CN112481464A - 一种齿轮齿根的抗疲劳强化方法 - Google Patents

一种齿轮齿根的抗疲劳强化方法 Download PDF

Info

Publication number
CN112481464A
CN112481464A CN202011268954.2A CN202011268954A CN112481464A CN 112481464 A CN112481464 A CN 112481464A CN 202011268954 A CN202011268954 A CN 202011268954A CN 112481464 A CN112481464 A CN 112481464A
Authority
CN
China
Prior art keywords
tooth root
shot peening
gear tooth
wave
surface structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011268954.2A
Other languages
English (en)
Inventor
朱有利
蔡志海
李静
王燕礼
王西彬
王思捷
刘军
侯帅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Academy of Armored Forces of PLA
Original Assignee
Academy of Armored Forces of PLA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Academy of Armored Forces of PLA filed Critical Academy of Armored Forces of PLA
Priority to CN202011268954.2A priority Critical patent/CN112481464A/zh
Publication of CN112481464A publication Critical patent/CN112481464A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/04Modifying the physical properties of iron or steel by deformation by cold working of the surface
    • C21D7/06Modifying the physical properties of iron or steel by deformation by cold working of the surface by shot-peening or the like

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Gear Processing (AREA)

Abstract

本发明公开了一种齿轮齿根的抗疲劳强化方法,包括以下步骤:S1:在齿轮齿根表面加工出表面结构,所述表面结构为存在6~40微米峰谷高度差的凹凸纹理;S2:喷丸强化处理,以挤压凹凸纹理产生剪切变形,促使凹凸纹理的峰谷高度差降低至1~8微米,本发明在进行喷丸强化处理之前先加工表面结构,使得采用喷丸强化处理后,可在齿轮齿根表面产生更大、更深的残余压应力层以及产生具有预设方向性的残余压应力,增大最表面的残余压应力值,从而加强喷丸强化的效果,使齿轮齿根表层更易产生剧烈塑性变形和晶粒细化,便于制备超细晶或纳米晶表层材料。

Description

一种齿轮齿根的抗疲劳强化方法
技术领域
本发明涉及齿轮处理技术领域,具体而言涉及一种齿轮齿根的抗疲劳强化方法。
背景技术
疲劳损伤是齿轮的主要失效形式之一,危害极大。为了提高齿轮的疲劳极限和使用寿命,对渗碳淬火齿轮齿根进行表面喷丸强化是十分有效的技术途径。喷丸强化之所以能够提高疲劳强度,究其根本,主要是形成的残余压应力起关键作用。在进行齿轮齿根表面喷丸之前,要求表面有尽可能低的粗糙度,一般应不大于Ra3.2,多数情况下会要求表面粗糙度不大于Ra1.6,甚至Ra0.6。
喷丸强化技术存在以下特点:一、受赫兹接触变形的限制,所能产生的强化层的深度较小,如高强钢的喷丸强化一般最大压应力深度约为0.3mm。二、最大残余压应力一般并不处于最表面,而是在一定深度的次表面,但疲劳裂纹往往产生于材料表面。三、残余应力在与表面平行的平面内是各向同性的,但实际零件和结构的工作应力一般具有方向性。四、由于赫兹接触的三向压应力效应,使得基于剧烈塑性变形机制的晶粒细化困难。上述特点使喷丸强化技术所能达到的强化效果受到限制,不能充分发挥齿轮的潜能。
发明内容
本发明提供了一种齿轮齿根的抗疲劳强化方法。
为实现上述目的,本发明提供如下技术方案:
一种齿轮齿根的抗疲劳强化方法,包括以下步骤:
S1:在齿轮齿根表面加工出表面结构,所述表面结构为存在6~40微米峰谷高度差的凹凸纹理;
S2:喷丸强化处理,以挤压凹凸纹理产生剪切变形,促使凹凸纹理的峰谷高度差降低至1~8微米。
优选的,所述凹凸纹理具有同向性且按规律排列,或具有各同向性且随机排列。
优选的,所述凹凸纹理为平行直波纹或平行曲波纹,且波长为峰谷高度差的2~5倍。
优选的,所述波形为正弦波、余弦波、锯齿波、倒梯形波、正梯形波、双梯形波、倒弧型波和/或正弧型波。
优选的,所述凹凸纹理为凸体或刻痕。
优选的,所述步骤S2中,喷丸强度为0.1~0.6mmA,覆盖率为200%。
优选的,所述喷丸强化处理为气动喷丸、离心喷丸、旋片喷丸、超声喷丸、或激光喷丸。
优选的,所述步骤S1之前还包括对齿轮齿根表面进行除油、除锈、清洗和干燥处理。
本发明的有益效果是:
在进行喷丸强化处理之前先加工表面结构,使得采用喷丸强化处理后,可在齿轮齿根表面产生更大、更深的残余压应力层以及产生具有预设方向性的残余压应力,增大最表面的残余压应力值,从而加强喷丸强化的效果,使齿轮齿根表层更易产生剧烈塑性变形和晶粒细化,便于制备超细晶或纳米晶表层材料。
附图说明:
图1为本发明的平行直波纹的结构示意图;
图2为本发明的平行曲波纹的结构示意图;
图3为表面结构的纵截面波形示意图;
图4为本发明的凸体的结构示意图;
图5为本发明的刻痕的结构意图;
图6为球形丸粒与齿轮齿根光滑表面触碰撞产生塑性变形的示意图;
图7为球形丸粒与表面结构接触碰撞产生塑性变形的示意图;
图8为残余压应力分布曲线示意图。
附图中:1-齿轮齿根、2-表面结构、3-波形、4-波峰、5-波谷、6-表面结构横向、7-表面结构纵向、8-球形丸粒、9-塑性变形、10-加工表面结构的齿轮齿根在经喷丸强化处理后产生的残余压应力曲线、11-未加工表面结构的齿轮齿根在经喷丸强化处理后产生的残余压应力曲线、12-残余压应力表面值、13-残余压应力最大值、14-峰谷高度差(h)、15-波长(L)、16-波形前倾角(d)、17-波形后倾角(β)、18-正弦/余弦波、19-锯齿波、20-倒梯形波、21-正梯形波、22-双梯形波、23-倒弧型波、24-正弧型波。
具体实施方式
下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一:
一种齿轮齿根的抗疲劳强化方法,包括以下步骤:
首先,对齿轮齿根表面进行除油、除锈、清洗和干燥处理,用砂纸打磨直至表面平整光洁且具有粗糙度。
其次,如图1和图2所示,在齿轮齿根1表面加工出表面结构2,所述表面结构2为存在6~40微米峰谷高度差的凹凸纹理。具体的,本实施例中,所述凹凸纹理具有同向性且按规律排列,优选的,所述凹凸纹理为平行直波纹,如图1所示,或所述凹凸纹理为平行曲波纹,如图2所示。也就是说,凹凸纹理为具有峰谷高度差14(即波峰4与波谷5的高度差)和波长15的波形3,波长15为峰谷高度差14的2~5倍。此外,如图3所示,所述凹凸纹理的波形3可以为正弦/余弦波18、锯齿波19、倒梯形波20、正梯形波21、双梯形波22、倒弧型波23和正弧型波24,但不限于上述波形3。所述表面结构2可采用车削、铣削、磨削、钢丝刷、喷砂、化学刻蚀、激光刻蚀获得,但不限于以上方法。
在其他一些实施例中,所述凹凸纹理具有各同向性且随机排列,优选的,所述凹凸纹理为凸体,如图4所示,或所述凹凸纹理为刻痕,如图5所示。
最后,对加工出表面结构2的齿轮齿根1进行喷丸强化处理,喷丸强度为0.1~0.6mmA,覆盖率为200%,球形丸粒8挤压凹凸纹理产生剪切变形,促使凹凸纹理的峰谷高度差降低至1~8微米,以防止表面结构2残留,避免在应用时出现应力集中现象。喷丸强化处理为气动喷丸、离心喷丸、旋片喷丸、超声喷丸、或激光喷丸。
如图6所示,当球形丸粒8与齿轮齿根1的光滑表面产生接触碰撞时,因赫兹接触和摩擦的联合作用,紧邻接触区下方的部位处于三向压应力状态,不利于使接触表面产生塑性变形。
如图7所示,当齿轮齿根1表面加工有表面结构2时,球形丸粒8首先挤压表面结构的波峰4,促使波峰4处的材料试图被压入,而波谷5处的材料会在一定程度上被挤出,从而产生“消峰填谷”效应,降低或消除表面结构2所形成的初始粗糙度,使波峰4更易于产生剪切变形,使应力偏量增加,三向压应力降低,接触表面更易于产生塑性变形9,会增加表面喷丸强化所产生的晶粒细化和加工硬化效果,更适于加工表面超细晶或纳米化层。
同时,当表面结构2为平行直波纹或平行曲波纹时,球形丸粒8与表面结构2产生接触碰撞时,与表面结构横向6相比,表面结构纵向7对变形的约束作用较弱,因而,在表面结构纵向7会产生更大的塑性变形和更大的残余压应力,从而使表面残余压应力具有预设的方向性。也就是说,当表面结构2为平行直波纹或平行曲波纹时,所产生的塑性变形9具有与表面结构2相关的方向性,从而使表面残余压应力具有预设的方向性,且在表面结构纵向7产生的残余压应力大于在表面结构横向6所产生的残余压应力。
如图8所示,球形丸粒8与齿轮齿根1的光滑表面产生接触碰撞时,由于紧邻接触表面的材料塑性变形相对较小,因此会导致最表面的残余压应力表面值12较小。加工有表面结构2的齿轮齿根1在经喷丸强化处理后会使最大塑性变形更靠近表面,从而使最表面的残余压应力表面值12增加,残余压应力最大值13更靠近表面。也就是说,未加工表面结构的齿轮齿根在经喷丸强化处理后产生的残余压应力曲线11,不宜于发挥材料的抗疲劳性能。预加工表面结构2的齿轮齿根1在经喷丸强化处理后产生的残余压应力曲线10,喷丸强化的效果增强。也就是说,表面结构2将减轻赫兹接触三向压应力,增加剪应力和剪应变,使齿轮齿根1更易产生塑性变形,从而产生更大的残余压应力,同时,最大残余压应力更靠近齿轮齿根1表面,更容易因剧烈塑性变形产生超细晶或纳米晶。
实施例二:
本实施例与实施例一相同的部分不再赘述,不同的是:
在普通机床或数控机床上,采用车削、铣削或磨削加工表面结构2。首先,根据齿轮齿根1所用材料选择或定制恰当的刀具,根据表面结构2的峰谷高度差14和波长15确定进给速度。其次,完成表面结构2预制后,在尽可能短的时间内进行表面喷丸强化处理,以防氧化或腐蚀。
针对抗疲劳强化处理,采用机加工方法预制平行直波纹或平行曲波纹表面结构时,需要使表面结构纵向7与齿轮齿根的工作主应力方向一致,以保证更好的后续强化效果。
实施例三:
表面结构2的峰谷高度差14根据不同材料和喷丸强度有所不同,选择原则为:预制表面结构2经喷丸强化处理后表面粗糙度不大于光滑表面喷丸强化后的表面粗糙度,以免因预制表面结构2造成附加应力集中。同时,材料硬度越高,所需预制表面结构2的峰谷高度差14越高。喷丸强度越高,所需预制表面结构2的峰谷高度差14越高。此外,采用粗糙度测量仪或表面轮廓仪检测粗糙度,但不限于以上方法。
齿轮齿根常用材料、喷丸强度与预制表面结构2的峰谷高度差14,如表1所示:
表1:
实验一:
Figure BDA0002777003360000061
选用高强度钢(强度极限1300MPa~1600MPa)棒状试件,采用铣削加工预制峰谷高度差30μm的锯齿波表面结构,然后采用强化钢丸和0.45mmA的强度进行喷丸强化处理,表面覆盖率为200%。喷丸强化后,经测量表面粗糙度降低到3~4μm。与未预制表面结构的光滑表面件相比,预制锯齿波表面结构喷丸强化后表层显微硬度提高6%,表面残余压应力增大15%~20%,应力比-1,应力幅900~1100MPa下的旋转弯曲疲劳寿命提高15%~50%。
实验二:
选用高强铝合金棒状试件,采用铣削加工预制峰谷高度差20μm的凸体表面结构,然后采用强化钢丸和0.35mmA的强度进行喷丸强化处理,表面覆盖率为200%。喷丸强化后,经测量表面粗糙度降低到2~3μm。与未预制表面结构的光滑表面件相比,预制凸体表面结构喷丸强化后表层显微硬度提高6.8%,表面残余压应力增大15%~18%,应力比-1,应力幅900~1100MPa下的旋转弯曲疲劳寿命提高25%~50%。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

Claims (8)

1.一种齿轮齿根的抗疲劳强化方法,其特征在于,包括以下步骤:
S1:在齿轮齿根表面加工出表面结构,所述表面结构为存在6~40微米峰谷高度差的凹凸纹理;
S2:喷丸强化处理,以挤压凹凸纹理产生剪切变形,促使凹凸纹理的峰谷高度差降低至1~8微米。
2.根据权利要求1所述的齿轮齿根的抗疲劳强化方法,其特征在于,所述凹凸纹理具有同向性且按规律排列,或具有各同向性且随机排列。
3.根据权利要求2所述的齿轮齿根的抗疲劳强化方法,其特征在于,所述凹凸纹理为平行直波纹或平行曲波纹,且波长为峰谷高度差的2~5倍。
4.根据权利要求3所述的齿轮齿根的抗疲劳强化方法,其特征在于,所述波形为正弦波、余弦波、锯齿波、倒梯形波、正梯形波、双梯形波、倒弧型波和/或正弧型波。
5.根据权利要求2所述的齿轮齿根的抗疲劳强化方法,其特征在于,所述凹凸纹理为凸体或刻痕。
6.根据权利要求2-5任一所述的齿轮齿根的抗疲劳强化方法,其特征在于,所述步骤S2中,喷丸强度为0.1~0.6mmA,覆盖率为200%。
7.根据权利要求6所述的齿轮齿根的抗疲劳强化方法,其特征在于,所述喷丸强化处理为气动喷丸、离心喷丸、旋片喷丸、超声喷丸、或激光喷丸。
8.根据权利要求7所述的齿轮齿根的抗疲劳强化方法,其特征在于,所述步骤S1之前还包括对齿轮齿根表面进行除油、除锈、清洗和干燥处理。
CN202011268954.2A 2020-11-13 2020-11-13 一种齿轮齿根的抗疲劳强化方法 Pending CN112481464A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011268954.2A CN112481464A (zh) 2020-11-13 2020-11-13 一种齿轮齿根的抗疲劳强化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011268954.2A CN112481464A (zh) 2020-11-13 2020-11-13 一种齿轮齿根的抗疲劳强化方法

Publications (1)

Publication Number Publication Date
CN112481464A true CN112481464A (zh) 2021-03-12

Family

ID=74930116

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011268954.2A Pending CN112481464A (zh) 2020-11-13 2020-11-13 一种齿轮齿根的抗疲劳强化方法

Country Status (1)

Country Link
CN (1) CN112481464A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2031502B1 (en) * 2022-04-05 2022-12-30 Wuxi Xingqu Tech Co Ltd Method for composite surface strengthening treatment of gears

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1451769A (zh) * 2003-05-09 2003-10-29 东风汽车公司 螺旋锥齿轮喷丸强化方法
CN102628815A (zh) * 2012-04-10 2012-08-08 上海交通大学 小曲面齿轮根部喷丸层残余应力的检测方法
CN104060062A (zh) * 2014-06-30 2014-09-24 南车戚墅堰机车车辆工艺研究所有限公司 齿轮齿面喷丸强化装置及喷丸强化方法
CN105886728A (zh) * 2016-05-05 2016-08-24 中国人民解放军装甲兵工程学院 改善表面机械强化效果的方法
CN106119489A (zh) * 2016-09-21 2016-11-16 黑龙江科技大学 一种小模数直齿圆柱齿轮喷丸强化装置及喷丸强化方法
CN108179258A (zh) * 2017-11-27 2018-06-19 江阴市永兴机械制造有限公司 一种齿轮齿面喷丸强化精整方法
CN108388695A (zh) * 2018-01-26 2018-08-10 昌宇应力技术(上海)有限公司 根据齿根残余应力分布定量估算齿轮局部疲劳强度的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1451769A (zh) * 2003-05-09 2003-10-29 东风汽车公司 螺旋锥齿轮喷丸强化方法
CN102628815A (zh) * 2012-04-10 2012-08-08 上海交通大学 小曲面齿轮根部喷丸层残余应力的检测方法
CN104060062A (zh) * 2014-06-30 2014-09-24 南车戚墅堰机车车辆工艺研究所有限公司 齿轮齿面喷丸强化装置及喷丸强化方法
CN105886728A (zh) * 2016-05-05 2016-08-24 中国人民解放军装甲兵工程学院 改善表面机械强化效果的方法
CN106119489A (zh) * 2016-09-21 2016-11-16 黑龙江科技大学 一种小模数直齿圆柱齿轮喷丸强化装置及喷丸强化方法
CN108179258A (zh) * 2017-11-27 2018-06-19 江阴市永兴机械制造有限公司 一种齿轮齿面喷丸强化精整方法
CN108388695A (zh) * 2018-01-26 2018-08-10 昌宇应力技术(上海)有限公司 根据齿根残余应力分布定量估算齿轮局部疲劳强度的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2031502B1 (en) * 2022-04-05 2022-12-30 Wuxi Xingqu Tech Co Ltd Method for composite surface strengthening treatment of gears

Similar Documents

Publication Publication Date Title
Mordyuk et al. Fatigue life improvement of α-titanium by novel ultrasonically assisted technique
CN1230272C (zh) 一种提高机械部件耐磨性能的方法
CN112756707B (zh) 一种超高强度不锈钢齿轮表面复合强化方法
CN105886728A (zh) 改善表面机械强化效果的方法
Wong et al. Deep cold rolling of features on aero-engine components
RU2354715C1 (ru) Способ упрочнения деталей из конструкционных материалов
CN103231125B (zh) 一种新型珩齿加工方法
CN112481464A (zh) 一种齿轮齿根的抗疲劳强化方法
CN104228190B (zh) 铟铁复合球微晶复合层表面织构
Dai et al. Effects of laser shock peening with contacting foil on micro laser texturing surface of Ti6Al4V
Yuvaraj et al. Investigation of surface morphology and topography features on abrasive water jet milled surface pattern of SS 304
JP2002039328A (ja) ギアの疲労強度向上方法
CN112322871A (zh) 一种叶片叶根的表面强化方法
Kirichek et al. Strain hardening of metal parts with use of impulse wave
CN106863019B (zh) 一种超高强度钢高效低应力磨削工艺参数的获得方法
Wang et al. Modelling of tribological behavior and wear for micro-textured surfaces of Ti2AlNb intermetallic compounds machined with multi-dimensional ultrasonic vibration assistance
CN112375883A (zh) 一种曲轴轴颈的抗疲劳强化方法
Denkena et al. Surface texturing of rolling elements by hard ball-end milling and burnishing
Kirichek et al. Creating heterogeneous surface structures by static-pulsed treatment
RU2385213C1 (ru) Способ отделочно-упрочняющей обработки выглаживанием наружных цилиндрических поверхностей
Swirad High-precision finishing hard steel surfaces using hydrostatic burnishing tool
Michalski et al. Surface topography of cylindrical gear wheels after smoothing in abrasive mass, honing and shot peening
Shepelenko The study of surface roughness in the process of finishing anti-friction non-abrasive treatment
Ivanova et al. Mechanics of contact interaction during grinding of steels
JP4827562B2 (ja) 転造ダイスの製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210312