CN112475532A - 用于高压氢环境奥氏体不锈钢316l材料的焊接工艺 - Google Patents

用于高压氢环境奥氏体不锈钢316l材料的焊接工艺 Download PDF

Info

Publication number
CN112475532A
CN112475532A CN202011076334.9A CN202011076334A CN112475532A CN 112475532 A CN112475532 A CN 112475532A CN 202011076334 A CN202011076334 A CN 202011076334A CN 112475532 A CN112475532 A CN 112475532A
Authority
CN
China
Prior art keywords
welding
percent
equal
less
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011076334.9A
Other languages
English (en)
Other versions
CN112475532B (zh
Inventor
袁浩
李占雷
王林森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongfang Boiler Group Co Ltd
Original Assignee
Dongfang Boiler Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongfang Boiler Group Co Ltd filed Critical Dongfang Boiler Group Co Ltd
Priority to CN202011076334.9A priority Critical patent/CN112475532B/zh
Publication of CN112475532A publication Critical patent/CN112475532A/zh
Application granted granted Critical
Publication of CN112475532B publication Critical patent/CN112475532B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K33/00Specially-profiled edge portions of workpieces for making soldering or welding connections; Filling the seams formed thereby
    • B23K33/004Filling of continuous seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/308Fe as the principal constituent with Cr as next major constituent
    • B23K35/3086Fe as the principal constituent with Cr as next major constituent containing Ni or Mn
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/235Preliminary treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • B23K2103/05Stainless steel

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Arc Welding In General (AREA)

Abstract

本发明公开了一种用于高压氢环境奥氏体不锈钢316L材料的焊接工艺,包括以下步骤:A)对工件的焊接接头开坡口、并打磨坡口及周围呈金属光泽;B)依次分层焊接,包括:1)进行定位焊接;2)进行打底层焊接;3)进行填充层焊接;4)进行正面盖面焊接;控制焊缝层间温度不超过150℃;焊接均采用奥氏体不锈钢焊材,其熔敷金属的C:≤0.04%,Si:≤1.00,P:≤0.04%,S:≤0.03%,Cr:18‑20%,Mo:2.0‑3.0%,Cu:≤0.75%,Ni:15.0%‑18.0%,Mn:5.0‑8.0%,其余为Fe,铁素体FN≤0.2%,焊材中镍当量(Nieq)≥28.5%;本发明能提高焊缝的抗氢脆性能,并避免产生热裂纹,为高压储氢容器的制造和应用提供保证。

Description

用于高压氢环境奥氏体不锈钢316L材料的焊接工艺
技术领域
本发明涉及一种用于高压氢环境奥氏体不锈钢316L材料的焊接工艺。
背景技术
目前,国内外的氢能产业正在迅速发展,其中氢燃料电池汽车是氢能利用的重要产业之一,加氢站是为氢燃料电池汽车及其他氢能利用装置提供氢气的核心基础设施,而奥氏体不锈钢316L是高压储氢容器的优选材料。在高压储氢容器中,氢分子能够分解成氢原子进入金属材料内部,在微观和宏观层面上造成材料的氢脆。由于储氢容器长期在高压氢环境中工作,且反复充放氢,储氢容器材料可能会产生高压氢环境氢脆,导致塑性下降、疲劳裂纹扩展速率加快,严重威胁储氢容器的安全使用,所以抗氢性能和疲劳性能是储氢容器焊接接头重要的技术指标。
现有奥氏体不锈钢316L材料的焊接工艺,多采用传统的E316L焊材,且一次焊接完成;虽然其具有良好的焊接工艺性和疲劳性能,但是其Ni和Mn的含量较低:分别为12%及2.0%左右,镍当量也较低,使得焊缝金属中的奥氏体组织不稳定,无法溶解更多的氢原子并且易出现马氏体相变,为氢提供快速扩散路径,造成氢在奥氏体/马氏体边界聚集,使得氢浓度过饱和,诱发微裂纹的形成,从而提高了焊缝的氢脆敏感性,加上其铁素体含量较高为3-10%,高于母材,氢在铁素体中的扩散速率远大于奥氏体,铁素体为氢提供了扩散通道,进一步降低了焊缝的抗氢脆性能。
发明内容
本发明的目的是针对现有技术的上述不足,提供一种用于高压氢环境奥氏体不锈钢316L材料的焊接工艺,它能提高焊缝的抗氢脆性能,并避免产生热裂纹,为高压储氢容器的制造和应用提供保证。
为了达到上述目的,本发明的一种用于高压氢环境奥氏体不锈钢316L材料的焊接工艺,包括以下步骤:A)对工件的焊接接头开坡口、并打磨坡口及周围呈金属光泽;其特征在于:B)依次分层焊接,包括:1)进行定位焊接;2)进行打底层焊接;3)进行填充层焊接;4)进行正面盖面焊接;在打底层焊接、填充层焊接及正面盖面焊接时,均控制焊缝层间温度不超过150℃;各层焊接均采用奥氏体不锈钢焊材,其熔敷金属的C:≤0.04%,Si:≤1.00,P:≤0.04%,S:≤0.03%,Cr:18-20%,Mo:2.0-3.0%,Cu:≤0.75%,Ni:15.0%-18.0%, Mn:5.0-8.0%,其余为Fe,铁素体FN≤0.2%,镍当量(Nieq)须≥28.5%,镍当量(Nieq)=12.6C+0.35Si+1.05Mn+Ni+0.65Cr+0.98Mo;
本发明通过增加焊材中镍含量及镍当量,镍当量≥28.5%保证焊缝金属得到稳定的奥氏体组织,能够溶解更多的氢原子,并且能够避免出现马氏体相变和阻碍氢扩散,防止氢浓度过饱和及诱发微裂纹的形成,加上铁素体含量被控制在了≤0.2%,能够防止奥氏体中的铁素体为氢提供扩散通道,大大降低焊缝金属在高压氢环境中的氢脆敏感性;但是镍元素会阻碍焊缝金属的流动,使热裂纹发生的概率增加,通过增加锰含量,不仅可以抑制奥氏体的分解,促进强奥氏体形成元素—氮的溶解,从而促进焊缝中奥氏体的形成,且锰元素能够与焊缝中的硫形成高熔点的MnS,消除热脆倾向,并采用分层焊接及控制焊缝层间温度不超过150℃,从而减少粗大晶粒的形成,降低材料的热裂纹敏感性,避免产生热裂纹;
作为本发明的进一步改进,所述步骤A)中,对工件的焊接接头开单面V形坡口,坡口间隙在1-2mm;步骤B)分层焊接为:1)采用氩弧焊进行定位焊接,焊接电流80-100A,焊接电压12-14V,焊接速度4-6cm/min,直流正接,氩气流量6-10L/min,热输入量16-18KJ/cm;2)采用氩弧焊进行打底层焊接,焊接电流80-100A,焊接电压12-14V,焊接速度4-6cm/min,直流正接,氩气流量6-10L/min,热输入量16-18KJ/cm;3)采用焊条电弧焊进行填充层焊接,焊接电流140-160A,焊接电压28-30V,焊接速度9-12cm/min,直流反接,热输入量21-23KJ/cm;4)采用焊条电弧焊进行正面盖面焊接,焊接电流140-160A,焊接电压28-30V,焊接速度9-12cm/min,直流反接,热输入量21-23KJ/cm;
此适用于单面焊接工艺,并通过控制焊接参数,在保证较高的焊接效率前提下,尽量采用较小的焊接线能量,从而减少粗大晶粒的形成、减少偏析和降低结晶凝固时的应变量,进一步避免热裂纹的产生;
作为本发明的进一步改进,所述步骤A)中,对工件的焊接接头开单面V形坡口或双面V型坡口,坡口间隙在1-2mm;在步骤B)中,分层焊接均为焊条电弧焊,包括:1)进行定位焊接,焊接电流120-140A,焊接电压24-26V,焊接速度9-12cm/min,直流反接,热输入量18-20KJ/cm;2)进行打底层焊接,焊接电流120-140A,焊接电压24-26V,焊接速度9-12cm/min,直流反接,热输入量18-20KJ/cm;3)进行填充层焊接,焊接电流140-160A,焊接电压28-30V,焊接速度9-12cm/min,直流反接,热输入量21-23KJ/cm;4)进行正面盖面焊接,焊接电流140-160A,焊接电压28-30V,焊接速度9-12cm/min,直流反接,热输入量21-23KJ/cm;5)进行反面盖面焊接,焊接电流140-160A,焊接电压28-30V,焊接速度9-12cm/min,直流反接,热输入量21-23KJ/cm;正面盖面焊接;在打底层焊接、填充层焊接、正面盖面焊接及反面盖面焊接时,均控制焊缝层间温度不超过150℃;
此适用于双面焊接工艺,可增加焊缝强度,并通过控制焊接参数,在保证较高的焊接效率前提下,尽量采用较小的焊接线能量,从而减少粗大晶粒的形成、减少偏析和降低结晶凝固时的应变量,进一步避免热裂纹的产生;
综上所述,本发明能提高焊缝的抗氢脆性能,并避免产生热裂纹,为高压储氢容器的制造和应用提供保证。
附图说明
图1本发明实施例一的示意图。
图2本发明实施例二的示意图。
具体实施方式
下面结合实施例附图,对本发明作进一步详细的说明。
实施例一
如图1所示,该用于高压氢环境奥氏体不锈钢316L材料的焊接工艺,包括以下步骤:A)对两工件1的焊接接头开单面V形坡口、并打磨坡口及周围呈金属光泽,坡口间隙在1-2mm; B)依次分层焊接,包括:1)采用焊丝氩弧焊进行定位焊接,即点焊,焊接电流80-100A,焊接电压12-14V,焊接速度4-6cm/min,直流正接,氩气流量6-10L/min,热输入量16-18KJ/cm;2)采用焊丝氩弧焊进行打底层焊接,焊接电流80-100A,焊接电压12-14V,焊接速度4-6cm/min,直流正接,氩气流量6-10L/min,热输入量16-18KJ/cm,形成打底层2;3)采用焊条电弧焊进行填充层焊接,焊接电流140-160A,焊接电压28-30V,焊接速度9-12cm/min,直流反接,热输入量21-23KJ/cm,形成填充层3;4)采用焊条电弧焊进行正面盖面焊接,焊接电流140-160A,焊接电压28-30V,焊接速度9-12cm/min,直流反接,热输入量21-23KJ/cm,形成盖面层4;在打底层焊接、填充层焊接及正面盖面焊接时,均通过风冷控制焊缝层间温度不超过150℃(即焊接前焊缝处温度不超过150℃);氩弧焊采用的焊丝及电弧焊采用的焊条均为奥氏体不锈钢焊材,其熔敷金属的C:≤0.04%,Si:≤1.00,P:≤0.04%,S:≤0.03%,Cr:18-20%,Mo:2.0-3.0%,Cu:≤0.75%,Ni:15.0%-18.0%, Mn:5.0-8.0%,其余为Fe,铁素体FN≤0.2%,镍当量(Nieq)须≥28.5%,镍当量(Nieq)=12.6C+0.35Si+1.05Mn+Ni+0.65Cr+0.98Mo;
此为单面焊接工艺,通过在传统E316L焊材基础上增加镍含量及镍当量,镍当量≥28.5%保证焊缝金属得到稳定的奥氏体组织,能够溶解更多的氢原子,避免出现马氏体相变及阻碍氢扩散,防止氢浓度过饱和及诱发微裂纹的形成,加上铁素体含量被控制在了≤0.2%,能够防止奥氏体中的铁素体为氢提供扩散通道,大大降低焊缝金属在高压氢环境中的氢脆敏感性;但镍元素增加会阻碍焊缝金属的流动,使热裂纹发生的概率增加,通过增加锰含量,不仅可以抑制奥氏体的分解,促进强奥氏体形成元素—氮的溶解,从而促进焊缝中奥氏体的形成,且锰元素能够与焊缝中的硫形成高熔点的MnS,消除热脆倾向,加上采用分层焊接及焊前控制焊缝处温度不超过150℃,从而减少粗大晶粒的形成,降低材料的热裂纹敏感性,避免产生热裂纹;并配合控制焊接参数,在保证较高的焊接效率前提下,尽量采用较小的焊接线能量(焊接电流、焊接电压及热输入量),从而进一步减少粗大晶粒的形成、减少偏析和降低结晶凝固时的应变量,进一步避免热裂纹的产生;
实施例二
如图2所示,该用于高压氢环境奥氏体不锈钢316L材料的焊接工艺,包括以下步骤:A)对两工件1的焊接接头开单面V形坡口或双面V型坡口,坡口间隙在1-2mm; B)依次进行分层焊接,分层焊接均为焊条电弧焊,包括:1)进行定位焊接,焊接电流120-140A,焊接电压24-26V,焊接速度9-12cm/min,直流反接,热输入量18-20KJ/cm;2)进行打底层焊接,焊接电流120-140A,焊接电压24-26V,焊接速度9-12cm/min,直流反接,热输入量18-20KJ/cm,形成打底层5;3)进行填充层焊接,焊接电流140-160A,焊接电压28-30V,焊接速度9-12cm/min,直流反接,热输入量21-23KJ/cm,形成填充层6;4)进行正面盖面焊接,焊接电流140-160A,焊接电压28-30V,焊接速度9-12cm/min,直流反接,热输入量21-23KJ/cm,形成正面盖面层7;5)进行反面盖面焊接,焊接电流140-160A,焊接电压28-30V,焊接速度9-12cm/min,直流反接,热输入量21-23KJ/cm,形成反面盖面层8;在打底层焊接、填充层焊接、正面盖面及反面盖面焊接前,均通过风冷控制焊缝层间温度不超过150℃;电弧焊采用的焊条为奥氏体不锈钢焊材,其熔敷金属的C:≤0.04%,Si:≤1.00,P:≤0.04%,S:≤0.03%,Cr:18-20%,Mo:2.0-3.0%,Cu:≤0.75%,Ni:15.0%-18.0%, Mn:5.0-8.0%,其余为Fe,铁素体FN≤0.2%,镍当量(Nieq)须≥28.5%,镍当量(Nieq)=12.6C+0.35Si+1.05Mn+Ni+0.65Cr+0.98Mo;
此为双面焊接工艺,适用于不同的工况,可增加焊缝强度;同样通过增加焊材中镍含量及镍当量,使焊缝金属得到稳定的奥氏体组织,能够溶解更多的氢原子,避免出现马氏体相变及阻碍氢扩散,加上基本不含铁素体,能够防止奥氏体中的铁素体为氢提供扩散通道,大大降低焊缝金属在高压氢环境中的氢脆敏感性;通过增加锰含量,不仅可以抑制奥氏体的分解,促进强奥氏体形成元素—氮的溶解,从而促进焊缝中奥氏体的形成,且锰元素能够与焊缝中的硫形成高熔点的MnS,消除热脆倾向,并采用分层焊接及控制焊缝处温度不超过150℃,从而减少粗大晶粒的形成,降低材料的热裂纹敏感性,避免产生热裂纹;也通过控制焊接参数,在保证较高的焊接效率前提下,尽量采用较小的焊接线能量,从而减少粗大晶粒的形成、减少偏析和降低结晶凝固时的应变量,进一步避免热裂纹的产生,为高压储氢容器的制造和应用提供保证。

Claims (4)

1. 一种用于高压氢环境奥氏体不锈钢316L材料的焊接工艺,包括以下步骤:A)对工件的焊接接头开坡口、并打磨坡口及周围呈金属光泽;其特征在于:B)依次分层焊接,包括:1)进行定位焊接;2)进行打底层焊接;3)进行填充层焊接;4)进行正面盖面焊接;在打底层焊接、填充层焊接及正面盖面焊接时,均控制焊缝层间温度不超过150℃;各层焊接均采用奥氏体不锈钢焊材,其熔敷金属的C:≤0.04%,Si:≤1.00,P:≤0.04%,S:≤0.03%,Cr:18-20%,Mo:2.0-3.0%,Cu:≤0.75%,Ni:15.0%-18.0%, Mn:5.0-8.0%,其余为Fe,铁素体FN≤0.2%,镍当量(Nieq)须≥28.5%,镍当量(Nieq)=12.6C+0.35Si+1.05Mn+Ni+0.65Cr+0.98Mo。
2.根据权利要求1所述的用于高压氢环境奥氏体不锈钢316L材料的焊接工艺,其特征在于:所述步骤A)中,对工件的焊接接头开单面V形坡口,坡口间隙在1-2mm;步骤B)分层焊接为:1)采用氩弧焊进行定位焊接,焊接电流80-100A,焊接电压12-14V,焊接速度4-6cm/min,直流正接,氩气流量6-10L/min,热输入量16-18KJ/cm;2)采用氩弧焊进行打底层焊接,焊接电流80-100A,焊接电压12-14V,焊接速度4-6cm/min,直流正接,氩气流量6-10L/min,热输入量16-18KJ/cm;3)采用焊条电弧焊进行填充层焊接,焊接电流140-160A,焊接电压28-30V,焊接速度9-12cm/min,直流反接,热输入量21-23KJ/cm;4)采用焊条电弧焊进行正面盖面焊接,焊接电流140-160A,焊接电压28-30V,焊接速度9-12cm/min,直流反接,热输入量21-23KJ/cm。
3.根据权利要求1所述的用于高压氢环境奥氏体不锈钢316L材料的焊接工艺,其特征在于:所述步骤A)中,对工件的焊接接头开单面V形坡口或双面V型坡口,坡口间隙在1-2mm;在步骤B)中,在正面盖面焊接后还进行反面盖面焊接,反面盖面焊接时,控制焊缝层间温度不超过150℃。
4.根据权利要求3所述的用于高压氢环境奥氏体不锈钢316L材料的焊接工艺,其特征在于:步骤B)分层焊接均为焊条电弧焊:1)进行定位焊接,焊接电流120-140A,焊接电压24-26V,焊接速度9-12cm/min,直流反接,热输入量18-20KJ/cm;2)进行打底层焊接,焊接电流120-140A,焊接电压24-26V,焊接速度9-12cm/min,直流反接,热输入量18-20KJ/cm;3)进行填充层焊接,焊接电流140-160A,焊接电压28-30V,焊接速度9-12cm/min,直流反接,热输入量21-23KJ/cm;4)进行正面盖面焊接,焊接电流140-160A,焊接电压28-30V,焊接速度9-12cm/min,直流反接,热输入量21-23KJ/cm;5)进行反面盖面焊接,焊接电流140-160A,焊接电压28-30V,焊接速度9-12cm/min,直流反接,热输入量21-23KJ/cm。
CN202011076334.9A 2020-10-10 2020-10-10 用于高压氢环境奥氏体不锈钢316l材料的焊接工艺 Active CN112475532B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011076334.9A CN112475532B (zh) 2020-10-10 2020-10-10 用于高压氢环境奥氏体不锈钢316l材料的焊接工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011076334.9A CN112475532B (zh) 2020-10-10 2020-10-10 用于高压氢环境奥氏体不锈钢316l材料的焊接工艺

Publications (2)

Publication Number Publication Date
CN112475532A true CN112475532A (zh) 2021-03-12
CN112475532B CN112475532B (zh) 2022-03-25

Family

ID=74926649

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011076334.9A Active CN112475532B (zh) 2020-10-10 2020-10-10 用于高压氢环境奥氏体不锈钢316l材料的焊接工艺

Country Status (1)

Country Link
CN (1) CN112475532B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114083090A (zh) * 2021-11-17 2022-02-25 华南理工大学 一种氢能装备用奥氏体不锈钢抗氢脆焊件及制备方法
CN116586823A (zh) * 2023-07-17 2023-08-15 成都先进金属材料产业技术研究院股份有限公司 一种中压输氢管道焊接用焊丝钢水和焊丝及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1697890A (zh) * 2003-03-20 2005-11-16 住友金属工业株式会社 高压氢气用不锈钢、由该钢制作的容器以及器具
CN101288918A (zh) * 2007-04-17 2008-10-22 中国石油天然气集团公司管材研究所 22Cr双相不锈钢管道焊接方法
US20100062279A1 (en) * 2007-01-15 2010-03-11 Takahiro Osuki Austenitic stainless steel welded joint and austenitic stainless steel welding material
CN103480975A (zh) * 2013-05-15 2014-01-01 丹阳市华龙特钢有限公司 一种核级奥氏体不锈钢焊丝制造方法
CN103521886A (zh) * 2013-10-25 2014-01-22 武汉一冶钢结构有限责任公司 用于不锈钢单面焊双面成型的焊接方法
CN104245211A (zh) * 2012-03-30 2014-12-24 新日铁住金株式会社 焊接接头的制造方法及焊接接头
CN107699793A (zh) * 2017-10-23 2018-02-16 中国电建集团河南工程公司 新型奥氏体耐热钢Super304H接头焊材及其焊接工艺
CN110462082A (zh) * 2017-03-30 2019-11-15 日铁不锈钢株式会社 焊接性优良的氢用高Mn奥氏体系不锈钢、使用该不锈钢的焊接接头和氢用设备、以及焊接接头的制造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1697890A (zh) * 2003-03-20 2005-11-16 住友金属工业株式会社 高压氢气用不锈钢、由该钢制作的容器以及器具
US20100062279A1 (en) * 2007-01-15 2010-03-11 Takahiro Osuki Austenitic stainless steel welded joint and austenitic stainless steel welding material
CN101288918A (zh) * 2007-04-17 2008-10-22 中国石油天然气集团公司管材研究所 22Cr双相不锈钢管道焊接方法
CN104245211A (zh) * 2012-03-30 2014-12-24 新日铁住金株式会社 焊接接头的制造方法及焊接接头
CN103480975A (zh) * 2013-05-15 2014-01-01 丹阳市华龙特钢有限公司 一种核级奥氏体不锈钢焊丝制造方法
CN103521886A (zh) * 2013-10-25 2014-01-22 武汉一冶钢结构有限责任公司 用于不锈钢单面焊双面成型的焊接方法
CN110462082A (zh) * 2017-03-30 2019-11-15 日铁不锈钢株式会社 焊接性优良的氢用高Mn奥氏体系不锈钢、使用该不锈钢的焊接接头和氢用设备、以及焊接接头的制造方法
CN107699793A (zh) * 2017-10-23 2018-02-16 中国电建集团河南工程公司 新型奥氏体耐热钢Super304H接头焊材及其焊接工艺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘奇望等: "LNG储罐用超低碳不锈钢焊条CHS027LT的研制", 《焊接》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114083090A (zh) * 2021-11-17 2022-02-25 华南理工大学 一种氢能装备用奥氏体不锈钢抗氢脆焊件及制备方法
CN116117278A (zh) * 2021-11-17 2023-05-16 华南理工大学 一种氢能装备用奥氏体不锈钢抗氢脆焊件及制备方法
CN116117278B (zh) * 2021-11-17 2023-09-26 华南理工大学 一种氢能装备用奥氏体不锈钢抗氢脆焊件及制备方法
CN116586823A (zh) * 2023-07-17 2023-08-15 成都先进金属材料产业技术研究院股份有限公司 一种中压输氢管道焊接用焊丝钢水和焊丝及其制备方法
CN116586823B (zh) * 2023-07-17 2023-10-13 成都先进金属材料产业技术研究院股份有限公司 一种中压输氢管道焊接用焊丝钢水和焊丝及其制备方法

Also Published As

Publication number Publication date
CN112475532B (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
CN111230301B (zh) 带铝或铝合金镀层的钢制薄壁焊接等强部件的制造方法
CN112475532B (zh) 用于高压氢环境奥氏体不锈钢316l材料的焊接工艺
JP7343603B2 (ja) アルミニウム又はアルミニウム合金メッキ層付きの鋼製の強度に差がある溶接部品及びその製造方法
CN103521886B (zh) 用于不锈钢单面焊双面成型的焊接方法
CN110076430B (zh) 一种厚度≥40mm的1000MPa钢板的气保护焊接方法
CN112222679B (zh) 一种低镍的高强度高韧性气体保护实心焊丝
CN111283308B (zh) 一种超低温304ln奥氏体不锈钢中厚板的全位置焊条电弧焊工艺
JP2009161836A (ja) 溶接隙間部の耐食性に優れるフェライト系ステンレス鋼板
CN109702382B (zh) 一种适合高温条件长时间服役的焊接材料及其焊接方法
CN110576273A (zh) 用于lng超低温不锈钢焊接的金属材料、工艺及制品
CN107900494A (zh) 一种s32750超级双相不锈钢冷轧薄板自熔焊接方法
WO2023029279A1 (zh) 一种Q370qE厚板的多丝埋弧焊接方法
CN112496595B (zh) 一种用于核电安全壳的气体保护焊丝及其制备与应用
CN115070169B (zh) 一种7%Ni储罐钢的钢板焊接方法
CN109822258B (zh) 一种低温钢lpg船埋弧焊用药芯焊丝
CN114346522B (zh) 一种氢能用可使用交流电的不锈钢埋弧焊丝焊剂及焊接工艺
CN114939708A (zh) 一种船用2205不锈钢复合板的氩弧焊焊接方法
CN113522975B (zh) 一种表面耐蚀镍基复合钢板的生产工艺
CN117467902B (zh) 一种焊缝金属粉末及低温弯管的焊接和热处理方法
CN114473288B (zh) 低稀释率镍基堆焊层用焊丝及制备cmt堆焊层方法
CN114473144A (zh) 一种X7Ni9与S31603相焊的气体保护焊焊接方法
CN117862742A (zh) 一种氢能装备用不锈钢抗氢脆焊件及其制备方法
CN118086719A (zh) 一种高强度高塑性钛合金连续管及其制造方法
CN106271223A (zh) 双相不锈钢用埋弧药芯焊丝焊剂
CN117415507A (zh) 低应力绿色环保铝钢接头熔钎焊用材料及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant