号为正峰值时,得到的极性辨识电流INS标记为INS +;当d轴注入的低频正弦电流信号为负峰值时,得到的极性辨识电流INS标记为INS -;如果INS +>INS -,判定磁极极性为N,转子磁极N极位置的电角度θ等于θtemp;如果INS ->INS +,判定磁极极性为S,转子磁极N极位置的电角度θ等于θtemp+π。
5.根据权利要求4所述的检测方法,其特征在于,
当时间t=nT时,
Figure FDA0002771259280000022
当时间t=nT+T/4时,
Figure FDA0002771259280000023
当时间t=nT+T/2时,
Figure FDA0002771259280000024
当时间t=nT+3T/4时,
Figure FDA0002771259280000031
其中,Ld为d轴电感和q,Lq为q轴电感。
CN202011249844.1A 2020-11-10 2020-11-10 一种永磁电机磁极位置的检测方法 Pending CN112491317A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011249844.1A CN112491317A (zh) 2020-11-10 2020-11-10 一种永磁电机磁极位置的检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011249844.1A CN112491317A (zh) 2020-11-10 2020-11-10 一种永磁电机磁极位置的检测方法

Publications (1)

Publication Number Publication Date
CN112491317A true CN112491317A (zh) 2021-03-12

Family

ID=74929407

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011249844.1A Pending CN112491317A (zh) 2020-11-10 2020-11-10 一种永磁电机磁极位置的检测方法

Country Status (1)

Country Link
CN (1) CN112491317A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116520218A (zh) * 2023-04-20 2023-08-01 宁波元辰新材料有限公司 一种磁极检测方法、系统、终端及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104158462A (zh) * 2014-09-01 2014-11-19 石成富 一种无位置传感器的永磁同步电机初始位置检测方法
US20180375453A1 (en) * 2015-12-23 2018-12-27 Yongle MAO Method and apparatus for on-line estimation of initial position of surface permanent magnet electric machine
CN111106767A (zh) * 2018-10-25 2020-05-05 核工业理化工程研究院 永磁同步电机的无传感器启动控制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104158462A (zh) * 2014-09-01 2014-11-19 石成富 一种无位置传感器的永磁同步电机初始位置检测方法
US20180375453A1 (en) * 2015-12-23 2018-12-27 Yongle MAO Method and apparatus for on-line estimation of initial position of surface permanent magnet electric machine
CN111106767A (zh) * 2018-10-25 2020-05-05 核工业理化工程研究院 永磁同步电机的无传感器启动控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
姜燕等: "基于高频正交方波电压注入的永磁同步电机初始位置辨识方法", 《电工技术学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116520218A (zh) * 2023-04-20 2023-08-01 宁波元辰新材料有限公司 一种磁极检测方法、系统、终端及存储介质
CN116520218B (zh) * 2023-04-20 2024-04-09 宁波元辰新材料有限公司 一种磁极检测方法、系统、终端及存储介质

Similar Documents

Publication Publication Date Title
Ge et al. A novel variable reluctance resolver for HEV/EV applications
CN103856139B (zh) 无速度传感器永磁同步电机转子磁极初始位置识别方法
Bojoi et al. Sensorless control of PM motor drives—A technology status review
CN109981001B (zh) 一种低噪音的永磁同步电机转子初始位置检测方法
KR101506417B1 (ko) 영구 자석식 회전 전기 기기
CN109639202B (zh) 一种永磁同步电机转子磁极极性判断方法
Han et al. Initial rotor position detection method of SPMSM based on new high frequency voltage injection method
Ge et al. A synthetic frozen permeability method for torque separation in hybrid PM variable-flux machines
US20200373863A1 (en) Slotless synchronous permanent magnet motor
Bianchi et al. Analysis and experimental tests of the sensorless capability of a fractional-slot inset PM motor
Kano et al. Rotor geometry design of saliency-based sensorless controlled distributed-winding IPMSM for hybrid electric vehicles
CN112491317A (zh) 一种永磁电机磁极位置的检测方法
CN113422546A (zh) 采用脉振正弦电压扫描的永磁同步电机初始位置检测方法
CN110995104B (zh) 一种永磁同步电机转子初始位置辨识方法
CN111987959A (zh) 永磁同步电机无传感器控制方法
Huang et al. An enhanced reliability method of initial angle detection on surface mounted permanent magnet synchronous motor
Li et al. Initial rotor position estimation of IPMSM based on improved rotating high frequency signal injection
CN113783494B (zh) 无位置传感器内置式永磁同步电机的最大转矩电流比控制
CN112787559B (zh) 一种永磁电机转子初始位置检测方法
Li et al. Eliminating position estimation error caused by cross-coupling effect in saliency-based sensorless control of SynRMs
CN115051610A (zh) 构建滑模磁链观测器的方法及装置、退磁故障诊断方法
CN110504882A (zh) 永磁同步电机的直轴判断方法
CN111277193B (zh) 一种永磁同步电机磁极极性辨识的可靠性优化方法及系统
CN113114077A (zh) 一种无传感器永磁同步电机初始位置检测方法
Jin et al. Analysis of Rotor Anisotropy and Position Tracking Error Prediction for Surface-Mounted PMSM Under High Frequency Signal Injection

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20220801

Address after: 518000 3F, kumak building, Dongzhou community, Guangming Street, Guangming District, Shenzhen, Guangdong

Applicant after: Shenzhen kumak Technology Co.,Ltd.

Address before: 518000 706, North block, Tairan Cangsong building, Tairan 6th Road, Shatou street, Futian District, Shenzhen City, Guangdong Province

Applicant before: Shenzhen Cumark New Technology Co.,Ltd.

RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210312