CN112486024A - 一种基于多质点模型的高速列车自适应控制方法及系统 - Google Patents

一种基于多质点模型的高速列车自适应控制方法及系统 Download PDF

Info

Publication number
CN112486024A
CN112486024A CN202110035264.0A CN202110035264A CN112486024A CN 112486024 A CN112486024 A CN 112486024A CN 202110035264 A CN202110035264 A CN 202110035264A CN 112486024 A CN112486024 A CN 112486024A
Authority
CN
China
Prior art keywords
speed train
speed
determining
state quantity
adaptive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110035264.0A
Other languages
English (en)
Inventor
谭畅
丁盼
杨辉
李中奇
付雅婷
陆荣秀
杨洛郡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China Jiaotong University
Original Assignee
East China Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China Jiaotong University filed Critical East China Jiaotong University
Priority to CN202110035264.0A priority Critical patent/CN112486024A/zh
Publication of CN112486024A publication Critical patent/CN112486024A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明涉及一种基于多质点模型的高速列车自适应控制方法及系统。该方法包括利用高速列车的多质点模型确定所述高速列车的实际状态量;利用所述高速列车的参考模型确定所述高速列车的目标状态量;根据所述实际状态量和所述目标状态量确定跟踪误差;根据所述跟踪误差确定自适应率;根据所述自适应率确定自适应控制器;根据所述自适应控制器控制所述高速列车。本发明实现了高速列车的高精度跟踪控制。

Description

一种基于多质点模型的高速列车自适应控制方法及系统
技术领域
本发明涉及高速列车运行过程的建模与跟踪控制领域,特别是涉及一种基于多质点模型的高速列车自适应控制方法及系统。
背景技术
进入新世纪以来,中国高速铁路发展迅猛,并取得了举世瞩目的成就,而目前高速铁路发展正处于转型期,智能化将是一个必然趋势。将人工智能、智能控制等先进技术应用于高速铁路发展,实现高速列车自动驾驶,自动实现高速列车启动、牵引、惰性、制动等基本驾驶功能。不断更新发展高速列车自动驾驶相关技术,在高速列车精确建模和有效控制的基础上,实现速度和位移精准跟踪是当今研究重点内容。
高速列车模型的精确建立是研究高速列车自动驾驶的首要环节,但在高速列车实际运行过程中,存在多变量、多约束等问题,使高速列车建模具有一定难度。然而,众多研究者在不影响高速列车性能研究基础上,对高速列车模型简化并尝试多种建模方法,如:数据建模、动态特性建模、ANFIS模型等不同建模方法,在模型建立 的基础上设计控制策略从而达到高速列车预期性能,但本质上,以上建模均是一种单质点建模,对于分散式动力的复杂高速列车,不足以描述相邻车厢内部作用力关系。
对于实现高速列车跟踪的具体控制方法研究已有很多,例如:PID控制、模糊控制、神经控制、预测控制等算法,但都有自身缺陷,PID控制不利于平稳运行,停车精度不高;模糊控制较依赖于实际经验和模型的建立,不能实现高精度跟踪;神经网络控制稳定性较差、学习速度较慢;预测控制计算量小、算法策略简单,但系统稳定性不强,不适于高速列车稳定运行。
发明内容
本发明的目的是提供一种基于多质点模型的高速列车自适应控制方法及系统,实现高速列车的高精度跟踪控制。
为实现上述目的,本发明提供了如下方案:
一种基于多质点模型的高速列车自适应控制方法,包括:
利用高速列车的多质点模型确定所述高速列车的实际状态量;所述实际状态量包括实际运行速度和实际位移;所述多质点模型用于输出实际状态量;
利用所述高速列车的参考模型确定所述高速列车的目标状态量;所述目标状态量包括:目标运行速度和目标位移;所述参考模型用于输出目标状态量;
根据所述实际状态量和所述目标状态量确定跟踪误差;
根据所述跟踪误差确定自适应率;
根据所述自适应率确定自适应控制器;
根据所述自适应控制器控制所述高速列车。
可选的,所述利用高速列车的多质点模型确定所述高速列车的实际状态量,具体包括:
利用公式
Figure 100002_DEST_PATH_IMAGE001
构建高速列车的多质点模型;
利用公式
Figure 211478DEST_PATH_IMAGE002
将所述多质点模型转换为所述多质点模型的状态空间描述;
利用公式
Figure 100002_DEST_PATH_IMAGE003
Figure 815635DEST_PATH_IMAGE004
对所述多质点模型的状态空间描述进行参数化;
其中,
Figure 100002_DEST_PATH_IMAGE005
为第
Figure 501700DEST_PATH_IMAGE006
节车厢的控制输入信号,即牵引力或制动力,
Figure 100002_DEST_PATH_IMAGE007
为运行阻力,
Figure 459816DEST_PATH_IMAGE008
为车间作用力,
Figure 100002_DEST_PATH_IMAGE009
为高速列车车厢质量,
Figure 640262DEST_PATH_IMAGE010
为实际运行速度,
Figure 100002_DEST_PATH_IMAGE011
为实际位移,
Figure 285876DEST_PATH_IMAGE012
为车钩系统的弹性系数,
Figure 100002_DEST_PATH_IMAGE013
为车钩系统的阻尼系数,
Figure 893575DEST_PATH_IMAGE014
Figure 100002_DEST_PATH_IMAGE015
分别为第
Figure 336057DEST_PATH_IMAGE016
节、第
Figure 769794DEST_PATH_IMAGE016
+1节车厢的实时运行速度,
Figure 100002_DEST_PATH_IMAGE017
Figure 958330DEST_PATH_IMAGE018
分别为第
Figure 455039DEST_PATH_IMAGE016
节、第
Figure 197867DEST_PATH_IMAGE016
+1节车厢的实时位移,
Figure 100002_DEST_PATH_IMAGE019
Figure 844749DEST_PATH_IMAGE020
Figure 100002_DEST_PATH_IMAGE021
为第
Figure 402638DEST_PATH_IMAGE016
节车厢的基本阻力的系数,
Figure 289823DEST_PATH_IMAGE022
为所述高速列车的中间车厢的编号,
Figure 644581DEST_PATH_IMAGE016
为所述高速列车所有车厢的编号,
Figure 100002_DEST_PATH_IMAGE023
Figure 832504DEST_PATH_IMAGE024
Figure 100002_DEST_PATH_IMAGE025
为所述高速列车的阻力的非线性部分,
Figure 979321DEST_PATH_IMAGE026
Figure 100002_DEST_PATH_IMAGE027
为高速列车的系统参数矩阵,
Figure 489936DEST_PATH_IMAGE028
为所述高速列车的状态量变量,
Figure 100002_DEST_PATH_IMAGE029
为所述高速列车的控制输入信号,
Figure 738515DEST_PATH_IMAGE030
Figure 100002_DEST_PATH_IMAGE031
为常值矩阵,
Figure 586254DEST_PATH_IMAGE032
为常值矩阵,
Figure 100002_DEST_PATH_IMAGE033
Figure 991172DEST_PATH_IMAGE034
的转置。
可选的,所述利用所述高速列车的参考模型确定所述高速列车的目标状态量,具体包括:
根据ATP限速及所述高速列车的运行路段确定目标运行速度曲线;
利用公式
Figure 100002_DEST_PATH_IMAGE035
确定所述参考模型;
其中,
Figure 16897DEST_PATH_IMAGE036
为所述高速列车的目标运行速度和目标位移,
Figure 100002_DEST_PATH_IMAGE037
为有界的外部参考输入信号。
可选的,所述根据所述自适应率确定自适应控制器,具体包括:
获取标称控制器;
根据所述标称控制器确定自适应控制器;
利用所述自适应率更新所述自适应控制器。
一种基于多质点模型的高速列车自适应控制系统,包括:
实际状态量确定模块,用于利用高速列车的多质点模型确定所述高速列车的实际状态量;所述实际状态量包括实际运行速度和实际位移;所述多质点模型用于输出实际状态量;
目标状态量确定模块,用于利用所述高速列车的参考模型确定所述高速列车的目标状态量;所述目标状态量包括:目标运行速度和目标位移;所述参考模型用于输出目标状态量;
跟踪误差确定模块,用于根据所述实际状态量和所述目标状态量确定跟踪误差;
自适应率确定模块,用于根据所述跟踪误差确定自适应率;
自适应控制器确定模块,用于根据所述自适应率确定自适应控制器;
高速列车控制模块,用于根据所述自适应控制器控制所述高速列车。
可选的,所述实际状态量确定模块具体包括:
多质点模型构建单元,用于利用公式
Figure 877406DEST_PATH_IMAGE001
构建高速列车的多质点模型;
状态空间描述单元,用于利用公式
Figure 607464DEST_PATH_IMAGE002
将所述多质点模型转换为所述多质点模型的状态空间描述;
参数化单元,用于利用公式
Figure 197715DEST_PATH_IMAGE038
Figure 863182DEST_PATH_IMAGE004
对所述多质点模型的状态空间描述进行参数化;
其中,
Figure 414249DEST_PATH_IMAGE005
为第
Figure 72633DEST_PATH_IMAGE006
节车厢的控制输入信号,即牵引力或制动力,
Figure 2542DEST_PATH_IMAGE007
为运行阻力,
Figure 229124DEST_PATH_IMAGE008
为车间作用力,
Figure 660630DEST_PATH_IMAGE009
为高速列车车厢质量,
Figure 607858DEST_PATH_IMAGE010
为实际运行速度,
Figure 907121DEST_PATH_IMAGE011
为实际位移,
Figure 39025DEST_PATH_IMAGE012
为车钩系统的弹性系数,
Figure 440050DEST_PATH_IMAGE013
为车钩系统的阻尼系数,
Figure 440236DEST_PATH_IMAGE014
Figure 610318DEST_PATH_IMAGE015
分别为第
Figure 178702DEST_PATH_IMAGE016
节、第
Figure 316291DEST_PATH_IMAGE016
+1节车厢的实时运行速度,
Figure 870901DEST_PATH_IMAGE017
Figure 141826DEST_PATH_IMAGE018
分别为第
Figure 756478DEST_PATH_IMAGE016
节、第
Figure 991151DEST_PATH_IMAGE016
+1节车厢的实时位移,
Figure 333139DEST_PATH_IMAGE019
Figure 477813DEST_PATH_IMAGE020
Figure 512634DEST_PATH_IMAGE021
为第
Figure 375547DEST_PATH_IMAGE016
节车厢的基本阻力的系数,
Figure 396593DEST_PATH_IMAGE022
为所述高速列车的中间车厢的编号,
Figure 645041DEST_PATH_IMAGE016
为所述高速列车所有车厢的编号,
Figure 601495DEST_PATH_IMAGE023
Figure 938323DEST_PATH_IMAGE024
Figure 638426DEST_PATH_IMAGE025
为所述高速列车的阻力的非线性部分,
Figure 351167DEST_PATH_IMAGE026
Figure 727791DEST_PATH_IMAGE027
为高速列车的系统参数矩阵,
Figure 565297DEST_PATH_IMAGE028
为所述高速列车的状态量变量,
Figure 52779DEST_PATH_IMAGE029
为所述高速列车的控制输入信号,
Figure 26551DEST_PATH_IMAGE030
Figure 183863DEST_PATH_IMAGE031
为常值矩阵,
Figure 492353DEST_PATH_IMAGE032
为常值矩阵,
Figure 268679DEST_PATH_IMAGE033
Figure 956013DEST_PATH_IMAGE034
的转置。
可选的,所述目标状态量确定模块具体包括:
目标运行速度曲线确定单元,用于根据ATP限速及所述高速列车的运行路段确定目标运行速度曲线;
参考模型确定单元,用于利用公式
Figure 241867DEST_PATH_IMAGE035
确定所述参考模型;
其中,
Figure DEST_PATH_IMAGE039
为所述高速列车的目标运行速度和目标位移,
Figure 53966DEST_PATH_IMAGE037
为有界的外部参考输入信号。
可选的,所述自适应控制器确定模块具体包括:
标称控制器获取单元,用于获取标称控制器;
自适应控制器确定单元,用于根据所述标称控制器确定自适应控制器;
自适应控制器更新单元,用于利用所述自适应率更新所述自适应控制器。
根据本发明提供的具体实施例,本发明公开了以下技术效果:
本发明所提供的一种基于多质点模型的高速列车自适应控制方法及系统,通过高速列车的多质点模型确定所述高速列车的实际状态量;利用所述高速列车的参考模型确定所述高速列车的目标状态量,进而根据实际状态量和所述目标状态量确定跟踪误差,根据所述跟踪误差确定自适应率;根据所述自适应率确定自适应控制器。利用跟踪误差确定的自适应率确定自适应控制器,有效地处理不确定性以及非线性问题,实现了其对给定速度曲线的渐近跟踪。本发明不仅能够提高跟踪精度,并保证在更新过程中保持稳定。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明所提供的一种基于多质点模型的高速列车自适应控制方法流程示意图;
图2为CRH380A型高速列车编组结构示意图及单节车厢受力分析;
图3为高速列车模型参考自适应控制原理示意图;
图4为高速列车的速度跟踪曲线,实线曲线为实际速度跟踪,虚线曲线为目标速度;
图5为高速列车运行过程中速度跟踪误差曲线;
图6为高速列车的位移跟踪曲线,实线曲线为实际位移跟踪,虚线曲线为目标位移;
图7为高速列车运行过程中位移跟踪误差曲线;
图8为高速列车在运行过程中各车厢的控制力变化曲线;
图9为本发明所提供的一种基于多质点模型的高速列车自适应控制系统结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的目的是提供一种基于多质点模型的高速列车自适应控制方法及系统,实现高速列车的高精度跟踪控制。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
图1为本发明所提供的一种基于多质点模型的高速列车自适应控制方法流程示意图,图3为高速列车模型参考自适应控制原理示意图,如图1和图3所示,本发明所提供的一种基于多质点模型的高速列车自适应控制方法,包括:
S101,利用高速列车的多质点模型确定所述高速列车的实际状态量;所述实际状态量包括实际运行速度和实际位移;所述多质点模型用于输出实际状态量。
S101,具体包括:
利用公式
Figure 148829DEST_PATH_IMAGE040
构建高速列车的多质点模型。
构建所述高速列车的多质点模型的过程为:
基于动力学基本定律,将高速列车的每节车厢看作一个刚性质点,分析高速列车在运行过程中所受到的各种力与速度、位移以及时间之间的关系,建立高速列车多质点模型。本发明以CRH380A型高速列车为研究对象,其编组结构示意图如图2所示,根据各车厢的动力学过程分析,并考虑高速列车相邻车厢的相互作用力影响,构建高速列车的多质点模型为:
Figure DEST_PATH_IMAGE041
(1)
式中,
Figure 362773DEST_PATH_IMAGE042
Figure DEST_PATH_IMAGE043
为高速列车的牵引力或制动力,
Figure 783259DEST_PATH_IMAGE044
为运行阻力,
Figure DEST_PATH_IMAGE045
为车间作用力,
Figure 472866DEST_PATH_IMAGE046
为车厢质量,
Figure DEST_PATH_IMAGE047
为实际运行速度,
Figure 653312DEST_PATH_IMAGE048
为实际位移。
描述高速列车多质点模型(1)中的车间作用力
Figure DEST_PATH_IMAGE049
、基本阻力
Figure 849326DEST_PATH_IMAGE050
。高速列车是一种通过车钩复杂作用连接的多体系统,则其车厢之间的相互作用力,即车间作用力在高速列车运行过程中的影响不可忽略。在实际情况中,将车钩复杂系统简化为弹簧—阻尼器系统。则可描述第
Figure DEST_PATH_IMAGE051
节与第
Figure 706292DEST_PATH_IMAGE051
+1节节车厢间的车间作用力为:
Figure 961824DEST_PATH_IMAGE052
(2)
高速列车运行过程中的基本阻力,主要包括机械阻力和空气阻力两部分, 为简化仿真过程且较为准确描述空气阻力的大小,将机械运行阻力为与运行速度成正比,将空气阻力近似为与运行速度平方成正比。采用二次函数近似地描述基本阻力为:
Figure DEST_PATH_IMAGE053
(3)
其中,
Figure 664070DEST_PATH_IMAGE054
Figure DEST_PATH_IMAGE055
Figure 242819DEST_PATH_IMAGE056
为第
Figure DEST_PATH_IMAGE057
节车厢的基本阻力的系数,与高速列车运行条件有关,如质量、动车数量和分布以及高速列车横截面积等等。
在式(1)基础上,代入式(2)、(3),高速列车多质点模型的纵向动力学方程可表示为:
Figure 755839DEST_PATH_IMAGE058
(4)
利用公式
Figure 745005DEST_PATH_IMAGE002
将所述多质点模型转换为所述多质点模型的状态空间描述。
利用公式
Figure 329571DEST_PATH_IMAGE003
Figure 841454DEST_PATH_IMAGE004
对所述多质点模型的状态空间描述进行参数化。
其中,
Figure 243486DEST_PATH_IMAGE005
为第
Figure 67085DEST_PATH_IMAGE006
节车厢的控制输入信号,即牵引力或制动力,
Figure 596287DEST_PATH_IMAGE007
为运行阻力,
Figure 211945DEST_PATH_IMAGE008
为车间作用力,
Figure 660244DEST_PATH_IMAGE009
为高速列车车厢质量,
Figure 377664DEST_PATH_IMAGE010
为实际运行速度,
Figure 694245DEST_PATH_IMAGE011
为实际位移,
Figure 774196DEST_PATH_IMAGE012
为车钩系统的弹性系数,
Figure 534342DEST_PATH_IMAGE013
为车钩系统的阻尼系数,
Figure 725676DEST_PATH_IMAGE014
Figure 455735DEST_PATH_IMAGE015
分别为第
Figure 531138DEST_PATH_IMAGE016
节、第
Figure 711453DEST_PATH_IMAGE016
+1节车厢的实时运行速度,
Figure 137886DEST_PATH_IMAGE017
Figure 406056DEST_PATH_IMAGE018
分别为第
Figure 54075DEST_PATH_IMAGE016
节、第
Figure 139712DEST_PATH_IMAGE016
+1节车厢的实时位移,
Figure 912496DEST_PATH_IMAGE019
Figure 125302DEST_PATH_IMAGE020
Figure 687215DEST_PATH_IMAGE021
为第
Figure 694485DEST_PATH_IMAGE016
节车厢的基本阻力的系数,
Figure 220145DEST_PATH_IMAGE022
为所述高速列车的中间车厢的编号,
Figure 954751DEST_PATH_IMAGE016
为所述高速列车所有车厢的编号,
Figure 124833DEST_PATH_IMAGE023
Figure 427638DEST_PATH_IMAGE024
Figure 299648DEST_PATH_IMAGE025
为所述高速列车的阻力的非线性部分,
Figure 854257DEST_PATH_IMAGE026
Figure 3479DEST_PATH_IMAGE027
为高速列车的系统参数矩阵,
Figure 601819DEST_PATH_IMAGE028
为所述高速列车的状态量变量,
Figure 711858DEST_PATH_IMAGE029
为所述高速列车的控制输入信号,
Figure 929212DEST_PATH_IMAGE030
Figure 326083DEST_PATH_IMAGE031
为常值矩阵,
Figure 111637DEST_PATH_IMAGE032
为常值矩阵,
Figure 958239DEST_PATH_IMAGE033
Figure 854650DEST_PATH_IMAGE034
的转置。
其中,
Figure DEST_PATH_IMAGE059
Figure 899836DEST_PATH_IMAGE060
Figure DEST_PATH_IMAGE061
阶单位矩阵,
Figure 387449DEST_PATH_IMAGE062
Figure 455768DEST_PATH_IMAGE061
阶零矩阵。
Figure DEST_PATH_IMAGE063
(6)
Figure 421450DEST_PATH_IMAGE064
(7)
Figure DEST_PATH_IMAGE065
(8)
S102,利用所述高速列车的参考模型确定所述高速列车的目标状态量;所述目标状态量包括:目标运行速度和目标位移;所述参考模型用于输出目标状态量。
S102具体包括:
根据ATP限速及所述高速列车的运行路段确定目标运行速度曲线。所述目标运行速度曲线为
Figure 459157DEST_PATH_IMAGE066
利用公式
Figure 445568DEST_PATH_IMAGE035
确定所述参考模型。
其中,
Figure DEST_PATH_IMAGE067
为所述高速列车的目标运行速度和目标位移,
Figure 938866DEST_PATH_IMAGE037
为有界的外部参考输入信号,
Figure 426348DEST_PATH_IMAGE068
S103,根据所述实际状态量和所述目标状态量确定跟踪误差。
S104,根据所述跟踪误差确定自适应率。
S105,根据所述自适应率确定自适应控制器。
S105具体包括:
获取标称控制器。
标称控制器为:
Figure DEST_PATH_IMAGE069
(9)
其中,
Figure 665700DEST_PATH_IMAGE070
Figure DEST_PATH_IMAGE071
为高速列车参数矩阵,
Figure 744383DEST_PATH_IMAGE072
为高速列车实际速度的平方值。
根据以上标称控制器,可得闭环系统满足
Figure DEST_PATH_IMAGE073
(10)
Figure 727907DEST_PATH_IMAGE075
是有界的,式(9)中高速列车控制力输入,
Figure DEST_PATH_IMAGE076
也是有界的,并且跟踪误差
Figure 300971DEST_PATH_IMAGE077
满足
Figure DEST_PATH_IMAGE078
,因此,误差信号指数衰减到0,即
Figure 50621DEST_PATH_IMAGE079
,实现渐近跟踪性能。
根据所述标称控制器确定自适应控制器。
即,在AB未知的情况下,则需根据公式(9)标称控制器的结构,设计如下形式自适应控制器:
Figure DEST_PATH_IMAGE080
(11)
其中,
Figure 300206DEST_PATH_IMAGE081
Figure DEST_PATH_IMAGE082
的估计值。
利用所述自适应率更新所述自适应控制器。
为更新自适应控制器参数,
Figure 112304DEST_PATH_IMAGE083
选择如下自适应律式(12)~(15),使高速列车在存在不确定系统参数的情况下,仍能实现上述控制目标,完成高速列车对理想曲线高精度跟踪。
Figure DEST_PATH_IMAGE084
(13)
Figure 738326DEST_PATH_IMAGE085
(14)
Figure DEST_PATH_IMAGE086
(15)
Figure 97411DEST_PATH_IMAGE087
(16)
其中,
Figure DEST_PATH_IMAGE088
Figure 534209DEST_PATH_IMAGE089
本发明考虑高速列车系统参数的不确定性以及非线性问题,利用模型参考自适应控制策略的设计,在理论上实现高速列车对给定曲线的渐近跟踪。
S106,根据所述自适应控制器控制所述高速列车。
本发明建模上,利用高速列车运行过程动力学定律,建立对高速列车系统的多质点模型。多质点模型描述了高速列车内部作用力的影响,考虑相邻车厢间的相互作用力以及阻力的非线性,建立高速列车精准模型。
控制上,整个自适应控制系统采用自适应律对控制器参数进行更新,有效地处理系统的不确定性以及非线性问题。此控制方法不仅能够提高跟踪精度,并保证系统在更新过程中保持稳定。
本发明实施基于以上多质点模型建立及自适应控制策略设计的理论分析,利用MATLAB软件仿真来验证模型的准确性以及控制跟踪的高精度。
根据高速列车运行路段及ATP限速特性,设计高速列车仿真中理想速度运行曲线如下式(16)(速度
Figure DEST_PATH_IMAGE090
单位为
Figure 82871DEST_PATH_IMAGE091
),其中包含了高速列车运行过程中牵引、惰性、制动工况。并选取高速列车参考模型参数
Figure DEST_PATH_IMAGE092
,需满足矩阵
Figure 387950DEST_PATH_IMAGE093
特征值位于左半复平面条件,如式(17)~(19),且外部输入信号
Figure DEST_PATH_IMAGE094
可通过选定的参考模型计算所得。
Figure 112193DEST_PATH_IMAGE095
(16)
Figure DEST_PATH_IMAGE096
Figure 719891DEST_PATH_IMAGE097
(17)
Figure DEST_PATH_IMAGE098
(18)
Figure 758779DEST_PATH_IMAGE099
(19)
选择合适的系统参数进行仿真,即取系统参数估计初值为:
Figure DEST_PATH_IMAGE100
,多模型自适应策略中的设计参数被选为:
Figure 336391DEST_PATH_IMAGE101
。对多质点模型的高速列车,用自适应控制器跟踪其理想速度,得到仿真结果,如图4-7所示,分别为高速列车速度跟踪曲线、速度跟踪误差、高速列车位移跟踪曲线、位移跟踪误差。
如图4、5所示,速度跟踪误差在高速列车启动时最大为1.6km/h,但仍满足高速列车运行允许误差范围,即:高速列车在30 km/h以下速度误差为±2 km/h,30 km/h以上的不超过运行速度的20%,经过短时间参数调节控制,高速列车速度误差减少,误差曲线的范围:-0.4~0.6 km/h,整个高速列车控制过程均满足高速列车在一定速度下的误差要求。
如图6、7所示,在牵引工况下t=25s时,车辆与预定位移误差最大为
Figure DEST_PATH_IMAGE102
,在制动工况下t=3000s时,车辆与预定位移相差
Figure 524927DEST_PATH_IMAGE103
之内。以上仿真结果说明本文针对高速列车的非线性及不确定参数问题,所设计的基于多质点模型自适应控制策略达到预期性能,验证了良好的跟踪效果。
然而,高速列车在运行过程中,高速列车牵引单元的最大输出为500kN,制动单元的最大输出为500kN,车间最大耦合力为1000kN,高速列车牵引力/制动力变化量最大允许值为
Figure DEST_PATH_IMAGE104
。所以在本发明中考虑控制力的变化,如图8所示,高速列车在工况变化及系统参数更新时,控制力最值均满足要求,且变化较为平缓,超调作用小
图9为本发明所提供的一种基于多质点模型的高速列车自适应控制系统结构示意图,如图9所示,本发明所提供的一种基于多质点模型的高速列车自适应控制系统,包括:
实际状态量确定模块901,用于利用高速列车的多质点模型确定所述高速列车的实际状态量;所述实际状态量包括实际运行速度和实际位移;所述多质点模型用于输出实际状态量。
目标状态量确定模块902,用于利用所述高速列车的参考模型确定所述高速列车的目标状态量;所述目标状态量包括:目标运行速度和目标位移;所述参考模型用于输出目标状态量。
跟踪误差确定模块903,用于根据所述实际状态量和所述目标状态量确定跟踪误差。
自适应率确定模块904,用于根据所述跟踪误差确定自适应率。
自适应控制器确定模块905,用于根据所述自适应率确定自适应控制器。
高速列车控制模块906,用于根据所述自适应控制器控制所述高速列车。
所述实际状态量确定模块901具体包括:
多质点模型构建单元,用于利用公式
Figure 287215DEST_PATH_IMAGE001
构建高速列车的多质点模型;
状态空间描述单元,用于利用公式
Figure 30043DEST_PATH_IMAGE002
将所述多质点模型转换为所述多质点模型的状态空间描述;
参数化单元,用于利用公式
Figure 4822DEST_PATH_IMAGE038
Figure 375760DEST_PATH_IMAGE004
对所述多质点模型的状态空间描述进行参数化;
其中,
Figure 528524DEST_PATH_IMAGE005
为第
Figure 352123DEST_PATH_IMAGE006
节车厢的控制输入信号,即牵引力或制动力,
Figure 862083DEST_PATH_IMAGE007
为运行阻力,
Figure 228474DEST_PATH_IMAGE008
为车间作用力,
Figure 411193DEST_PATH_IMAGE009
为高速列车车厢质量,
Figure 377881DEST_PATH_IMAGE010
为实际运行速度,
Figure 304249DEST_PATH_IMAGE011
为实际位移,
Figure 525146DEST_PATH_IMAGE012
为车钩系统的弹性系数,
Figure 268980DEST_PATH_IMAGE013
为车钩系统的阻尼系数,
Figure 67172DEST_PATH_IMAGE014
Figure 407017DEST_PATH_IMAGE015
分别为第
Figure 872634DEST_PATH_IMAGE016
节、第
Figure 52948DEST_PATH_IMAGE016
+1节车厢的实时运行速度,
Figure 948223DEST_PATH_IMAGE017
Figure 747552DEST_PATH_IMAGE018
分别为第
Figure 929659DEST_PATH_IMAGE016
节、第
Figure 766028DEST_PATH_IMAGE016
+1节车厢的实时位移,
Figure 804391DEST_PATH_IMAGE019
Figure 266465DEST_PATH_IMAGE020
Figure 316461DEST_PATH_IMAGE021
为第
Figure 838578DEST_PATH_IMAGE016
节车厢的基本阻力的系数,
Figure 833079DEST_PATH_IMAGE022
为所述高速列车的中间车厢的编号,
Figure 849576DEST_PATH_IMAGE016
为所述高速列车所有车厢的编号,
Figure 268925DEST_PATH_IMAGE023
Figure 306151DEST_PATH_IMAGE024
Figure 928894DEST_PATH_IMAGE025
为所述高速列车的阻力的非线性部分,
Figure 608137DEST_PATH_IMAGE026
Figure 879062DEST_PATH_IMAGE027
为高速列车的系统参数矩阵,
Figure 962556DEST_PATH_IMAGE028
为所述高速列车的状态量变量,
Figure 197228DEST_PATH_IMAGE029
为所述高速列车的控制输入信号,
Figure 804796DEST_PATH_IMAGE030
Figure 418311DEST_PATH_IMAGE031
为常值矩阵,
Figure 328498DEST_PATH_IMAGE032
为常值矩阵,
Figure 909521DEST_PATH_IMAGE033
Figure 664988DEST_PATH_IMAGE034
的转置。
所述目标状态量确定模块902具体包括:
目标运行速度曲线确定单元,用于根据ATP限速及所述高速列车的运行路段确定目标运行速度曲线。
参考模型确定单元,用于利用公式
Figure 664168DEST_PATH_IMAGE035
确定所述参考模型;
其中,
Figure 869890DEST_PATH_IMAGE105
为所述高速列车的目标运行速度和目标位移,
Figure 547996DEST_PATH_IMAGE037
为有界的外部参考输入信号。
所述自适应控制器确定模块905具体包括:
标称控制器获取单元,用于获取标称控制器。
自适应控制器确定单元,用于根据所述标称控制器确定自适应控制器。
自适应控制器更新单元,用于利用所述自适应率更新所述自适应控制器。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的系统而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (8)

1.一种基于多质点模型的高速列车自适应控制方法,其特征在于,包括:
利用高速列车的多质点模型确定所述高速列车的实际状态量;所述实际状态量包括实际运行速度和实际位移;所述多质点模型用于输出实际状态量;
利用所述高速列车的参考模型确定所述高速列车的目标状态量;所述目标状态量包括:目标运行速度和目标位移;所述参考模型用于输出目标状态量;
根据所述实际状态量和所述目标状态量确定跟踪误差;
根据所述跟踪误差确定自适应率;
根据所述自适应率确定自适应控制器;
根据所述自适应控制器控制所述高速列车。
2.根据权利要求1所述的一种基于多质点模型的高速列车自适应控制方法,其特征在于,所述利用高速列车的多质点模型确定所述高速列车的实际状态量,具体包括:
利用公式
Figure DEST_PATH_IMAGE001
构建高速列车的多质点模型;
利用公式
Figure 982440DEST_PATH_IMAGE002
将所述多质点模型转换为所述多质点模型的状态空间描述;
利用公式
Figure DEST_PATH_IMAGE003
Figure 93616DEST_PATH_IMAGE004
对所述多质点模型的状态空间描述进行参数化;
其中,
Figure DEST_PATH_IMAGE005
为第
Figure 559756DEST_PATH_IMAGE006
节车厢的控制输入信号,即牵引力或制动力,
Figure DEST_PATH_IMAGE007
为运行阻力,
Figure 465396DEST_PATH_IMAGE008
为车间作用力,
Figure DEST_PATH_IMAGE009
为高速列车车厢质量,
Figure 14057DEST_PATH_IMAGE010
为实际运行速度,
Figure DEST_PATH_IMAGE011
为实际位移,
Figure 319137DEST_PATH_IMAGE012
为车钩系统的弹性系数,
Figure DEST_PATH_IMAGE013
为车钩系统的阻尼系数,
Figure 653166DEST_PATH_IMAGE014
Figure DEST_PATH_IMAGE015
分别为第
Figure 244553DEST_PATH_IMAGE016
节、第
Figure 968927DEST_PATH_IMAGE016
+1节车厢的实时运行速度,
Figure DEST_PATH_IMAGE017
Figure 933822DEST_PATH_IMAGE018
分别为第
Figure 591200DEST_PATH_IMAGE016
节、第
Figure 432117DEST_PATH_IMAGE016
+1节车厢的实时位移,
Figure DEST_PATH_IMAGE019
Figure 361895DEST_PATH_IMAGE020
Figure DEST_PATH_IMAGE021
为第
Figure 274357DEST_PATH_IMAGE016
节车厢的基本阻力的系数,
Figure 35508DEST_PATH_IMAGE022
为所述高速列车的中间车厢的编号,
Figure 188272DEST_PATH_IMAGE016
为所述高速列车所有车厢的编号,
Figure DEST_PATH_IMAGE023
Figure 467331DEST_PATH_IMAGE024
Figure DEST_PATH_IMAGE025
为所述高速列车的阻力的非线性部分,
Figure 917904DEST_PATH_IMAGE026
Figure DEST_PATH_IMAGE027
为高速列车的系统参数矩阵,
Figure 346611DEST_PATH_IMAGE028
为所述高速列车的状态量变量,
Figure DEST_PATH_IMAGE029
为所述高速列车的控制输入信号,
Figure 326069DEST_PATH_IMAGE030
Figure DEST_PATH_IMAGE031
为常值矩阵,
Figure 823915DEST_PATH_IMAGE032
为常值矩阵,
Figure DEST_PATH_IMAGE033
Figure 422386DEST_PATH_IMAGE034
的转置。
3.根据权利要求2所述的一种基于多质点模型的高速列车自适应控制方法,其特征在于,所述利用所述高速列车的参考模型确定所述高速列车的目标状态量,具体包括:
根据ATP限速及所述高速列车的运行路段确定目标运行速度曲线;
利用公式
Figure DEST_PATH_IMAGE035
确定所述参考模型;
其中,
Figure 561725DEST_PATH_IMAGE036
为所述高速列车的目标运行速度和目标位移,
Figure DEST_PATH_IMAGE037
为有界的外部参考输入信号。
4.根据权利要求1所述的一种基于多质点模型的高速列车自适应控制方法,其特征在于,所述根据所述自适应率确定自适应控制器,具体包括:
获取标称控制器;
根据所述标称控制器确定自适应控制器;
利用所述自适应率更新所述自适应控制器。
5.一种基于多质点模型的高速列车自适应控制系统,其特征在于,包括:
实际状态量确定模块,用于利用高速列车的多质点模型确定所述高速列车的实际状态量;所述实际状态量包括实际运行速度和实际位移;所述多质点模型用于输出实际状态量;
目标状态量确定模块,用于利用所述高速列车的参考模型确定所述高速列车的目标状态量;所述目标状态量包括:目标运行速度和目标位移;所述参考模型用于输出目标状态量;
跟踪误差确定模块,用于根据所述实际状态量和所述目标状态量确定跟踪误差;
自适应率确定模块,用于根据所述跟踪误差确定自适应率;
自适应控制器确定模块,用于根据所述自适应率确定自适应控制器;
高速列车控制模块,用于根据所述自适应控制器控制所述高速列车。
6.根据权利要求5所述的一种基于多质点模型的高速列车自适应控制系统,其特征在于,所述实际状态量确定模块具体包括:
多质点模型构建单元,用于利用公式
Figure 102297DEST_PATH_IMAGE038
构建高速列车的多质点模型;
状态空间描述单元,用于利用公式
Figure 307013DEST_PATH_IMAGE002
将所述多质点模型转换为所述多质点模型的状态空间描述;
参数化单元,用于利用公式
Figure 427285DEST_PATH_IMAGE003
Figure 768267DEST_PATH_IMAGE004
对所述多质点模型的状态空间描述进行参数化;
其中,
Figure 558369DEST_PATH_IMAGE005
为第
Figure 234070DEST_PATH_IMAGE006
节车厢的控制输入信号,即牵引力或制动力,
Figure 908765DEST_PATH_IMAGE007
为运行阻力,
Figure 356451DEST_PATH_IMAGE008
为车间作用力,
Figure 51875DEST_PATH_IMAGE009
为高速列车车厢质量,
Figure 700025DEST_PATH_IMAGE010
为实际运行速度,
Figure 37465DEST_PATH_IMAGE011
为实际位移,
Figure 71149DEST_PATH_IMAGE012
为车钩系统的弹性系数,
Figure 343999DEST_PATH_IMAGE013
为车钩系统的阻尼系数,
Figure 604079DEST_PATH_IMAGE014
Figure 604264DEST_PATH_IMAGE015
分别为第
Figure 508767DEST_PATH_IMAGE016
节、第
Figure 811572DEST_PATH_IMAGE016
+1节车厢的实时运行速度,
Figure 683582DEST_PATH_IMAGE017
Figure 97246DEST_PATH_IMAGE018
分别为第
Figure 121834DEST_PATH_IMAGE016
节、第
Figure 982823DEST_PATH_IMAGE016
+1节车厢的实时位移,
Figure 92862DEST_PATH_IMAGE019
Figure 575796DEST_PATH_IMAGE020
Figure 704158DEST_PATH_IMAGE021
为第
Figure 489711DEST_PATH_IMAGE016
节车厢的基本阻力的系数,
Figure 336313DEST_PATH_IMAGE022
为所述高速列车的中间车厢的编号,
Figure 91780DEST_PATH_IMAGE016
为所述高速列车所有车厢的编号,
Figure 356539DEST_PATH_IMAGE023
Figure 31103DEST_PATH_IMAGE024
Figure 974788DEST_PATH_IMAGE025
为所述高速列车的阻力的非线性部分,
Figure 674891DEST_PATH_IMAGE026
Figure 387632DEST_PATH_IMAGE027
为高速列车的系统参数矩阵,
Figure 767185DEST_PATH_IMAGE028
为所述高速列车的状态量变量,
Figure 807953DEST_PATH_IMAGE029
为所述高速列车的控制输入信号,
Figure 170802DEST_PATH_IMAGE030
Figure 128262DEST_PATH_IMAGE031
为常值矩阵,
Figure 426520DEST_PATH_IMAGE032
为常值矩阵,
Figure 344797DEST_PATH_IMAGE033
Figure 370391DEST_PATH_IMAGE034
的转置。
7.根据权利要求6所述的一种基于多质点模型的高速列车自适应控制系统,其特征在于,所述目标状态量确定模块具体包括:
目标运行速度曲线确定单元,用于根据ATP限速及所述高速列车的运行路段确定目标运行速度曲线;
参考模型确定单元,用于利用公式
Figure 198669DEST_PATH_IMAGE035
确定所述参考模型;
其中,
Figure 792462DEST_PATH_IMAGE036
为所述高速列车的目标运行速度和目标位移,
Figure 57090DEST_PATH_IMAGE037
为有界的外部参考输入信号。
8.根据权利要求5所述的一种基于多质点模型的高速列车自适应控制系统,其特征在于,所述自适应控制器确定模块具体包括:
标称控制器获取单元,用于获取标称控制器;
自适应控制器确定单元,用于根据所述标称控制器确定自适应控制器;
自适应控制器更新单元,用于利用所述自适应率更新所述自适应控制器。
CN202110035264.0A 2021-01-12 2021-01-12 一种基于多质点模型的高速列车自适应控制方法及系统 Pending CN112486024A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110035264.0A CN112486024A (zh) 2021-01-12 2021-01-12 一种基于多质点模型的高速列车自适应控制方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110035264.0A CN112486024A (zh) 2021-01-12 2021-01-12 一种基于多质点模型的高速列车自适应控制方法及系统

Publications (1)

Publication Number Publication Date
CN112486024A true CN112486024A (zh) 2021-03-12

Family

ID=74912391

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110035264.0A Pending CN112486024A (zh) 2021-01-12 2021-01-12 一种基于多质点模型的高速列车自适应控制方法及系统

Country Status (1)

Country Link
CN (1) CN112486024A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113110130A (zh) * 2021-03-22 2021-07-13 青岛科技大学 一种多列车协同追踪运行的控制方法
CN114167733A (zh) * 2022-02-14 2022-03-11 华东交通大学 一种高速列车速度控制方法及系统
CN114326646A (zh) * 2022-01-10 2022-04-12 北京交通大学 一种高速列车有限时间自适应协调控制方法及系统
CN114625003A (zh) * 2022-03-09 2022-06-14 西南交通大学 一种基于多质点模型的高速列车分布式轨迹跟踪控制方法
CN115837899A (zh) * 2023-02-16 2023-03-24 华东交通大学 动车组制动系统的多模型自适应故障补偿控制方法及系统

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109375510A (zh) * 2018-11-14 2019-02-22 南京航空航天大学 一种用于高速列车的自适应滑模容错控制方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109375510A (zh) * 2018-11-14 2019-02-22 南京航空航天大学 一种用于高速列车的自适应滑模容错控制方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
李延建: "基于自适应控制的列车自动运行仿真研究", 《万方数据》 *
罗恒钰: "列车自适应鲁棒驾驶控制", 《中国博士学位论文全文数据库 工程科技Ⅱ辑》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113110130A (zh) * 2021-03-22 2021-07-13 青岛科技大学 一种多列车协同追踪运行的控制方法
CN114326646A (zh) * 2022-01-10 2022-04-12 北京交通大学 一种高速列车有限时间自适应协调控制方法及系统
CN114167733A (zh) * 2022-02-14 2022-03-11 华东交通大学 一种高速列车速度控制方法及系统
CN114625003A (zh) * 2022-03-09 2022-06-14 西南交通大学 一种基于多质点模型的高速列车分布式轨迹跟踪控制方法
CN114625003B (zh) * 2022-03-09 2023-09-22 西南交通大学 一种基于多质点模型的高速列车分布式轨迹跟踪控制方法
CN115837899A (zh) * 2023-02-16 2023-03-24 华东交通大学 动车组制动系统的多模型自适应故障补偿控制方法及系统

Similar Documents

Publication Publication Date Title
CN112486024A (zh) 一种基于多质点模型的高速列车自适应控制方法及系统
CN107943022B (zh) 一种基于强化学习的pid机车自动驾驶优化控制方法
CN107791773B (zh) 一种基于规定性能函数的整车主动悬架系统振动控制方法
AU2021100338A4 (en) Speed tracking control method and system for heavy-haul train
CN107300863B (zh) 一种基于map图和在线标定的纵向加速度控制方法
Papadimitrakis et al. Active vehicle suspension control using road preview model predictive control and radial basis function networks
CN110647031B (zh) 用于高速列车的抗饱和自适应伪pid滑模故障容错控制方法
CN110949366B (zh) 应用智能车辆纵向速度控制的rbf神经网络的终端滑模控制方法
Zhu et al. Barrier-function-based distributed adaptive control of nonlinear CAVs with parametric uncertainty and full-state constraint
Li et al. Neural adaptive fault tolerant control for high speed trains considering actuation notches and antiskid constraints
CN114167733B (zh) 一种高速列车速度控制方法及系统
CN108099877B (zh) 一种紧急制动工况下滑移率跟踪控制方法
Jalali et al. Development of a path-following and a speed control driver model for an electric vehicle
CN108181811A (zh) 一种基于线性时变的滑移率跟踪控制方法
CN113485125A (zh) 一种适用于任意通信拓扑的含时滞车辆队列稳定性控制方法及系统
Liu et al. Braking process identification of high-speed trains for automatic train stop control
Guo et al. Adaptive fuzzy sliding mode control for high‐speed train using multi‐body dynamics model
CN103777521B (zh) 一种基于模糊控制的车辆低速控制方法
CN117048667A (zh) 一种基于车辆动态响应辨识的重载列车控制方法及系统
CN116373846A (zh) 一种基于bp神经网络优化的后轮转向车辆稳定性控制方法
CN114030526B (zh) 一种车辆主动转向控制方法及系统
Tucker et al. A comparison of free trajectory quasi-steady-state and transient vehicle models in minimum time manoeuvres
US11981212B1 (en) Cooperative control method for electro-hydraulic hybrid braking of middle-low speed maglev train
Wang et al. A novel vehicle platoon following controller based on deep deterministic policy gradient algorithms
CN117930666B (zh) 基于快速变幂次趋近律的动车组控制方法、设备及介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210312