CN112484065B - Waste heat utilization system of thermal power plant - Google Patents

Waste heat utilization system of thermal power plant Download PDF

Info

Publication number
CN112484065B
CN112484065B CN202011390039.0A CN202011390039A CN112484065B CN 112484065 B CN112484065 B CN 112484065B CN 202011390039 A CN202011390039 A CN 202011390039A CN 112484065 B CN112484065 B CN 112484065B
Authority
CN
China
Prior art keywords
heat
subsystem
boiler
heat utilization
flue gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011390039.0A
Other languages
Chinese (zh)
Other versions
CN112484065A (en
Inventor
金国强
郑小刚
惠文涛
周东阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Xire Control Technology Co Ltd
Original Assignee
Xian Xire Control Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Xire Control Technology Co Ltd filed Critical Xian Xire Control Technology Co Ltd
Priority to CN202011390039.0A priority Critical patent/CN112484065B/en
Publication of CN112484065A publication Critical patent/CN112484065A/en
Application granted granted Critical
Publication of CN112484065B publication Critical patent/CN112484065B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/06Arrangements of devices for treating smoke or fumes of coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0044Furnaces, ovens, kilns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/30Technologies for a more efficient combustion or heat usage

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Food Science & Technology (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Regulation And Control Of Combustion (AREA)

Abstract

The invention discloses a waste heat utilization system of a thermal power plant, which belongs to the technical field of thermal power plants and comprises a boiler heat detection subsystem, a radiant heat collection subsystem, a heat utilization subsystem, an auxiliary equipment subsystem and a heat utilization line inspection subsystem, wherein the boiler heat detection subsystem is used for actually measuring the thermal pressure in a boiler, the radiant heat collection subsystem is used for collecting the dissipated heat of the boiler, the heat utilization subsystem is used for recovering the dissipated heat and the waste heat in a tail flue of the boiler for utilization, the auxiliary equipment subsystem is used for recording and registering the number of auxiliary equipment and the power information of a single auxiliary machine, and the heat utilization line inspection subsystem is used for inspecting the faults of a heat utilization line constructed by heat utilization; this system is when waste heat utilization, through the inside flue gas water conservancy diversion detector of flue gas collecting pipe, patrols and examines the inside flue gas water conservancy diversion condition of flue gas collecting pipe, effectively prevents the jam of flue, improves waste heat utilization system's utilization ratio.

Description

Waste heat utilization system of thermal power plant
Technical Field
The invention belongs to the technical field of thermal power plants, and particularly relates to a waste heat utilization system of a thermal power plant.
Background
The heat loss of the exhaust smoke of the boiler of the thermal power plant is the largest one of various heat losses of the boiler, and the deep utilization of the exhaust smoke waste heat of the boiler is significant. At present, the most common mode of domestic thermal power plants for flue gas waste heat utilization is to install a flue gas waste heat utilization device additionally in a tail flue of a boiler, so that not only can the flue gas waste heat be utilized to heat condensed water or cold air, but also other auxiliary equipment of the tail flue is influenced due to reduction of exhaust gas temperature, for example, the safety of a cloth bag dust remover device and the dust removal efficiency of an electric dust remover are improved; the power consumption of the induced draft fan can be reduced due to the reduction of the volume of the flue gas caused by the reduction of the temperature; the water consumption of the wet desulfurization system can be reduced due to the reduction of the temperature of the flue gas, but the installation of the flue gas waste heat utilization system increases the resistance of the flue, and the equipment operation of the flue gas waste heat utilization system also increases the power consumption of the plant, so the economical efficiency of the installation of the flue gas waste heat utilization system needs to be considered.
Disclosure of Invention
The invention aims to provide a waste heat utilization system of a thermal power plant, which can reflect the radiant heat of a boiler, further gather the heat, improve the collection rate of the waste heat and improve the economy of waste heat utilization.
In order to achieve the purpose, the invention provides the following technical scheme: the utility model provides a waste heat utilization system of thermal power plant, this waste heat utilization system of thermal power plant includes boiler heat detection subsystem, radiant heat collection subsystem, heat utilization subsystem, auxiliary machinery equipment subsystem, heat utilization circuit and patrols and examines the subsystem, boiler heat detection subsystem is used for the inside hot pressure real-time detection of boiler, and radiant heat collection subsystem is arranged in retrieving the scattered and lost thermal collection of boiler working process, and the heat utilization subsystem is used for retrieving the scattered and lost heat after collecting and the inside waste heat of boiler afterbody flue and utilizes, and auxiliary machinery equipment subsystem is used for the quantity of registration auxiliary machinery and the power information of single auxiliary engine, and the heat utilization circuit patrols and examines the subsystem and is used for patrolling and examining the trouble of the heat utilization circuit of utilizing to the heat that the heat was built.
Preferably, the boiler heat detection subsystem comprises a boiler internal pressure detection module, a boiler internal oxygen content detection module and a boiler external heat supply recording module.
Preferably, the radiant heat collecting subsystem comprises a boiler external detection module, a radiant heat reflection module and a radiant heat collecting module.
Preferably, the external detection module of boiler includes infrared detector, and the boiler outside still is equipped with encloses the fender support, and infrared detector installs in enclosing fender support upper portion.
Preferably, the radiant heat reflecting module comprises a reflecting base layer fixed on the enclosure support, and a heat reflecting layer is coated on the reflecting base layer.
Preferably, the reflective base layer is made of a plastic plate material, and the heat reflective layer is coated with a silicon dioxide layered composite material.
Preferably, the radiation heat collecting module comprises a heat collecting plate fixed to the top of the enclosure support, the heat collecting plate is made of heat absorbing cotton materials, and the upper end of the heat collecting plate is connected with the heat utilization subsystem.
Preferably, the heat utilization subsystem is including connecting heat collection pipeline on the radiant heat collection subsystem, still including connecting the flue gas collection pipeline at boiler afterbody flue, the heat collection pipeline outside sets up water vapor generator, and the boiler end is kept away from to the flue gas collection pipeline is fixed with condenser and energy converter, and energy converter keeps away from flue gas collection pipeline end and is connected to auxiliary machinery equipment subsystem, and the inside negative pressure machine that sets up of water vapor generator, the inside negative pressure machine that sets up of condenser equally.
Preferably, the auxiliary device subsystem includes an auxiliary device information registration module and an auxiliary device classification module.
Preferably, the heat utilization circuit inspection subsystem is connected to the heat utilization subsystem, and comprises a flue gas diversion detector connected to the inside of a flue gas collection pipeline on the flue gas collection pipeline and an antistatic device fixed inside the water generator.
The beneficial effects of the invention are:
1. this waste heat utilization system of thermal power plant patrols and examines the subsystem through the heat utilization circuit, can be when waste heat utilization, through the inside flue gas water conservancy diversion detector of flue gas collecting pipe, patrol and examine the inside flue gas water conservancy diversion condition of flue gas collecting pipe, effectively prevent the jam of flue, improve the utilization ratio of waste heat utilization system.
2. This waste heat utilization system of thermal power plant sets up the radiant heat and collects the subsystem, through setting up the reflection basic unit, and the top coating of reflection basic unit has the heat reflection layer to reflect the heat, further gathers together the heat, improves the collection rate of waste heat.
3. The waste heat utilization system of the thermal power plant is provided with the auxiliary equipment subsystem, the required power consumption amount of all auxiliary equipment is registered, the auxiliary equipment is output with electric quantity according to different auxiliary equipment power consumption amounts, and waste of electric energy converted by waste heat is prevented.
4. This waste heat utilization system of thermal power plant sets up boiler heat detection subsystem, carries out real-time detection to the heat that the boiler inside produced, monitors the heat that produces, and the thermal trend in the whole process of accurate control helps waste heat utilization to provide theoretical basis.
Drawings
Fig. 1 is a schematic structural diagram of a waste heat utilization system of a thermal power plant provided by the invention.
Detailed Description
In order to further understand the contents, features and effects of the present invention, the following embodiments are illustrated and described in detail with reference to the accompanying drawings.
Referring to fig. 1, a waste heat utilization system of a thermal power plant according to an embodiment of the present invention will be described in detail below with reference to the accompanying drawings.
This waste heat utilization system of thermal power plant includes that boiler heat detects subsystem, radiant heat collection subsystem, heat utilization subsystem, auxiliary equipment subsystem, heat utilization circuit patrol and examine the subsystem, boiler heat detects subsystem is used for the inside hot pressure real-time detection of boiler, and radiant heat collection subsystem is used for retrieving the scattered and lost thermal collection of boiler working process, and the heat utilizes the subsystem to be used for retrieving the scattered and lost heat after collecting and the inside waste heat of boiler afterbody flue and utilize, and auxiliary equipment subsystem is used for the quantity of the registration auxiliary equipment and the power information of single auxiliary engine, and the heat utilization circuit patrol and examine the subsystem and be used for patrolling and examining the trouble of the heat utilization circuit of building to the heat utilization.
Specifically, the boiler heat detection subsystem comprises a boiler internal pressure detection module, a boiler internal oxygen content detection module and a boiler external heat supply recording module.
Specifically, the radiation heat collecting subsystem comprises a boiler external detection module, a radiation heat reflection module and a radiation heat collecting module, wherein the boiler external detection module is used for detecting heat outside the boiler, the radiation heat reflection module is used for collecting heat reflection of external radiation of the boiler, and the radiation heat collecting module is used for collecting the reflected heat.
Specifically, the outside detection module of boiler includes infrared detector, and the boiler outside still is equipped with to enclose keeps off the support, and infrared detector installs and keeps off support upper portion in enclosing, in the boiler working process, through infrared detector's monitoring, detects the heat that the boiler external radiation produced, provides theoretical support for waste heat utilization.
Specifically, the radiant heat reflection module comprises a reflection base layer fixed on the enclosure support, and a heat reflection layer is coated above the reflection base layer.
Specifically, the reflection base layer is made of a plastic plate material, the heat reflection layer is coated by a silicon dioxide layered composite material, heat radiated above the boiler is reflected and collected by the coating of the silicon dioxide layer, and the collection amount of filtered waste heat is increased through the good photon reflectivity of the silicon dioxide.
Specifically, the radiation heat collection module is including fixing enclose the heat collection board that keeps off support top, and the heat collection board adopts the cotton material preparation of heat absorption, and the heat utilization subsystem is connected to the upper end, and the cotton body of heat absorption stores the heat, through the heat collection pipeline, transmits heat energy to energy converter inside, carries out the conversion of electric energy.
Specifically, the heat utilization subsystem is including connecting heat collecting pipe on the radiant heat collecting subsystem still includes the flue gas collecting pipe of connecting at boiler afterbody flue, and the heat collecting pipe outside sets up water vapor generator, and the boiler end is kept away from to the flue gas collecting pipe is fixed with condenser and energy converter, and energy converter keeps away from flue gas collecting pipe end and is connected to auxiliary machinery subsystem, and water vapor generator is inside to set up negative pressure machine, and the inside negative pressure machine that sets up of condenser is the same.
Specifically, the auxiliary device subsystem includes an auxiliary device information registration module and an auxiliary device classification module.
Specifically, the heat utilizes the circuit to patrol and examine the subsystem and be connected to the heat and utilize the subsystem, including connecting the inside flue gas water conservancy diversion detector of flue gas collecting tube on flue gas collecting tube, still including fixing the antistatic plant inside water vapor generator.
Although embodiments of the present invention have been shown and described, it will be appreciated by those skilled in the art that changes, modifications, substitutions and alterations can be made in these embodiments without departing from the principles and spirit of the invention, the scope of which is defined in the appended claims and their equivalents.

Claims (5)

1. The waste heat utilization system of the thermal power plant is characterized by comprising a boiler heat detection subsystem, a radiant heat collection subsystem, a heat utilization subsystem, an auxiliary equipment subsystem and a heat utilization line inspection subsystem, wherein the boiler heat detection subsystem is used for detecting the thermal pressure in a boiler in real time, the radiant heat collection subsystem is used for collecting the dissipated heat in the working process of the boiler, the heat utilization subsystem is used for recycling the collected dissipated heat and the waste heat in a flue at the tail of the boiler for utilization, the auxiliary equipment subsystem is used for recording the number of auxiliary equipment and the power information of a single auxiliary machine, and the heat utilization line inspection subsystem is used for inspecting faults of a heat utilization line constructed by heat utilization;
the radiant heat collecting subsystem comprises a boiler external detection module, a radiant heat reflecting module and a radiant heat collecting module;
the boiler external detection module comprises an infrared detector, the boiler is also externally provided with a surrounding barrier bracket, and the infrared detector is arranged on the upper part of the surrounding barrier bracket;
the radiant heat reflecting module comprises a reflecting base layer fixed on the enclosure support, and a heat reflecting layer is coated above the reflecting base layer;
the reflecting base layer is made of a plastic plate material, and the heat reflecting layer is coated by a silicon dioxide layered composite material;
the radiation heat collecting module comprises a heat collecting plate fixed at the top of the enclosure support, the heat collecting plate is made of heat absorption cotton materials, and the upper end of the heat collecting plate is connected with a heat utilization subsystem.
2. The waste heat utilization system of the thermal power plant as claimed in claim 1, wherein the boiler heat detection subsystem comprises a boiler internal pressure detection module, a boiler internal oxygen content detection module, and a boiler external heat supply recording module.
3. The waste heat utilization system of the thermal power plant as claimed in claim 1, wherein the heat utilization subsystem comprises a heat collection pipeline connected to the radiant heat collection subsystem, and further comprises a flue gas collection pipeline connected to a flue at the tail of the boiler, a water vapor generator is arranged outside the heat collection pipeline, a condenser and an energy converter are fixed to the flue gas collection pipeline far away from the boiler end, the energy converter is connected to the auxiliary equipment subsystem far away from the flue gas collection pipeline, a negative pressure machine is arranged inside the water vapor generator, and a negative pressure machine is also arranged inside the condenser.
4. The waste heat utilization system of the thermal power plant as claimed in claim 1, wherein the auxiliary device subsystem includes an auxiliary device information registration module and an auxiliary device classification module.
5. The waste heat utilization system of the thermal power plant according to claim 1, wherein the heat utilization line inspection subsystem is connected to the heat utilization subsystem, and comprises a flue gas diversion detector connected to the flue gas collection pipeline inside the flue gas collection pipeline, and an antistatic device fixed inside the water generator.
CN202011390039.0A 2020-12-02 2020-12-02 Waste heat utilization system of thermal power plant Active CN112484065B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011390039.0A CN112484065B (en) 2020-12-02 2020-12-02 Waste heat utilization system of thermal power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011390039.0A CN112484065B (en) 2020-12-02 2020-12-02 Waste heat utilization system of thermal power plant

Publications (2)

Publication Number Publication Date
CN112484065A CN112484065A (en) 2021-03-12
CN112484065B true CN112484065B (en) 2022-10-14

Family

ID=74938742

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011390039.0A Active CN112484065B (en) 2020-12-02 2020-12-02 Waste heat utilization system of thermal power plant

Country Status (1)

Country Link
CN (1) CN112484065B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA201200333A1 (en) * 2011-07-28 2013-01-30 Республиканское Унитарное Предприятие "Институт Жилища - Ниптис Им. Атаева С.С." BOILER-UTILIZER OF RADIATION HEAT LOSSES OF BURNING FURNITURE CONSTRUCTION MATERIALS
CN202813464U (en) * 2012-07-19 2013-03-20 麻益民 Cooking range provided with reflecting device
CN204085208U (en) * 2014-07-11 2015-01-07 尹小林 A kind of cylinder of rotary kiln radiant heat energy that utilizes is for the device of cogeneration
JP2016020762A (en) * 2014-07-14 2016-02-04 ダイキン工業株式会社 Electric stove
CN209945584U (en) * 2019-06-14 2020-01-14 张立国 Rotary kiln barrel radiation waste heat acquisition module and acquisition device applied by same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110203575A1 (en) * 2009-08-24 2011-08-25 Robert Emery Thermodynamic/Solar Steam Generator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA201200333A1 (en) * 2011-07-28 2013-01-30 Республиканское Унитарное Предприятие "Институт Жилища - Ниптис Им. Атаева С.С." BOILER-UTILIZER OF RADIATION HEAT LOSSES OF BURNING FURNITURE CONSTRUCTION MATERIALS
CN202813464U (en) * 2012-07-19 2013-03-20 麻益民 Cooking range provided with reflecting device
CN204085208U (en) * 2014-07-11 2015-01-07 尹小林 A kind of cylinder of rotary kiln radiant heat energy that utilizes is for the device of cogeneration
JP2016020762A (en) * 2014-07-14 2016-02-04 ダイキン工業株式会社 Electric stove
CN209945584U (en) * 2019-06-14 2020-01-14 张立国 Rotary kiln barrel radiation waste heat acquisition module and acquisition device applied by same

Also Published As

Publication number Publication date
CN112484065A (en) 2021-03-12

Similar Documents

Publication Publication Date Title
CN112484065B (en) Waste heat utilization system of thermal power plant
CN107063346A (en) A kind of solar cell making herbs into wool detection means
CN204962691U (en) System for internal -combustion engine waste heat, solar energy light and heat and electric heat accumulation coupling
CN111853814A (en) Garbage incineration device
CN212361967U (en) Domestic waste burns power generation facility
CN209588729U (en) A kind of high-temperature tail gas heat recovery device
CN207975998U (en) A kind of metallurgical plant waste-heat recovery device
CN206787607U (en) A kind of solar cell making herbs into wool detection means
CN207569855U (en) A kind of feed water system of boiler
CN219660209U (en) Photovoltaic array control box with high protection level
CN215808585U (en) Flue gas waste heat recovery device for thermal power generation
CN208482016U (en) A kind of liquid ammonia evaporator
CN209495412U (en) Dehumidify heating system in power station under a kind of collection prosecutor formula
CN214949849U (en) Hot-blast furnace waste heat recovery utilizes system
CN216049267U (en) Circulating water cooling system of power plant cooling tower
CN215897678U (en) Photovoltaic power generation heat energy conversion utilizes mechanism
CN216429703U (en) AOD furnace flue gas waste heat comprehensive utilization power generation system
CN214750121U (en) Portable air quality monitoring device
CN219368413U (en) Natural circulation efficient waste heat power generation device
CN220624433U (en) Solar energy utilizing device
CN215893933U (en) Simple low-temperature economizer leakage detection device
CN211451986U (en) Heat exchanger for waste heat recovery
CN212081663U (en) Solar heat collecting device
CN220230113U (en) Industrial furnace flue gas waste heat recovery mechanism
CN216745570U (en) Waste heat exchange device with efficient heat exchange function

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant