WO2023029279A1 - 一种Q370qE厚板的多丝埋弧焊接方法 - Google Patents

一种Q370qE厚板的多丝埋弧焊接方法 Download PDF

Info

Publication number
WO2023029279A1
WO2023029279A1 PCT/CN2021/136680 CN2021136680W WO2023029279A1 WO 2023029279 A1 WO2023029279 A1 WO 2023029279A1 CN 2021136680 W CN2021136680 W CN 2021136680W WO 2023029279 A1 WO2023029279 A1 WO 2023029279A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
welding
voltage
q370qe
submerged arc
Prior art date
Application number
PCT/CN2021/136680
Other languages
English (en)
French (fr)
Inventor
李松
李伟
吴君明
刘寅璁
王晓斌
�田�浩
Original Assignee
南京钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京钢铁股份有限公司 filed Critical 南京钢铁股份有限公司
Publication of WO2023029279A1 publication Critical patent/WO2023029279A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/18Submerged-arc welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/235Preliminary treatment

Definitions

  • the invention belongs to the field of welding technology, in particular to a multi-wire submerged arc welding method for Q370qE thick plates.
  • the invention aims to overcome the deficiencies of the prior art, improve the welding efficiency of the Q370qE thick plate by inventing a new welding method, reduce the manufacturing cost, obtain obvious economic benefits, and have certain guiding significance for the production and quality assurance of the thick plate welded structure .
  • a multi-wire submerged arc welding method for a Q370qE thick plate characterized in that it comprises the following steps:
  • the groove of the Q370qE thick plate is processed into a double U shape with a blunt slope
  • the preheating temperature is controlled between 120° ⁇ 150°, the preheating effect should make the interlayer temperature of the thick plate not lower than the preheating temperature;
  • the interlayer temperature is controlled between 180° and 250°;
  • twin-wire submerged arc welding is used for welding
  • the double-wire submerged arc welding process is used for welding in the groove with a thickness of ⁇ 80mm
  • the three-wire submerged arc welding process is used for welding in the groove with a thickness > 80mm.
  • the double U-shaped slope with a blunt side has a single side of 20°, and the root is left with a blunt side of 9 mm.
  • the welding speed of the double-wire submerged arc welding is 45-50cm/min
  • the current of the front wire is 1250A
  • the current of the rear wire is 1150A
  • the voltage of the front wire is 35V
  • the voltage of the rear wire is 45V
  • the filling layer welding speed is 50-55cm/min
  • the front wire current is 1100A
  • the rear wire current is 850A
  • the front wire voltage is 35V
  • the rear wire voltage is 45V
  • the cover layer welding speed is 55-60cm/min
  • the front wire current is 1400A
  • the wire current is 1200A
  • the front wire voltage is 35V
  • the rear wire voltage is 45V.
  • the welding speed of the double-wire submerged arc welding is 45-50cm/min
  • the current of the front wire is 1250A
  • the current of the rear wire is 1150A
  • the voltage of the front wire is 35V
  • the rear wire voltage is 45V
  • the filling layer welding speed is 50-55cm/min
  • the front wire current is 1100A
  • the rear wire current is 850A
  • the front wire voltage is 35V
  • the rear wire voltage is 45V
  • the cover layer welding speed is 55-60cm/min
  • the front The wire current is 1400A
  • the rear wire current is 1200A
  • the front wire voltage is 35V
  • the rear wire voltage is 45V
  • the welding rate of the filling layer of three-wire submerged arc welding is 35-40cm/min
  • the front wire current is 1150A
  • the rear wire current is 1150A.
  • the wire current is 1000A, the front wire voltage is 35V, the middle and rear wire voltage is 45V; the cover layer welding speed is 55 ⁇ 60cm/min, the front wire current is 1000A, the middle and rear wire current is 850A, the front wire voltage is 35V, and the middle and rear wire voltage is 45V .
  • the present invention has following positive effect compared with prior art:
  • the double U-shaped bevel with a blunt side slope adopted in the present invention the 20° slope on one side can ensure the fluidity of the molten pool and at the same time ensure that the side wall can be melted through, and the blunt side is 9mm to avoid burn-through, and the overall filling volume is small, and the work efficient.
  • the present invention adopts H10Mn2A welding wire.
  • the welding wire components are as follows: C 0.06wt%, Mn 1.71wt%, Si 0.05wt%, P ⁇ 0.01wt%, S ⁇ 0.01wt% %, Cr 0.02wt%, Ni 0.35wt%, Cu 0.04wt%, the rest is Fe and unavoidable impurities.
  • the present invention makes special agreements on C, Mn, P, S and other elements in the agreement standard: 1) Appropriately reducing the content of C by 0.01 to 0.02wt% can enhance the toughness of the weld metal and reduce the coldness of the welded joint.
  • the probability of cracks and hot cracks 2) increase the content of Mn by 0.01 to 0.02wt%, and the matrix is solid solution strengthened by Mn; 3) add 0.11 to 0.15wt% of Ti to improve the large wire of the welding material through microalloying Energy weldability; 4) reducing the content of S and P in the welding wire, both of which are controlled below 0.006wt%, which can prevent defects such as hot cracks.
  • the process cost of the present invention is low, the operation is simple, and the welding process performance is excellent; the formed weld metal has the characteristics of low temperature and high toughness, the strength matches the base metal, and the welded joint has high strength and excellent low temperature toughness. , which can meet the technical requirements for welded super-thick steel plates for bridges.
  • Fig. 1 is a double U-shaped bevel with a blunt side slope according to an embodiment of the present invention.
  • the chemical composition of base material Q370qE is: C is 0.16wt%, Mn is 1.64wt%, Ni is 0.40wt%, Mo is 0.05wt%, Cr is 5.2wt%, P ⁇ 0.02wt%, S ⁇ 0.01wt%, The thickness is 70mm.
  • the chemical composition of welding material H10Mn2A is: C is 0.07wt%, Mn is 1.73wt%, Si is 0.05wt%, Cr is 0.02wt%, Ni is 0.35wt%, Cu is 0.04wt%, Ti is 0.13wt% %, P ⁇ 0.006wt%, S ⁇ 0.006wt%, the balance is Fe and unavoidable impurities.
  • the diameter of the submerged arc welding is ⁇ 4.8mm, and a double wire submerged arc welding method is adopted.
  • the bevel type of the test plate is a double U-shaped slope with a blunt edge, leaving a 9mm blunt edge at the root, and the bevel angle on one side is 20°.
  • the welding speed of double-wire submerged arc welding is 45-50 cm/min
  • the current of the front wire is 1250A
  • the current of the rear wire is 1150A
  • the voltage of the front wire is 35V
  • the voltage of the rear wire is 45V.
  • the welding speed of the filling layer is 50-55cm/min
  • the current of the front wire is 1100A
  • the current of the rear wire is 850A
  • the voltage of the front wire is 35V
  • the voltage of the rear wire is 45V.
  • the welding speed of the cover layer is 55-60cm/min
  • the current of the front wire is 1400A
  • the current of the rear wire is 1200A
  • the voltage of the front wire is 35V
  • the voltage of the rear wire is 45V.
  • the weld is mainly ferrite
  • the heat-affected zone is mainly bainite, pearlite, and ferrite.
  • the experimental results of this embodiment show that: after adopting this implementation process, macroscopic metallographic observation shows that there are no welding defects such as slag inclusions, pores, undercuts, etc. in the welded joints.
  • the mechanical properties of the welded joints were tested, and the mechanical properties of the welded joints met the requirements of matching the base metal in tension, side bending and impact.
  • the mechanical properties of the weld metal fully meet the technical requirements of the material, and the welded joints meet the technical requirements of the structure.
  • the chemical composition of base material Q370qE is: C is 0.16wt%, Mn is 1.64wt%, Ni is 0.40wt%, Mo is 0.05wt%, Cr is 5.2wt%, P ⁇ 0.02wt%, S ⁇ 0.01wt%, The thickness is 150mm.
  • the chemical composition of welding material H10Mn2A is: C is 0.08wt%, Mn is 1.72wt%, Si is 0.05wt%, Cr is 0.02wt%, Ni is 0.35wt%, Cu is 0.04wt%, Ti is 0.15wt% %, P ⁇ 0.006wt%, S ⁇ 0.006wt%, the balance is Fe and unavoidable impurities.
  • the diameter of the submerged arc welding is ⁇ 5.0mm
  • the first 80mm thick groove adopts the double-wire submerged arc welding method
  • the thickness >80mm groove adopts the three-wire submerged arc welding process.
  • the welding speed of double-wire submerged arc welding is 45-50 cm/min
  • the current of the front wire is 1250A
  • the current of the rear wire is 1150A
  • the voltage of the front wire is 35V
  • the voltage of the rear wire is 45V.
  • the welding speed of the filling layer is 50-55cm/min
  • the current of the front wire is 1100A
  • the current of the rear wire is 850A
  • the voltage of the front wire is 35V
  • the voltage of the rear wire is 45V.
  • the welding speed of the cover layer is 55-60cm/min
  • the current of the front wire is 1400A
  • the current of the rear wire is 1200A
  • the voltage of the front wire is 35V
  • the voltage of the rear wire is 45V.
  • the filling layer welding rate of the three-wire submerged arc welding is 35-40 cm/min
  • the current of the front wire is 1150A
  • the current of the rear wire is 1000A
  • the voltage of the front wire is 35V
  • the voltage of the middle and rear wires is 45V.
  • the welding speed of the cover layer is 55-60cm/min.
  • the current of the front wire is 1000A
  • the current of the middle and rear wires is 850A
  • the voltage of the front wire is 35V
  • the voltage of the middle and rear wires is 45V.
  • the weld is mainly ferrite
  • the heat-affected zone is mainly bainite, pearlite, and ferrite.
  • the experimental results of this embodiment show that: after adopting this implementation process, macroscopic metallographic observation shows that there are no welding defects such as slag inclusions, pores, undercuts, etc. in the welded joints.
  • the mechanical properties of the welded joints were tested, and the mechanical properties of the welded joints met the requirements of matching the base metal in tension, side bending and impact.
  • the mechanical properties of the weld metal fully meet the technical requirements of the material, and the welded joints meet the technical requirements of the structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Arc Welding In General (AREA)

Abstract

本发明公开了一种Q370qE厚板的多丝埋弧焊接方法,采用带钝边斜坡双U型坡口,采用H10Mn2A焊丝,同时,在焊材技术协议中对C、Mn、P、S等元素进行特殊的约定,通过以上元素含量的组合优化,保证了焊缝金属低温高韧性的性能。本发明工艺成本低,操作简单,焊接工艺性能优良;所形成的焊缝金属具有低温高韧性的特点,强度与母材相匹配,焊接接头具有强度高和优良的低温韧性的力学性能,能满足对所焊接的适用于桥梁钢超厚板的技术要求。

Description

一种Q370qE厚板的多丝埋弧焊接方法 技术领域
本发明属于焊接技术领域,具体涉及一种Q370qE厚板的多丝埋弧焊接方法。
背景技术
在桥梁结构制造的生产中有众多的大厚度构件和厚壁箱舱,它们大多采用焊接加工的方法进行制造成形。由于这些焊接结构厚度很大,焊接时需要填充大量的焊材,且为了防止大的焊接热输入导致的制造加工应力增大,焊接过程需要控制层间温度以避免缺陷的产生,整体生产效率较低,使产品制造成本增加,经济效益下降。因此,在Q370qE厚板结构的制造过程中,必须采取相应措施,在保证产品焊接质量的前提下,尽量提高生产效率。
发明内容
本发明旨在克服现有技术的不足,通过发明新的焊接方法,提高Q370qE厚板的焊接效率,降低制造成本,取得明显的经济效益,对于厚板焊接结构生产和质量保证具有一定的指导意义。
本发明采取的技术方案如下:
一种Q370qE厚板的多丝埋弧焊接方法,其特征在于包括如下步骤:
将Q370qE厚板的坡口加工成带钝边斜坡双U型;
进行焊前预热,预热温度控制在120°~150°之间,预热效果要使厚板的层间温度不低于预热温度;
选用GB/T 5293 F5A4-H10Mn2A规定的埋弧焊丝和焊剂,同时,在埋弧焊丝技术协议中对以下元素进行特殊约定:1)减小C的含量0.01~0.02wt%;2)增加Mn的含量0.01~0.02wt%;3)加入0.11~0.15wt%的Ti;4)降低焊丝中S、P的含量,均控制在0.006wt%以下;
在厚板焊接过程中控制层间温度在180°~250°之间;
对于60mm≤厚度≤80mm的Q370qE厚板,采用双丝埋弧焊工艺进行焊接;
对于厚度>80mm的Q370qE厚板,在≤80mm厚度坡口内采用双丝埋弧焊工艺进行焊接,在>80mm厚度的坡口内采用三丝埋弧焊工艺进行焊接。
优选地,所述带钝边斜坡双U型单边20°斜坡,根部留钝边9mm。
优选地,对于60mm≤厚度≤80mm的Q370qE厚板,双丝埋弧焊的打底层焊接速率为 45~50cm/min,前丝电流1250A,后丝电流1150A,前丝电压35V,后丝电压45V;填充层焊接速率为50~55cm/min,前丝电流1100A,后丝电流850A,前丝电压35V,后丝电压45V;盖面层焊接速率为55~60cm/min,前丝电流1400A,后丝电流1200A,前丝电压35V,后丝电压45V。
优选地,对于厚度>80mm的Q370qE厚板,在≤80mm厚度坡口内,双丝埋弧焊的打底层焊接速率为45~50cm/min,前丝电流1250A,后丝电流1150A,前丝电压35V,后丝电压45V;填充层焊接速率为50~55cm/min,前丝电流1100A,后丝电流850A,前丝电压35V,后丝电压45V;盖面层焊接速率为55~60cm/min,前丝电流1400A,后丝电流1200A,前丝电压35V,后丝电压45V;在>80mm厚度的坡口内,三丝埋弧焊的填充层焊接速率为35~40cm/min,前丝电流1150A,后丝电流1000A,前丝电压35V,中、后丝电压45V;盖面层焊接速率为55~60cm/min前丝电流1000A,中、后丝电流850A,前丝电压35V,中、后丝电压45V。
由于采用了上述技术方案,本发明与现有技术相比具有如下积极效果:
(1)本发明采用的带钝边斜坡双U型坡口,单边20°斜坡能够保证熔池流动性同时,确保侧壁能够熔透,钝边9mm避免烧穿,整体填充量小,工作效率高。
(2)本发明采用H10Mn2A焊丝,在GB/T 5293 F5A4-H10Mn2A标准中,焊丝组分如下:C 0.06wt%,Mn 1.71wt%,Si 0.05wt%,P≤0.01wt%,S≤0.01wt%,Cr 0.02wt%,Ni 0.35wt%,Cu 0.04wt%,其余为Fe和不可避免的杂质。本发明对协议标准中的C、Mn、P、S等元素进行特殊的约定:1)适当减小C的含量0.01~0.02wt%,能够增强焊缝金属的韧性,同时降低了焊接接头产生冷裂纹和热裂纹的几率;2)增加Mn的含量0.01~0.02wt%,通过Mn对基体进行了固溶强化;3)加入0.11~0.15wt%的Ti,通过微合金化提高焊材的大线能量焊接性;4)降低焊丝中S、P的含量,均控制在0.006wt%以下,可以防止热裂纹等缺陷产生。通过以上元素含量的组合优化,保证了焊缝金属低温高韧性的性能。
(3)本发明工艺成本低,操作简单,焊接工艺性能优良;所形成的焊缝金属具有低温高韧性的特点,强度与母材相匹配,焊接接头具有强度高和优良的低温韧性的力学性能,能满足对所焊接的适用于桥梁钢超厚板的技术要求。
附图说明
图1是本发明实施例带钝边斜坡双U型坡口。
具体实施方式
下面对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例;基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面结合具体实施方式对本发明作进一步描述,并非对本其保护范围的限制。
实施例1
母材Q370qE化学组分是:C为0.16wt%,Mn为1.64wt%,Ni为0.40wt%,Mo为0.05wt%,Cr为5.2wt%,P≤0.02wt%,S≤0.01wt%,厚度为70mm。
采用焊材H10Mn2A的化学组分是:C为0.07wt%,Mn为1.73wt%,Si为0.05wt%,Cr为0.02wt%,Ni为0.35wt%,Cu为0.04wt%,Ti为0.13wt%,P≤0.006wt%,S≤0.006wt%,余量为Fe和不可避免的杂质。所述埋弧焊的直径为Φ4.8mm,采用双丝埋弧焊接方法。
如图1,试板坡口型式为带钝边斜坡双U型,根部留9mm钝边,单侧坡口角度为20°。
本实施例中:双丝埋弧焊的打底层焊接速率为45~50cm/min,前丝电流1250A,后丝电流1150A,前丝电压35V,后丝电压45V。填充层焊接速率为50~55cm/min,前丝电流1100A,后丝电流850A,前丝电压35V,后丝电压45V。盖面层焊接速率为55~60cm/min,前丝电流1400A,后丝电流1200A,前丝电压35V,后丝电压45V。
对本实施例焊后的焊缝金属显微组织及力学性能进行检测分析:焊缝中主要是铁素体,热影响区主要是贝氏体、珠光体、铁素体。焊接接头的抗拉强度为520~570MPa,伸长率A=23%。
本实施例实验结果表明:采用本实施工艺后宏观金相观察,焊接接头中无夹渣、气孔、咬边等焊接缺陷。对焊接接头进行了力学性能测试,在拉伸、侧弯、冲击中,焊接接头的力学性能达到了与母材匹配的要求。焊缝金属的力学性能完全满足材料技术要求,焊接接头满足结构的技术要求。
实施例2
母材Q370qE化学组分是:C为0.16wt%,Mn为1.64wt%,Ni为0.40wt%,Mo为0.05wt%,Cr为5.2wt%,P≤0.02wt%,S≤0.01wt%,厚度为150mm。
采用焊材H10Mn2A的化学组分是:C为0.08wt%,Mn为1.72wt%,Si为0.05wt%,Cr 为0.02wt%,Ni为0.35wt%,Cu为0.04wt%,Ti为0.15wt%,P≤0.006wt%,S≤0.006wt%,余量为Fe和不可避免的杂质。所述埋弧焊的直径为Φ5.0mm,前80mm厚度坡口采用双丝埋弧焊接方法,>80mm厚度的坡口采用三丝埋弧焊工艺。
本实施例中:双丝埋弧焊的打底层焊接速率为45~50cm/min,前丝电流1250A,后丝电流1150A,前丝电压35V,后丝电压45V。填充层焊接速率为50~55cm/min,前丝电流1100A,后丝电流850A,前丝电压35V,后丝电压45V。盖面层焊接速率为55~60cm/min,前丝电流1400A,后丝电流1200A,前丝电压35V,后丝电压45V。
本实施例中,三丝埋弧焊的填充层焊接速率为35~40cm/min,前丝电流1150A,后丝电流1000A,前丝电压35V,中、后丝电压45V。盖面层焊接速率为55~60cm/min前丝电流1000A,中、后丝电流850A,前丝电压35V,中、后丝电压45V。
对本实施例焊后的焊缝金属显微组织及力学性能进行检测分析:焊缝中主要是铁素体,热影响区主要是贝氏体、珠光体、铁素体。焊接接头的抗拉强度为505~550MPa,伸长率A=22%。
本实施例实验结果表明:采用本实施工艺后宏观金相观察,焊接接头中无夹渣、气孔、咬边等焊接缺陷。对焊接接头进行了力学性能测试,在拉伸、侧弯、冲击中,焊接接头的力学性能达到了与母材匹配的要求。焊缝金属的力学性能完全满足材料技术要求,焊接接头满足结构的技术要求。

Claims (6)

  1. 一种Q370qE厚板的多丝埋弧焊接方法,其特征在于包括如下步骤:
    将Q370qE厚板的坡口加工成带钝边斜坡双U型;
    进行焊前预热,预热温度控制在120°~150°之间,预热效果要使厚板的层间温度不低于预热温度;
    选用GB/T 5293 F5A4-H10Mn2A规定的埋弧焊丝和焊剂,同时,在埋弧焊丝技术协议中对以下元素进行特殊约定:1)减小C的含量0.01~0.02wt%;2)增加Mn的含量0.01~0.02wt%;3)加入0.11~0.15wt%的Ti;4)降低焊丝中S、P的含量,均控制在0.006wt%以下;
    在厚板焊接过程中控制层间温度在180°~250°之间;
    对于60mm≤厚度≤80mm的Q370qE厚板,采用双丝埋弧焊工艺进行焊接;
    对于厚度>80mm的Q370qE厚板,在≤80mm厚度坡口内采用双丝埋弧焊工艺进行焊接,在>80mm厚度坡口内采用三丝埋弧焊工艺进行焊接。
  2. 如权利要求1所述的Q370qE厚板的多丝埋弧焊接方法,其特征在于所述带钝边斜坡双U型单边20°斜坡,根部留钝边9mm。
  3. 如权利要求1所述的Q370qE厚板的多丝埋弧焊接方法,其特征在于母材Q370qE化学组分是:C为0.16wt%,Mn为1.64wt%,Ni为0.40wt%,Mo为0.05wt%,Cr为5.2wt%,P≤0.02wt%,S≤0.01wt%,厚度为70mm;采用焊材H10Mn2A的化学组分:C为0.07wt%,Mn为1.73wt%,Ni为0.36wt%,Ti为0.13wt%,P≤0.006wt%,S≤0.006wt%,余量为Fe和不可避免的杂质。
  4. 如权利要求1所述的Q370qE厚板的多丝埋弧焊接方法,其特征在于母材Q370qE化学组分是:C为0.16wt%,Mn为1.64wt%,Ni为0.40wt%,Mo为0.05wt%,Cr为5.2wt%,P≤0.02wt%,S≤0.01wt%,厚度为150mm;采用焊材H10Mn2A的化学组分是:C为0.08wt%,Mn为1.72wt%,Ni为0.35wt%,Ti为0.15wt%,P≤0.006wt%,S≤0.006wt%,余量为Fe和不可避免的杂质。
  5. 如权利要求1所述的Q370qE厚板的多丝埋弧焊接方法,其特征在于对于60mm≤厚度≤80mm的Q370qE厚板,双丝埋弧焊的打底层焊接速率为45~50cm/min,前丝电流1250A,后丝电流1150A,前丝电压35V,后丝电压45V;填充层焊接速率为50~55cm/min,前丝电流1100A,后丝电流850A,前丝电压35V,后丝电压45V;盖面层焊接速率为55~60cm/min,前丝电流1400A,后丝电流1200A,前丝电压35V,后丝电压45V。
  6. 如权利要求1所述的Q370qE厚板的多丝埋弧焊接方法,其特征在于对于厚度>80mm 的Q370qE厚板,在≤80mm厚度坡口内,双丝埋弧焊的打底层焊接速率为45~50cm/min,前丝电流1250A,后丝电流1150A,前丝电压35V,后丝电压45V;填充层焊接速率为50~55cm/min,前丝电流1100A,后丝电流850A,前丝电压35V,后丝电压45V;盖面层焊接速率为55~60cm/min,前丝电流1400A,后丝电流1200A,前丝电压35V,后丝电压45V;在>80mm厚度的坡口内,三丝埋弧焊的填充层焊接速率为35~40cm/min,前丝电流1150A,后丝电流1000A,前丝电压35V,中、后丝电压45V;盖面层焊接速率为55~60cm/min前丝电流1000A,中、后丝电流850A,前丝电压35V,中、后丝电压45V。
PCT/CN2021/136680 2021-09-01 2021-12-09 一种Q370qE厚板的多丝埋弧焊接方法 WO2023029279A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111020558.2A CN113732459B (zh) 2021-09-01 2021-09-01 一种Q370qE厚板的多丝埋弧焊接方法
CN202111020558.2 2021-09-01

Publications (1)

Publication Number Publication Date
WO2023029279A1 true WO2023029279A1 (zh) 2023-03-09

Family

ID=78734632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/136680 WO2023029279A1 (zh) 2021-09-01 2021-12-09 一种Q370qE厚板的多丝埋弧焊接方法

Country Status (2)

Country Link
CN (1) CN113732459B (zh)
WO (1) WO2023029279A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113732459B (zh) * 2021-09-01 2023-04-11 南京钢铁股份有限公司 一种Q370qE厚板的多丝埋弧焊接方法
CN114749763B (zh) * 2022-04-28 2023-09-26 鞍钢股份有限公司 一种海洋平台用钢横向窄间隙焊接方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3748429A (en) * 1971-03-15 1973-07-24 Kawasaki Steel Co Multiple-wire single-pass submerged-arc welding method for thick plates
CN102049599A (zh) * 2011-01-07 2011-05-11 南京钢铁股份有限公司 一种超高强海洋结构用钢板f460z埋弧焊接方法
CN102744498A (zh) * 2012-07-05 2012-10-24 首钢总公司 一种特厚高强桥梁钢板焊接方法
CN103341686A (zh) * 2013-06-09 2013-10-09 武汉钢铁(集团)公司 一种高强度核电用钢厚板埋弧焊焊接方法
CN103894710A (zh) * 2014-04-08 2014-07-02 武汉钢铁(集团)公司 一种高强度级别Q500qE桥梁钢厚板埋弧焊接方法
CN109014513A (zh) * 2017-06-12 2018-12-18 鞍钢股份有限公司 一种大线能量焊接用高强度特厚钢板双丝埋弧焊接方法
CN112372117A (zh) * 2020-12-02 2021-02-19 南京钢铁股份有限公司 一种屈服强度460MPa级60mm厚耐火钢大热输入埋弧焊接方法
CN113732459A (zh) * 2021-09-01 2021-12-03 南京钢铁股份有限公司 一种Q370qE厚板的多丝埋弧焊接方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100463756C (zh) * 2007-04-30 2009-02-25 上海冠达尔钢结构有限公司 厚板低合金高强钢三丝埋弧焊接方法
CN107097018B (zh) * 2017-05-03 2020-07-10 江苏引力焊业工程技术研究有限公司 一种无镀铜H10Mn2埋弧焊焊丝

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3748429A (en) * 1971-03-15 1973-07-24 Kawasaki Steel Co Multiple-wire single-pass submerged-arc welding method for thick plates
CN102049599A (zh) * 2011-01-07 2011-05-11 南京钢铁股份有限公司 一种超高强海洋结构用钢板f460z埋弧焊接方法
CN102744498A (zh) * 2012-07-05 2012-10-24 首钢总公司 一种特厚高强桥梁钢板焊接方法
CN103341686A (zh) * 2013-06-09 2013-10-09 武汉钢铁(集团)公司 一种高强度核电用钢厚板埋弧焊焊接方法
CN103894710A (zh) * 2014-04-08 2014-07-02 武汉钢铁(集团)公司 一种高强度级别Q500qE桥梁钢厚板埋弧焊接方法
CN109014513A (zh) * 2017-06-12 2018-12-18 鞍钢股份有限公司 一种大线能量焊接用高强度特厚钢板双丝埋弧焊接方法
CN112372117A (zh) * 2020-12-02 2021-02-19 南京钢铁股份有限公司 一种屈服强度460MPa级60mm厚耐火钢大热输入埋弧焊接方法
CN113732459A (zh) * 2021-09-01 2021-12-03 南京钢铁股份有限公司 一种Q370qE厚板的多丝埋弧焊接方法

Also Published As

Publication number Publication date
CN113732459A (zh) 2021-12-03
CN113732459B (zh) 2023-04-11

Similar Documents

Publication Publication Date Title
WO2023029279A1 (zh) 一种Q370qE厚板的多丝埋弧焊接方法
US20220176490A1 (en) Method for manufacturing equal-strength steel thin-wall welding component with aluminum or aluminum alloy plating
CN100413629C (zh) 800MPa高强度钢的不预热焊接工艺
CN101513695B (zh) 一种桥梁用Q420qE级超低碳贝氏体钢的焊接方法
CN102753300B (zh) 超高强度焊接接头及其制造方法
CN102179601B (zh) 800MPa高强度钢的CO2气保护焊接工艺
CN102101210A (zh) 一种610MPa水电站压力钢管用高强钢焊接方法
CN1593836A (zh) 高强度高韧性高耐候气保焊焊丝
CN109848526A (zh) 一种船用高强钢板双丝埋弧焊焊接工艺
CN107350659A (zh) 适用于全位置焊接的460MPa级无缝药芯焊丝及制造方法
CN110576273A (zh) 用于lng超低温不锈钢焊接的金属材料、工艺及制品
CN103273213A (zh) 一种高强度高韧性埋弧焊丝
CN110181201A (zh) 一种用于沿海工程高韧性耐腐蚀焊条及其用途
CN110666302A (zh) 一种Q500qE+Q690qENH不同板厚复合焊对接方法
CN112475532B (zh) 用于高压氢环境奥氏体不锈钢316l材料的焊接工艺
CN115070169B (zh) 一种7%Ni储罐钢的钢板焊接方法
CN114749773B (zh) 一种7%Ni储罐钢埋弧焊接方法
CN113319465B (zh) 一套用于超高强钢焊接的双丝气体保护焊焊丝及焊接方法
WO2021233228A1 (zh) 一种气体保护焊丝用盘条及一种气体保护焊丝
CN114939708A (zh) 一种船用2205不锈钢复合板的氩弧焊焊接方法
CN107914068A (zh) 中高碳钢用气体保护焊接方法
CN109530962B (zh) 一种大电流立向上焊接用药芯焊丝及其制备方法与应用
JP2018065152A (ja) 多層サブマージアーク溶接方法
CN107984113A (zh) 多丝埋弧焊用药芯焊丝
CN111761175A (zh) 一种厚板高效气渣联合保护焊接方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21955807

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21955807

Country of ref document: EP

Kind code of ref document: A1