CN112466984A - 太阳能单晶高效perc+se电池片的低压扩散工艺 - Google Patents

太阳能单晶高效perc+se电池片的低压扩散工艺 Download PDF

Info

Publication number
CN112466984A
CN112466984A CN202011166593.0A CN202011166593A CN112466984A CN 112466984 A CN112466984 A CN 112466984A CN 202011166593 A CN202011166593 A CN 202011166593A CN 112466984 A CN112466984 A CN 112466984A
Authority
CN
China
Prior art keywords
sccm
diffusion
mbar
pressure
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011166593.0A
Other languages
English (en)
Other versions
CN112466984B (zh
Inventor
刘杰
张泽泽
申争浩
刘栩瑞
刘照敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanxi Luan Solar Energy Technology Co Ltd
Original Assignee
Shanxi Luan Solar Energy Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanxi Luan Solar Energy Technology Co Ltd filed Critical Shanxi Luan Solar Energy Technology Co Ltd
Priority to CN202011166593.0A priority Critical patent/CN112466984B/zh
Publication of CN112466984A publication Critical patent/CN112466984A/zh
Application granted granted Critical
Publication of CN112466984B publication Critical patent/CN112466984B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2252Diffusion into or out of group IV semiconductors using predeposition of impurities into the semiconductor surface, e.g. from a gaseous phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2254Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides
    • H01L21/2255Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides the applied layer comprising oxides only, e.g. P2O5, PSG, H3BO3, doped oxides
    • H01L21/2256Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides the applied layer comprising oxides only, e.g. P2O5, PSG, H3BO3, doped oxides through the applied layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及太阳能电池生产扩散领域。一种太阳能单晶高效PERC+SE电池片的低压扩散工艺,包括如下步骤,扩散前高温氧化,分步扩散法制备PN结,后氧化,其中分步扩散法制备PN结包括第一步低压扩散,保温缓冲,第二步低压扩散,第一步升温推进,第二步升温推进;本发明能制得高表面浓度和低的结深,电性能参数表现为较低开路电压和填充,短路电流较高,使得组件封装之后短波效应较差,从而表现出低的CTM(组件输出功率与电池片功率总和的百分比),本发明的电池效率得到较大的提高。

Description

太阳能单晶高效PERC+SE电池片的低压扩散工艺
技术领域
本发明涉及太阳能电池生产扩散领域。
背景技术
随着全球气候变暖,各种可再生能源迅速发展。其中光伏作为重要的可再生能源,近十五年飞速的发展,各类电池百花齐放,其中单晶高效PERC+SE电池已经初步具备平价上网,对全球新能源发展做出重要贡献。
生产太阳能电池的核心步骤是制备PN结,扩散制PN结法是采用加热方法使V族杂质掺入P型硅或Ⅲ族杂质掺入N型硅中。杂质元素在高温时由于热扩散运动进入硅基体,它在基体中的分布视杂质元素种类、初始浓度、扩散温度和时间而导致,这种不同的组合会有不同电池结构,对电池片电性能的表现差异很大。目前硅太阳电池中最常用的V族杂质元素为磷,III族杂质元素为硼。
目前高效PERC+SE电池片低压扩散工艺大多数是采用浅结高方阻,表现出较高表面浓度和低的结深,较低的结深必然会导致欧姆接触较差,纵向传输过程电阻较大,也会使电池段的短波响应较好,短路电流较高。但是组件封装之后短波段的光被玻璃阻挡在外了,导致短波段效应较差,从而表现出低的CTM(组件输出功率与电池片功率总和的百分比)。因此,本发明既可以提高电池片的开路电压和填充因子,又可以使组件端有较高的CTM。
发明内容
本发明所要解决的技术问题是:如何进一步改进PERC+SE电池片低压扩散工艺扩散工艺,从而提高电池效率。
本发明所采用的技术方案是:一种太阳能单晶高效PERC+SE电池片的低压扩散工艺,包括如下步骤
步骤一、扩散前高温氧化,工艺条件为:温度650℃~800℃,氮气流量500sccm~2000sccm,氧气流量为500sccm~1000sccm,压强为50mbar~150mbar,持续时间100s~200s;
步骤二、分步扩散法制备PN结
第一步低压扩散,工艺条件为:压强为50mbar~150mbar,扩散温度为750℃~ 780℃,扩散时间为100s~300s,氮气流量为1000sccm~2000 sccm,三氯氧磷流量为 600sccm~1000sccm,氧气流量为300sccm~1000sccm;
保温缓冲,工艺条件为:压强为50mbar~150mbar,扩散温度为750℃~ 780℃,氮气流量为1000sccm~2000 sccm,氧气流量为300sccm~1000sccm,停止通入三氯氧磷,持续时间50 s~70s;
第二步低压扩散,工艺条件为:压强为50mbar~150mbar,扩散温度为780℃~ 800℃,扩散时间为100s~300s,氮气流量为1000sccm~2000 sccm,三氯氧磷流量为 500sccm~1000sccm;氧气流量为300sccm~1000sccm;
第一步升温推进,工艺条件为:压强为50mbar~150mbar,推进温度为800℃~ 900℃;推进时间为300s~500s,氮气流量为1000sccm~2000 sccm;
第二步升温推进,工艺条件为:压强为50mbar~150mbar,推进温度为800℃~ 900℃;推进时间为500s~2000s,氮气流量为1000sccm~2000 sccm,氧气流量为0~500sccm;
步骤三、后氧化,工艺条件为:压强为50mbar~150mbar,氧化时间200s~500s,通入氧气流量为500~1000sccm,氮气流量为500sccm~2000sccm,温度750℃~800℃。
步骤二中的第二步升温推进分为两步,首先,采用低氧推进,然后再采用无氧推进,低氧推进工艺条件为:压强为50mbar~150mbar,推进温度为800℃~ 900℃;推进时间为100s~300s,氮气流量为1000sccm~2000 sccm,氧气流量为100~500sccm;无氧推进工艺条件为:压强为50mbar~150mbar,推进温度为800℃~ 900℃;推进时间为400s~1700s,氮气流量为1000sccm~2000 sccm。
太阳能单晶高效PERC+SE电池片为P型掺硼单晶硅片。
本发明的有益效果是:本发明能制得高表面浓度和低的结深,电性能参数表现为较低开路电压和填充,短路电流较高,使得组件封装之后短波效应较差,从而表现出低的CTM(组件输出功率与电池片功率总和的百分比),本发明的电池效率得到较大的提高。
具体实施方式
实施例1:
扩散前高温氧化:高温氧化硅片,在硅片表面预生长一层纳米级厚度的SiO2;
工艺参数为:炉内压强为110mbar,氧化步时间维持150s,通入氧气流量为6000sccm,通入氮气流量为500sccm~2000sccm,温度750℃。
低压扩散:采用分步扩散法制备PN结,具体扩散步骤如下:
第一步低压扩散,工艺参数为:炉内压强为110 mbar,扩散温度为775℃;扩散时间为185s;氮气流量为1200sccm;三氯氧磷流量为 900sccm;氧气流量为700sccm;
保温缓冲,工艺条件为:压强为110mbar,扩散温度为775℃,氮气流量为1200 sccm,氧气流量为700sccm,停止通入三氯氧磷,持续时间60s;
第二步低压扩散,工艺参数为:炉内压强为110mbar,扩散温度为785℃;扩散时间为200s;氮气流量为1200 sccm;三氯氧磷流量为 950sccm;氧气流量为750sccm;
第一步升温推进,工艺参数为:炉内压强为110mbar,推进温度为850℃;推进时间为500s;氮气流量为1100sccm,三氯氧磷流量为 0sccm,氧气流量为0sccm;
第二步升温推进,先进行有氧推进,后进行无氧推进,有氧推进工艺参数为:炉内压强为110mbar,推进温度为880℃;推进时间为200s,氮气流量为1300sccm,氧气流量为200sccm;无氧推进工艺参数为:炉内压强为110mbar,推进温度为880℃;推进时间为600s,氮气流量为1300sccm;
后氧化:具有退火效果,可以修复晶格损伤等。
工艺参数为:炉内压强为50mbar~150mbar,氧化步时间维持200s~500s,通入氧气流量为500sccm~1000sccm,通入氮气流量为500sccm~2000sccm,温度750℃~800℃。
实施例2:
扩散前高温氧化:高温氧化硅片,在硅片表面预生长一层纳米级厚度的SiO2;
工艺参数为:炉内压强为110mbar,氧化步时间维持150s,通入氧气流量为6000sccm,通入氮气流量为500sccm~2000sccm,温度750℃。
低压扩散:采用分步扩散法制备PN结,具体扩散步骤如下:
第一步低压扩散,工艺参数为:炉内压强为110 mbar,扩散温度为775℃;扩散时间为185s;氮气流量为1200sccm;三氯氧磷流量为 900sccm;氧气流量为700sccm;
保温缓冲,工艺条件为:压强为110mbar,扩散温度为775℃,氮气流量为1200 sccm,氧气流量为700sccm,停止通入三氯氧磷,持续时间60s;
第二步低压扩散,工艺参数为:炉内压强为110mbar,扩散温度为785℃;扩散时间为200s;氮气流量为1200 sccm;三氯氧磷流量为 950sccm;氧气流量为750sccm;
第一步升温推进,工艺参数为:炉内压强为110mbar,推进温度为850℃;推进时间为500s;氮气流量为1100sccm,三氯氧磷流量为 0sccm;氧气流量为0sccm;
第二步升温推进,先进行有氧推进,后进行无氧推进,有氧推进工艺参数为:炉内压强为110mbar,推进温度为885℃;推进时间为200s,氮气流量为1300sccm,氧气流量为200sccm;无氧推进工艺参数为:炉内压强为110mbar,推进温度为885℃;推进时间为600s,氮气流量为1300sccm;
后氧化:具有退火效果,可以修复晶格损伤等。
工艺参数为:炉内压强为50mbar~150mbar,氧化步时间维持200s~500s,通入氧气流量为500sccm~1000sccm,通入氮气流量为500sccm~2000sccm,温度750℃~800℃。
实施例3:
扩散前高温氧化:高温氧化硅片,在硅片表面预生长一层纳米级厚度的SiO2;
工艺参数为:炉内压强为110mbar,氧化步时间维持150s,通入氧气流量为6000sccm,通入氮气流量为500sccm~2000sccm,温度750℃。
低压扩散:采用分步扩散法制备PN结,具体扩散步骤如下:
第一步低压扩散,工艺参数为:炉内压强为110 mbar,扩散温度为775℃;扩散时间为185s;氮气流量为1200sccm;三氯氧磷流量为 900sccm;氧气流量为700sccm;
保温缓冲,工艺条件为:压强为110mbar,扩散温度为775℃,氮气流量为1200 sccm,氧气流量为700sccm,停止通入三氯氧磷,持续时间60s;
第二步低压扩散,工艺参数为:炉内压强为110mbar,扩散温度为785℃;扩散时间为200s;氮气流量为1200 sccm;三氯氧磷流量为 950sccm;氧气流量为750sccm;
第一步升温推进,工艺参数为:炉内压强为110mbar,推进温度为850℃;推进时间为500s;氮气流量为1100sccm,三氯氧磷流量为 0sccm;氧气流量为0sccm;
第二步升温推进,先进行有氧推进,后进行无氧推进,有氧推进工艺参数为:炉内压强为110mbar,推进温度为890℃;推进时间为200s,氮气流量为1300sccm,氧气流量为200sccm;无氧推进工艺参数为:炉内压强为110mbar,推进温度为890℃;推进时间为600s,氮气流量为1300sccm;
后氧化:具有退火效果,可以修复晶格损伤等。
工艺参数为:炉内压强为50mbar~150mbar,氧化步时间维持200s~500s,通入氧气流量为500sccm~1000sccm,通入氮气流量为500sccm~2000sccm,温度750℃~800℃。
制绒前将硅片精准分片,除低压扩散工艺(2.4)第二步高温沉积增加温度或高温推进步时间增加不同外,其余电池片工序条件都确保一样,测得的电性能参数如下:
Figure DEST_PATH_IMAGE002
与对比组相比实施例1开路电压高1.1mV,短路电流低6mA,FF高0.24,转换效率提高0.10%。与对比组相比实施例2开路电压高0.9mV,短路电流低10mA,FF高0.40,转换效率提高0.13%。与对比组相比实施例3开路电压高了0.7mV,短路电流低13mA,FF高0.51,转换效率提高0.16%。
Figure DEST_PATH_IMAGE004
其中,电池片效率所选是同一个档位22.3%,版型为60片电池片,Pmax是最大功率,CTM为组件输出功率与电池片功率总和的百分比。实施例1CTM较对比组高0.13%,组件功率高3.9W;实施例二CTM较对比组高0.23%,组件功率高4.1W,实施例三CTM较对比组高0.30%,组件功率高4.6W。

Claims (3)

1.一种太阳能单晶高效PERC+SE电池片的低压扩散工艺,其特征在于:包括如下步骤
步骤一、扩散前高温氧化,工艺条件为:温度650℃~800℃,氮气流量500sccm~2000sccm,氧气流量为500sccm~1000sccm,压强为50mbar~150mbar,持续时间100s~200s;
步骤二、分步扩散法制备PN结
第一步低压扩散,工艺条件为:压强为50mbar~150mbar,扩散温度为750℃~ 780℃,扩散时间为100s~300s,氮气流量为1000sccm~2000 sccm,三氯氧磷流量为 600sccm~1000sccm,氧气流量为300sccm~1000sccm;
保温缓冲,工艺条件为:压强为50mbar~150mbar,扩散温度为750℃~ 780℃,氮气流量为1000sccm~2000 sccm,氧气流量为300sccm~1000sccm,停止通入三氯氧磷,持续时间50 s~70s;
第二步低压扩散,工艺条件为:压强为50mbar~150mbar,扩散温度为780℃~ 800℃,扩散时间为100s~300s,氮气流量为1000sccm~2000 sccm,三氯氧磷流量为 500sccm~1000sccm;氧气流量为300sccm~1000sccm;
第一步升温推进,工艺条件为:压强为50mbar~150mbar,推进温度为800℃~ 900℃;推进时间为300s~500s,氮气流量为1000sccm~2000 sccm;
第二步升温推进,工艺条件为:压强为50mbar~150mbar,推进温度为800℃~ 900℃;推进时间为500s~2000s,氮气流量为1000sccm~2000 sccm,氧气流量为0~500sccm;
步骤三、后氧化,工艺条件为:压强为50mbar~150mbar,氧化时间200s~500s,通入氧气流量为500~1000sccm,氮气流量为500sccm~2000sccm,温度750℃~800℃。
2.根据权利要求1所述的一种太阳能单晶高效PERC+SE电池片的低压扩散工艺,其特征在于:步骤二中的第二步升温推进分为两步,首先,采用低氧推进,然后再采用无氧推进,低氧推进工艺条件为:压强为50mbar~150mbar,推进温度为800℃~ 900℃;推进时间为100s~300s,氮气流量为1000sccm~2000 sccm,氧气流量为100~500sccm;无氧推进工艺条件为:压强为50mbar~150mbar,推进温度为800℃~ 900℃;推进时间为400s~1700s,氮气流量为1000sccm~2000 sccm。
3.根据权利要求1所述的一种太阳能单晶高效PERC+SE电池片的低压扩散工艺,其特征在于:太阳能单晶高效PERC+SE电池片为P型掺硼单晶硅片。
CN202011166593.0A 2020-10-27 2020-10-27 太阳能单晶高效perc+se电池片的低压扩散工艺 Active CN112466984B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011166593.0A CN112466984B (zh) 2020-10-27 2020-10-27 太阳能单晶高效perc+se电池片的低压扩散工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011166593.0A CN112466984B (zh) 2020-10-27 2020-10-27 太阳能单晶高效perc+se电池片的低压扩散工艺

Publications (2)

Publication Number Publication Date
CN112466984A true CN112466984A (zh) 2021-03-09
CN112466984B CN112466984B (zh) 2022-07-29

Family

ID=74835993

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011166593.0A Active CN112466984B (zh) 2020-10-27 2020-10-27 太阳能单晶高效perc+se电池片的低压扩散工艺

Country Status (1)

Country Link
CN (1) CN112466984B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114497283A (zh) * 2022-02-07 2022-05-13 通威太阳能(安徽)有限公司 一种用于硅片的扩散方法及光伏硅片

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105070787A (zh) * 2015-08-18 2015-11-18 东莞南玻光伏科技有限公司 晶体硅太阳能电池及其扩散方法
CN106784153A (zh) * 2016-12-30 2017-05-31 常州亿晶光电科技有限公司 太阳能电池片低压扩散工艺
CN109449246A (zh) * 2018-09-05 2019-03-08 浙江爱旭太阳能科技有限公司 一种硅晶体片磷扩散方法
CN109980047A (zh) * 2019-03-29 2019-07-05 山西潞安太阳能科技有限责任公司 一种匹配选择性发射极的低压扩散工艺

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105070787A (zh) * 2015-08-18 2015-11-18 东莞南玻光伏科技有限公司 晶体硅太阳能电池及其扩散方法
CN106784153A (zh) * 2016-12-30 2017-05-31 常州亿晶光电科技有限公司 太阳能电池片低压扩散工艺
CN109449246A (zh) * 2018-09-05 2019-03-08 浙江爱旭太阳能科技有限公司 一种硅晶体片磷扩散方法
CN109980047A (zh) * 2019-03-29 2019-07-05 山西潞安太阳能科技有限责任公司 一种匹配选择性发射极的低压扩散工艺

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114497283A (zh) * 2022-02-07 2022-05-13 通威太阳能(安徽)有限公司 一种用于硅片的扩散方法及光伏硅片

Also Published As

Publication number Publication date
CN112466984B (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
Yan et al. Polysilicon passivated junctions: The next technology for silicon solar cells?
CN102222726B (zh) 采用离子注入法制作交错背接触ibc晶体硅太阳能电池的工艺
NL2022765B1 (en) Step-by-Step Doping Method of Phosphorous for High-efficiency and Low-cost Crystalline Silicon Cell
US7611977B2 (en) Process of phosphorus diffusion for manufacturing solar cell
CN109449246B (zh) 一种硅晶体片磷扩散方法
CN102723266B (zh) 太阳能电池扩散方法
CN105895738A (zh) 一种钝化接触n型太阳能电池及制备方法和组件、系统
CN105304753A (zh) N型电池硼扩散工艺
CN105780127B (zh) 一种晶体硅太阳能电池的磷扩散方法
CN102637778A (zh) 一种pn结的扩散方法
CN102130211B (zh) 一种改善太阳能电池表面扩散的方法
CN102005501A (zh) 制造太阳能电池的磷扩散方法
CN114639744A (zh) 太阳能电池及其制备方法
CN112466984B (zh) 太阳能单晶高效perc+se电池片的低压扩散工艺
Feldmann et al. Industrial TOPCon solar cells realized by a PECVD tube process
WO2014026293A1 (en) Built-in vertical doping structures for the monolithic integration of tunnel junctions in photovoltaic structures
CN107871660A (zh) 一种晶体硅太阳能电池发射极磷掺杂控制方法
Schmich et al. Silicon CVD deposition for low cost applications in photovoltaics
CN110739366B (zh) 一种修复perc太阳能电池背膜激光开槽损伤的方法
CN103199152A (zh) 一种晶体硅片的磷扩散方法
CN103178157A (zh) 一种选择性发射极多晶硅太阳电池的制备方法
CN113555468B (zh) 一种提升n型硅片硼扩散方阻均匀性的工艺
CN113808927A (zh) 一种TOPCon电池磷扩散工艺
CN110943141A (zh) 硅片的扩散方法、太阳能电池及其制备方法
CN103715303A (zh) 一种提高太阳能电池填充的扩散制结方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant