CN112467729B - 一种海上风电系统网侧故障穿越时子模块电压抑制策略 - Google Patents

一种海上风电系统网侧故障穿越时子模块电压抑制策略 Download PDF

Info

Publication number
CN112467729B
CN112467729B CN202011304163.0A CN202011304163A CN112467729B CN 112467729 B CN112467729 B CN 112467729B CN 202011304163 A CN202011304163 A CN 202011304163A CN 112467729 B CN112467729 B CN 112467729B
Authority
CN
China
Prior art keywords
sub
bridge arm
voltage
controller
grid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011304163.0A
Other languages
English (en)
Other versions
CN112467729A (zh
Inventor
马小婷
李少华
姚东晓
楚遵方
苏匀
常立国
李佩泫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xi'an Duanyi Technology Co ltd
China XD Electric Co Ltd
Xian XD Power Systems Co Ltd
Original Assignee
Xi'an Duanyi Technology Co ltd
China XD Electric Co Ltd
Xian XD Power Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xi'an Duanyi Technology Co ltd, China XD Electric Co Ltd, Xian XD Power Systems Co Ltd filed Critical Xi'an Duanyi Technology Co ltd
Priority to CN202011304163.0A priority Critical patent/CN112467729B/zh
Publication of CN112467729A publication Critical patent/CN112467729A/zh
Application granted granted Critical
Publication of CN112467729B publication Critical patent/CN112467729B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/001Methods to deal with contingencies, e.g. abnormalities, faults or failures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

本发明公开了一种海上风电系统网侧故障穿越时子模块电压抑制策略,在交流电网发生故障后,将计算桥臂投入子模块个数的直流偏置Udc_ref替代为子模块电压控制器的输出结果,直流偏置的大小根据子模块电压的大小来调节,以此来改变上下桥臂总的投入子模块个数,从而达到对子模块电压的抑制。

Description

一种海上风电系统网侧故障穿越时子模块电压抑制策略
技术领域
本发明属于直流输电技术领域,具体涉及一种海上风电系统网侧故障穿越时子模块电压抑制策略。
背景技术
近年来,海上风电场经柔性直流输电系统(VSC-HVDC)并网的应用越来越广泛,VSC-HVDC常用的系统为模块化多电平换流器型高压直流输电(MMC-HVDC),风电经MMC-HVDC并网时,电网因发生故障导致电网电压跌落后,电网侧换流站送入交流电网的有功功率减小。在不采取任何措施的情况下,风电场仍按原控制方式运行,将功率全部送入直流系统,而导致直流系统功率过剩,引起直流电压上升,威胁系统的安全运行。许多专家学者也提出了相应的措施,目前常用的是增加卸荷电路的方法来吸收剩余的功率。
但由于在电网发生故障后,卸荷电路并不是立即投入的,而是在直流电压达到阈值一定时间后才投入进去的,在电网侧发生故障而卸荷电路未投入阶段,因为电网吸收功率能力大大下降,而风场仍按原控制方式将功率全部送入直流系统,大量的剩余功率涌入电网侧MMC中,导致电网侧MMC中子模块电压迅速上升,容易损坏器件。
发明内容
本发明提供了一种风场接入的MMC-HVDC系统电网侧故障穿越期间子模块电压抑制策略,抑制电网侧发生故障后电网侧MMC子模块电压上升。
为达到上述目的,本发明所述一种海上风电系统网侧故障穿越时子模块电压抑制策略,根据MMC六个桥臂子模块平均电压,计算交流电网发生故障后MMC各个桥臂需要投入的子模块数量,然后根据计算得到各个桥臂需要投入的子模块数量控制子模块投入运行。
进一步的,包括以下步骤:
步骤1、采集MMC子模块平均电压,当交流电网发生故障时,故障信号通过非门使能PI控制器中的积分器;
步骤2、将MMC子模块平均电压和MMC子模块额定电压作为电压控制器的输入,计算直流偏置量,所述电压控制器包括PI控制器;
步骤3、利用公式(1)求上桥臂和下桥臂需要投入的子模块个数:
Figure BDA0002787775030000021
其中,N为单个桥臂的子模块个数,Udc_refful为故障时的直流偏置量,Vx_ref为x相参考波;Nap为x相上桥臂需要投入的子模块个数,Nan为x相下桥臂需要投入的子模块个数,x=a,b,c;
步骤4、将步骤3得到的上桥臂和下桥臂需要投入的子模块个数传递至阀控系统,由阀控系统控制相应数量的子模块投入运行。
进一步的,步骤2中,对PI控制器的输出进行限幅后得到直流偏置量Udc_refful
进一步的,步骤4中,阀控系统进行均压排序后,确定具体的需要投入的模块,并控制其投入运行。
进一步的,步骤2中的电压控制器包括依次连接的减法器、PI控制器和限幅器;所述减法器的输入为MMC子模块平均电压标幺值和1。
进一步的,PI控制器的积分控制器在非网侧故障时进行复位。
与现有技术相比,本发明至少具有以下有益的技术效果:在交流电网发生故障后,用子模块电压控制器的输出结果替代正常运行时的直流偏置Udc_ref来计算桥臂投入子模块个数,直流偏置量的大小根据子模块电压的大小来调节,以此来改变上下桥臂总的投入子模块个数,从而达到对子模块电压的抑制。
本发明所述的电压控制器,根据是否有故障,决定是否投入PI控制器:当没有故障时,积分器不投入,根据三相参考波以及直流电压参考波,得到上下桥臂需要投入的子模块个数;当有故障时,投入积分器,根据MMC子模块的平均电压和额定电压的差值,进行PI控制,得到直流偏置量,直流偏置量的大小根据子模块平均电压与额定电压的偏差进行自动调节,不会过投或少投,保证海上风电系统安全运行。
附图说明
图1为电网侧MMC的a相上下桥臂分别投入子模块个数的波形图;图中纵坐标的单位为个,横坐标单位为秒(s);
图2为本发明提出的子模块电压的控制器。
具体实施方式
为了使本发明的目的和技术方案更加清晰和便于理解。以下结合附图和实施方式,对本发明进行进一步的详细说明,此处所描述的具体实施方式仅用于解释本发明,并非用于限定本发明。
使用最近电平逼近的MMC调制方式时,若使用的是MMC平均值模型,根据MMC控制器所得的三相参考波以及直流电压参考波,可以得到上下桥臂需要投入的子模块个数,以a相为例,式(1)给出了a相上、下桥臂需要投入的子模块个数:
Figure BDA0002787775030000031
其中,N为单个桥臂(上桥臂或下桥臂)子模块个数,Udc_ref为直流电压参考值,Va_ref为控制得到的a相参考波;Nap为上桥臂需要投入的子模块个数,Nan为下桥臂需要投入的子模块个数。
假设电网侧MMC的调制度为0.8865,单个桥臂子模块个数为246个,根据式(1)及调制度可以得a相上下桥臂投入子模块个数的波形图如图1所示。从图1可以看出,在正常运行时,上桥臂或下桥臂投入的子模块个数最少14个,最多232个,上桥臂和下桥臂在每一时刻投入的总的子模块个数为246个,上桥臂和下桥臂分别投入的子模块个数在任意时刻都不会达到246个。当电网发生故障时,由于MMC控制中的前馈的作用,导致三相参考波的幅值要小于正常工作时的幅值,每个桥臂投入的子模块个数的最大值要小于232个,根据故障程度的不同而不同,上下桥臂投入的子模块总个数依然是246个。由于在电网发生故障时,卸荷电路是在直流电压达到阈值一定时间后才投入,此阶段电网吸收功率的能力大大下降,而风场依然在向电网输送功率,大量的剩余功率涌入MMC中,导致子模块电压迅速上升,要想减小此阶段子模块电压的上升,只能增大上、下桥臂总的投入的子模块个数,根据以上分析可知,上、下桥臂投入的总的子模块数是由式(1)中的直流电压参考值Udc_ref决定的,在电网故障过程中每个桥臂投入的子模块个数的最大值要小于232个,根据故障的严重程度而有所不同,而每个桥臂总的子模块个数为246个。
假设三相参考波变为正常工作时的0.9倍,如果将式(1)中的Udc_ref替换为1.2,则刚好每个桥臂最多投入246个子模块,而上下桥臂投入的总的子模块个数为295个,这样可以抑制子模块电压的上升,而电网发生故障时三相参考波一般会更小,所以可以在电网发生故障时加入子模块电压控制器,将式(1)中的Udc_ref替换为子模块电压控制器的输出,只需要对子模块电压控制器的结果进行限幅即可,根据子模块电压的大小来调节式(1)中的Udc_ref的大小,进而计算出此阶段各桥臂需投入的子模块的数量。
图2所示的子模块电压的控制器包括依次连接的减法器、PI控制器和限幅器,其中,PI控制器上连接复位信号;PI控制器包括比例控制器、积分控制器和加法器,Kp为比例控制器的比例系数,T为积分控制器的时间常数。Uac_flt为故障信号,Udc_refful为直流偏置量。
以a相为例,本发明包括以下步骤:
步骤1、当交流电网发生故障时,Uac_flt故障信号通过非门使能积分器;
步骤2、由图2所示的子模块电压的控制器得到用于计算每一相桥臂投入子模块个数的直流偏置量,根据子模块电压的大小来调节直流偏置量Udc_refful的大小;具体为:采集MMC子模块平均电压,计算MMC子模块平均电压的标幺值Ucav_pu,求Ucav_pu和额定电压标幺值1的差D,将D作为PI控制器的输入,进行限幅后得到直流偏置量Udc_refful
步骤3、利用公式(2)求得上桥臂和下桥臂需要投入的子模块个数:
Figure BDA0002787775030000051
步骤4、将步骤3得到的上桥臂和下桥臂需要投入的子模块个数传递至阀控系统,阀控系统进行均压排序,确定具体的需要投入的模块,并控制其投入运行。
以上内容仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明权利要求书的保护范围之内。

Claims (5)

1.一种海上风电系统网侧故障穿越时子模块电压抑制策略,其特征在于,根据MMC六个桥臂子模块平均电压,计算交流电网发生故障后MMC各个桥臂需要投入的子模块数量,然后根据计算得到各个桥臂需要投入的子模块数量控制子模块投入运行;
包括以下步骤:
步骤1、采集MMC子模块平均电压,当交流电网发生故障时,故障信号通过非门使能PI控制器中的积分器;
步骤2、将MMC子模块平均电压和MMC子模块额定电压作为电压控制器的输入,计算直流偏置量,所述电压控制器包括PI控制器;
步骤3、利用公式(1)求上桥臂和下桥臂需要投入的子模块个数:
Figure FDA0003849584070000011
其中,N为单个桥臂的子模块个数,Udc_refful为故障时的直流偏置量,Vx_ref为x相参考波;Nxp为x相上桥臂需要投入的子模块个数,Nxn为x相下桥臂需要投入的子模块个数,x=a,b,c;
步骤4、将步骤3得到的上桥臂和下桥臂需要投入的子模块个数传递至阀控系统,由阀控系统控制相应数量的子模块投入运行。
2.根据权利要求1所述的一种海上风电系统网侧故障穿越时子模块电压抑制策略,其特征在于,步骤2中,对PI控制器的输出进行限幅后得到直流偏置量Udc_refful
3.根据权利要求1所述的一种海上风电系统网侧故障穿越时子模块电压抑制策略,其特征在于,所述步骤4中,阀控系统进行均压排序后,确定具体的需要投入的模块,并控制其投入运行。
4.根据权利要求1所述的一种海上风电系统网侧故障穿越时子模块电压抑制策略,其特征在于,所述步骤2中的电压控制器包括依次连接的减法器、PI控制器和限幅器;所述减法器的输入为MMC子模块平均电压标幺值和1。
5.根据权利要求1所述的一种海上风电系统网侧故障穿越时子模块电压抑制策略,其特征在于,PI控制器的积分控制器在非网侧故障时进行复位。
CN202011304163.0A 2020-11-19 2020-11-19 一种海上风电系统网侧故障穿越时子模块电压抑制策略 Active CN112467729B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011304163.0A CN112467729B (zh) 2020-11-19 2020-11-19 一种海上风电系统网侧故障穿越时子模块电压抑制策略

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011304163.0A CN112467729B (zh) 2020-11-19 2020-11-19 一种海上风电系统网侧故障穿越时子模块电压抑制策略

Publications (2)

Publication Number Publication Date
CN112467729A CN112467729A (zh) 2021-03-09
CN112467729B true CN112467729B (zh) 2022-11-01

Family

ID=74837206

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011304163.0A Active CN112467729B (zh) 2020-11-19 2020-11-19 一种海上风电系统网侧故障穿越时子模块电压抑制策略

Country Status (1)

Country Link
CN (1) CN112467729B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116232031B (zh) * 2023-01-06 2024-06-11 中国华能集团清洁能源技术研究院有限公司 柔性直流换流器子模块过电压抑制方法及装置
CN116760272B (zh) * 2023-08-11 2023-12-01 西安西电电力系统有限公司 模块化多电平换流器子模块电压抑制方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015007186A1 (zh) * 2013-07-15 2015-01-22 国家电网公司 模块化多电平换流器的阀基控制设备和方法
CN111211675A (zh) * 2020-02-24 2020-05-29 全球能源互联网研究院有限公司 一种模块化多电平换流器的子模块冗余配置方法及系统
CN111525517A (zh) * 2020-04-14 2020-08-11 西安许继电力电子技术有限公司 一种换流阀子模块过电压的抑制方法和系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015007186A1 (zh) * 2013-07-15 2015-01-22 国家电网公司 模块化多电平换流器的阀基控制设备和方法
CN111211675A (zh) * 2020-02-24 2020-05-29 全球能源互联网研究院有限公司 一种模块化多电平换流器的子模块冗余配置方法及系统
CN111525517A (zh) * 2020-04-14 2020-08-11 西安许继电力电子技术有限公司 一种换流阀子模块过电压的抑制方法和系统

Also Published As

Publication number Publication date
CN112467729A (zh) 2021-03-09

Similar Documents

Publication Publication Date Title
CN105375523B (zh) 一种风电全功率变流器高电压穿越控制方法
CN112467729B (zh) 一种海上风电系统网侧故障穿越时子模块电压抑制策略
CN112398156B (zh) 一种基于柔直mmc换流器的海上风电系统故障联合穿越方法
CN109066759A (zh) 兼顾电网有功平衡的混合双馈入直流输电系统连续换相失败控制方法
US20120300510A1 (en) Method and apparatus for controlling a dc-transmission link
CN104269891B (zh) 特高压直流分层接入方式的功率控制方法和系统
CN109787265B (zh) 一种平抑新能源出力波动的柔性直流输电系统协调控制方法
CN107069809A (zh) 一种直驱风电变流器高电压穿越控制方法
CN111600325B (zh) 一种混合级联直流输电系统故障穿越方法及系统
CN108400611B (zh) 基于非线性vdcol的hvdc连续换相失败抑制方法
CN105656071A (zh) 一种适用于无双端通信的柔直低穿控制方法
CN113193586B (zh) 一种柔性直流补偿控制方法及系统
CN111431206B (zh) 大规模双馈风电场经柔性直流外送的协同故障穿越方法
CN113178895B (zh) 海上风电交流故障穿越协同控制方法、装置及存储介质
CN105958504A (zh) 一种减少换相失败的统一潮流控制器无功补偿方法
CN113067358A (zh) 一种减小mmc型直流电网直流侧限流电抗器的方法
CN113098045B (zh) 一种适用于uhvdc换相失败故障恢复的优化控制方法
CN113922410A (zh) 混合直流送出系统及其低电压故障穿越方法
Pang et al. Interruption method for commutation failure caused cascading reaction of HVDC with wind farm integration under grid fault
CN117096944A (zh) 构网型光伏故障穿越控制方法及装置
CN116388152A (zh) 一种基于暂稳态协同的混合mmc虚拟惯性控制策略
CN109474169B (zh) 一种基于直流电压模糊控制的mmc直流侧故障电流控制方法
CN112523943A (zh) 一种抑制直驱风机暂态过电压的附加控制方法及系统
WO2020216581A1 (en) System and method for supplying electric power to a grid and for supporting the grid
CN116131294B (zh) 一种不对称交流故障穿越的控制方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant