CN112464368A - 一种评估轮轨黏着系数的方法 - Google Patents

一种评估轮轨黏着系数的方法 Download PDF

Info

Publication number
CN112464368A
CN112464368A CN202011319133.7A CN202011319133A CN112464368A CN 112464368 A CN112464368 A CN 112464368A CN 202011319133 A CN202011319133 A CN 202011319133A CN 112464368 A CN112464368 A CN 112464368A
Authority
CN
China
Prior art keywords
wheel
rail
locomotive
force
track
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011319133.7A
Other languages
English (en)
Inventor
张涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National High Speed Train Qingdao Technology Innovation Center
Original Assignee
National High Speed Train Qingdao Technology Innovation Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National High Speed Train Qingdao Technology Innovation Center filed Critical National High Speed Train Qingdao Technology Innovation Center
Priority to CN202011319133.7A priority Critical patent/CN112464368A/zh
Publication of CN112464368A publication Critical patent/CN112464368A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces

Abstract

本发明公开了一种评估轮轨黏着系数的方法,首先根据机车和轨道的实际结构建立机车三维模型和轨道三维模型,然后建立能实现机车三维模型和轨道三维模型动态耦合的轮轨空间相互作用模型,基于建立的轮轨空间相互作用模型计算得到轮轨法向力FN、轮轨横向蠕滑力Tx和轮轨纵向蠕滑力Ty,然后计算得出轮轨黏着系数,最后根据轮轨黏着系数评估机车运行情况。因此本发明能够准确计算机车在既定设计方案线路上的轮轨力的动态变化情况,及时检测出空转或滑行前的异常状态,可以提前采取措施,防止事故发生。

Description

一种评估轮轨黏着系数的方法
技术领域
本发明属于轨道交通领域,具体涉及一种评估轮轨黏着系数的方法。
背景技术
在铁路运输中,列车通过轮轨间相互作用产生的黏着摩擦力实现牵引或制动过程,因此轮轨黏着特性是影响列车牵引和制动的最直接因素。当机车牵引力或制动力大于轮轨黏着力时将造成车轮的持续空转,不仅会中断或降低机车牵引力或制动力,限制黏着力的利用,而且会导致轮缘与钢轨产生磨耗,对车辆运行稳定性和平稳性造成严重影响。“黏着系数”是用于评价车轮与钢轨间黏着状态的指标,它代表了机车牵引或制动功率的发挥情况。黏着系数具有随机性,变化范围大,同时受轮轨表面接触状态、车辆运行速度、运行线路条件等多种因素影响。随着铁路运输的高速化、重载化发展,轮轨接触状态必将发生变化,从而导致黏着力发生变化。因此有必要充分了解钢轨与车轮的黏着特性。
目前轮轨黏着系数的计算主要通过现场间接推算和数值仿真分析这两种手段进行。列车实际运行时通常采用列车运行控制装置(LKJ)实时检测轮轨黏着状态,LKJ作为铁路行车的安全保障设备,在实现安全控制速度的同时可以采集记录与列车运行安全有关的各种机车运行状态信息。该装置目前主要有两种方法估算列车参考速度:通过转速传感器获取机车全部轮对的当前轮轴转速信号,间接计算机车运行速度值;或通过雷达速度传感器实现对列车速度信号的实时采集。将采集到的某一轮对的转速与车轮半径的乘积和列车参考速度进行比较,当二者差值过大且达到判别空转的阈值时,则判断该轮对发生空转或滑行。
在轮轨黏着特性的仿真分析中,为研究轮轨间存在“第三介质”时的接触特性,通常应用弹性流体动力润滑理论,建立二维或三维轮轨简化数值模型。轮轨间牵引力由液体和固体两部分组成,前者由水膜的剪切牵引系数和轮轨间水膜承载载荷相乘得到,后者由微凸体间的摩擦系数和微凸体承载的载荷相乘求得。轮轨间牵引力与法向载荷比值即为计算得到的轮轨黏着系数。该数值模型可以分别考虑到运行速度、轮轨表面粗糙度、接触压力等因素对黏着系数的影响。
发明人在实际使用过程中发现,这些现有技术至少存在以下技术问题:
1.通过现场间接推算轮轨黏着状态,无法直接计算出黏着系数当下的具体数值,因此不能及时检测出空转或滑行前的异常状态,无法提前采取相关措施。
2.复杂的轮轨接触模型需要大量数值计算,现有对轮轨黏着特性的仿真分析无法同时考虑多种因素耦合的影响,无法较好地反映实际情况。
发明内容
为克服上述存在之不足,本发明的发明人通过长期的探索尝试以及多次的实验和努力,不断改革与创新,提出了一种评估轮轨黏着系数的方法,其可以同时考虑多种因素耦合的影响,准确计算机车在既定设计方案线路上的轮轨力的动态变化情况,同时根据计算结果求解每一时刻下的轮轨黏着系数,因此能够及时检测出空转或滑行前的异常状态,可以提前采取措施。
为实现上述目的本发明所采用的技术方案是:提供一种评估轮轨黏着系数的方法,包括以下步骤:
S1,根据机车实际结构,构建机车三维模型;根据轨道实际线路结构和轮轨表面接触状态,建立轨道三维模型;
S2,根据轮轨型面和轨道不平顺建立能实现机车三维模型和轨道三维模型动态耦合的轮轨空间相互作用模型;
S3,基于建立的轮轨空间相互作用模型,计算得到轮轨法向力、轮轨横向蠕滑力和轮轨纵向蠕滑力的动态变化情况;
S4,通过获得的轮轨横向蠕滑力和轮轨纵向蠕滑力求解轮轨切向力,计算轮轨切向力与轮轨法向力的比值得到轮轨黏着系数;
S5,根据轮轨黏着系数评估机车运行情况。
根据本发明所述的一种评估轮轨黏着系数的方法,其进一步的优选技术方案是:所述轨道三维模型为有砟轨道模型,包括钢轨、扣件、轨枕和道床。
根据本发明所述的一种评估轮轨黏着系数的方法,其进一步的优选技术方案是:所述机车三维模型包括端部的车头和与车头连接的车厢。
根据本发明所述的一种评估轮轨黏着系数的方法,其进一步的优选技术方案是:所述机车三维模型为重载列车模型。
根据本发明所述的一种评估轮轨黏着系数的方法,其进一步的优选技术方案是:所述机车三维模型的车头包括车体、构架、牵引拉杆、牵引电机和轮对,并采用弹簧阻尼系统模拟悬挂连接。
根据本发明所述的一种评估轮轨黏着系数的方法,其进一步的优选技术方案是:所述车体、构架和轮对均有纵向、横向、垂向、侧滚、点头和摇头6个自由度。
根据本发明所述的一种评估轮轨黏着系数的方法,其进一步的优选技术方案是:所述机车三维模型的车厢均为单质点模型,仅有纵向的自由度。
根据本发明所述的一种评估轮轨黏着系数的方法,其进一步的优选技术方案是:在S3中,根据轮轨空间相互作用模型建立系统动力学积分方程,并通过显式积分算法计算该方程,得到机车三维模型和轨道三维模型的振动响应,进而得到轮轨法向力、轮轨横向蠕滑力和轮轨纵向蠕滑力的动态变化情况。
根据本发明所述的一种评估轮轨黏着系数的方法,其进一步的优选技术方案是:计算得到机车三维模型和轨道三维模型的振动响应后,先根据迹线法计算轮轨空间接触几何关系,然后采用赫兹非线性弹性接触理论计算轮轨法向力,采用沈氏理论计算轮轨横向蠕滑力和纵向蠕滑力。
根据本发明所述的一种评估轮轨黏着系数的方法,其进一步的优选技术方案是:所述轮轨切向力通过
Figure BDA0002792288740000041
计算得出。
相比现有技术,本发明的技术方案具有如下优点/有益效果:
1.本发明根据实际机车结构和实际线路情况建立相应机车三维模型和轨道三维模型,然后建立能使机车三维模型和轨道三维模型轮轨动态耦合的空间相互作用模型,并通过空间相互作用模型进行仿真计算,机车结构、线路情况都是以真实数据为准,可以计算在不同操纵模式下机车的轮轨力动态响应以及轮轨黏着系数变化,根据这些数据提前预判机车的运行情况,并采取相关措施,减少事故的发生。
2.本发明建立了能使机车三维模型和轨道三维模型轮轨动态耦合的空间相互作用模型,并充分考虑多种因素耦合的影响,例如轮轨表面接触状态、轨道不平顺和运行速度等,使计算得到的仿真数据能较好地反映实际情况,能够为列车在不同运行工况下轮轨黏着的利用情况提供理论与数据支撑,为列车安全、稳定的运营提供技术保障。
附图说明
为了更清楚地说明本发明实施方式的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1是本发明操作流程示意图。
图2是本发明实施例中列车运行速度变化曲线示意图。
图3是本发明实施例轮轨法向力变化示意图。
图4是本发明实施例纵向蠕滑力变化示意图。
图5是本发明实施例横向蠕滑力变化示意图。
图6是本发明实施例黏着系数变化示意图。
图中标记分别为:1一号车轮、2二号车轮、3三号车轮、4四号车轮。
具体实施方式
为使本发明目的、技术方案和优点更加清楚,下面对本发明实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式是本发明的一部分实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。因此,以下提供的本发明的实施方式的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施方式。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中可以不对其进行进一步定义和解释。
实施例:
如图1所示,本发明一种评估轮轨黏着系数的方法包括以下步骤:
S1,在matlab软件中根据重载机车结构和参数,构建机车三维模型,所述机车三维模型包括位于同一端并相连的两节车头和与车头连接的车厢,所述车厢有50节,每节所述车头由一个车体、两个构架、两个牵引拉杆、四个牵引电机和四个轮对组成,并采用弹簧阻尼系统模拟悬挂连接,所述车体、构架和轮对均有纵向、横向、垂向、侧滚、点头和摇头6个自由度,为简化运算,所述车厢为单质点模型,仅有纵向的自由度;根据有砟轨道结构和参数,建立轨道三维模型,所述轨道三维模型包括钢轨、扣件、轨枕和道床等构件。在轨道三维模型的600~850m上设置了一段低黏着区间,其余线路均为干燥的轮轨黏着状态。
S2,根据轮轨型面和轨道不平顺建立轮轨空间相互作用模型,轮轨空间相互作用模型能实现机车三维模型和轨道三维模型动态耦合,所述钢轨为CN60型面,车轮为JM-3踏面。设定机车三维模型初始运行速度为75km/h,在轨道惰行450m后开始制动,如图2所示。
S3,轮轨空间相互作用模型将机车三维模型和轨道三维模型联系起来,基于轮轨空间相互作用模型建立系统动力学积分方程,然后通过显式积分算法计算该方程,得到机车三维模型和轨道三维模型的振动响应,根据迹线法计算轮轨空间接触几何关系,然后采用赫兹非线性弹性接触理论计算轮轨法向力FN,采用沈氏理论计算轮轨横向蠕滑力Tx和纵向蠕滑力Ty,进而得到轮轨法向力、轮轨横向蠕滑力和轮轨纵向蠕滑力的动态变化情况,如图3至图5所示。
S4,通过获得的轮轨横向蠕滑力Tx和轮轨纵向蠕滑力Ty求解轮轨切向力,轮轨切向力通过
Figure BDA0002792288740000061
计算得出,计算轮轨切向力与轮轨法向力FN的比值得到轮轨黏着系数,即
Figure BDA0002792288740000062
S5,根据轮轨黏着系数评估机车运行情况,黏着系数越高则说明轮轨黏着利用效率越高,若在牵引或制动过程中黏着系数出现了大幅度降低则认为车轮出现了空转或滑行。如图6所示,列车在惰行过程中(0m-450m),轮轨黏着系数维持在一个较低的范围内,而在制动过程中(450m-600m),黏着系数明显增大,即轮轨黏着利用率明显提升。在低黏着区间运行时(600m-850m),黏着系数大幅度下降,轮轨黏着利用率大幅度降低,车轮可能出现了空转或滑行。驶过低黏着区间(850m)后,相比低黏着区间运行时,黏着系数明显增大。可以看出低黏着的轮轨接触状态对机车的制动效率有较大影响,通过分析轮轨黏着系数可以对机车运行情况进行评估。
图2为在该仿真工况下计算得到的机车三维模型运行速度变化曲线,图3~5为第一节车头4个轮对的轮轨法向力、轮轨蠕滑力动态响应。可以看出在列车惰行运行过程中(0m-450m),4个轮对的法向力、蠕滑力值差别不大,但是在施加制动载荷后轮轨力均产生了变化。如图3所示,在机车制动运行工况下(450m-600m),轮轨法向力发生了轴重转移,其中1、2号车轮增载,3、4号车轮减载。在低黏着区段运行时(600m-850m),4个轮对轮轨法向力的轴重转移量有所降低。如图4和图5所示,在机车制动载荷的作用下(850m后),4个轮对的纵向蠕滑力增大,横向蠕滑力减小。在低黏着轮轨接触状态下,相对于干燥的轮轨黏着状态,纵向蠕滑力明显降低,横向蠕滑力的波动幅度有所减小。图6为通过以上轮轨力计算得到的轮轨黏着系数,可以直观地看出列车在运行过程中轮轨黏着利用情况。因此该方法可以快速、高效地对列车运行过程中的轮轨黏着系数进行评估,从而为实际线路运行列车的黏着利用情况提供指导和建议。
以上仅是本发明的优选实施方式,应当指出的是,上述优选实施方式不应视为对本发明的限制,本发明的保护范围应当以权利要求所限定的范围为准。对于本技术领域的普通技术人员来说,在不脱离本发明的精神和范围内,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种评估轮轨黏着系数的方法,其特征在于,包括以下操作:
S1,根据机车实际结构,构建机车三维模型;根据轨道实际线路结构和轮轨表面接触状态,建立轨道三维模型;
S2,根据轮轨型面和轨道不平顺建立能实现机车三维模型和轨道三维模型动态耦合的轮轨空间相互作用模型;
S3,基于建立的轮轨空间相互作用模型,计算得到轮轨法向力FN、轮轨横向蠕滑力Tx和轮轨纵向蠕滑力Ty的动态变化情况;
S4,通过获得的轮轨横向蠕滑力Tx和轮轨纵向蠕滑力Ty求解轮轨切向力,计算轮轨切向力与轮轨法向力的比值得到轮轨黏着系数;
S5,根据轮轨黏着系数评估机车运行情况。
2.根据权利要求1所述的一种评估轮轨黏着系数的方法,其特征在于,所述轨道三维模型为有砟轨道模型,包括钢轨、扣件、轨枕和道床。
3.根据权利要求1所述的一种评估轮轨黏着系数的方法,其特征在于,所述机车三维模型包括端部的车头和与车头连接的车厢。
4.根据权利要求3所述的一种评估轮轨黏着系数的方法,其特征在于,所述机车三维模型为重载列车模型。
5.根据权利要求3所述的一种评估轮轨黏着系数的方法,其特征在于,所述机车三维模型的车头包括车体、构架、牵引拉杆、牵引电机和轮对,并采用弹簧阻尼系统模拟悬挂连接。
6.根据权利要求5所述的一种评估轮轨黏着系数的方法,其特征在于,所述车体、构架和轮对均有纵向、横向、垂向、侧滚、点头和摇头6个自由度。
7.根据权利要求3所述的一种评估轮轨黏着系数的方法,其特征在于,所述机车三维模型的车厢均为单质点模型,且仅有纵向的自由度。
8.根据权利要求1所述的一种评估轮轨黏着系数的方法,其特征在于,在S3中,根据轮轨空间相互作用模型建立系统动力学积分方程,并通过显式积分算法计算该方程,得到机车三维模型和轨道三维模型的振动响应,进而得到轮轨法向力FN、轮轨横向蠕滑力Tx和轮轨纵向蠕滑力Ty的动态变化情况。
9.根据权利要求8所述的一种评估轮轨黏着系数的方法,其特征在于,计算得到机车三维模型和轨道三维模型的振动响应后,先根据迹线法计算轮轨空间接触几何关系,然后采用赫兹非线性弹性接触理论计算轮轨法向力FN,采用沈氏理论计算轮轨横向蠕滑力Tx和纵向蠕滑力Ty
10.根据权利要求1所述的一种评估轮轨黏着系数的方法,其特征在于,所述轮轨切向力通过
Figure FDA0002792288730000021
计算得出。
CN202011319133.7A 2020-11-23 2020-11-23 一种评估轮轨黏着系数的方法 Pending CN112464368A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011319133.7A CN112464368A (zh) 2020-11-23 2020-11-23 一种评估轮轨黏着系数的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011319133.7A CN112464368A (zh) 2020-11-23 2020-11-23 一种评估轮轨黏着系数的方法

Publications (1)

Publication Number Publication Date
CN112464368A true CN112464368A (zh) 2021-03-09

Family

ID=74798976

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011319133.7A Pending CN112464368A (zh) 2020-11-23 2020-11-23 一种评估轮轨黏着系数的方法

Country Status (1)

Country Link
CN (1) CN112464368A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113139293A (zh) * 2021-04-29 2021-07-20 国家高速列车青岛技术创新中心 一种铁道车辆橡胶元件的动态仿真建模方法
CN114802350A (zh) * 2021-09-28 2022-07-29 株洲中车时代电气股份有限公司 列车滑行异常检测方法、装置、存储介质及电子设备
CN115659873A (zh) * 2022-12-12 2023-01-31 西南交通大学 一种气动升力协同高速列车轮轨黏着性能评估方法
CN117851727A (zh) * 2024-03-06 2024-04-09 西南交通大学 机车起动最优牵引力确定方法
CN117851727B (zh) * 2024-03-06 2024-05-14 西南交通大学 机车起动最优牵引力确定方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090076742A1 (en) * 2005-06-08 2009-03-19 The University Of Queensland Estimation of wheel rail interaction forces
CN203881550U (zh) * 2014-05-27 2014-10-15 华东交通大学 多工况轮轨黏着系数测试实验机
CN104679938A (zh) * 2015-01-21 2015-06-03 中国神华能源股份有限公司 用于评估重载列车及轨道耦合系统动态性能的方法
CN105550453A (zh) * 2015-12-22 2016-05-04 成都市新筑路桥机械股份有限公司 一种有轨电车及其嵌入式轨道耦合动力学模型的建模方法
CN109657339A (zh) * 2018-12-17 2019-04-19 西南交通大学 一种铁道车辆坡道运行综合性能的评估方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090076742A1 (en) * 2005-06-08 2009-03-19 The University Of Queensland Estimation of wheel rail interaction forces
CN203881550U (zh) * 2014-05-27 2014-10-15 华东交通大学 多工况轮轨黏着系数测试实验机
CN104679938A (zh) * 2015-01-21 2015-06-03 中国神华能源股份有限公司 用于评估重载列车及轨道耦合系统动态性能的方法
CN105550453A (zh) * 2015-12-22 2016-05-04 成都市新筑路桥机械股份有限公司 一种有轨电车及其嵌入式轨道耦合动力学模型的建模方法
CN109657339A (zh) * 2018-12-17 2019-04-19 西南交通大学 一种铁道车辆坡道运行综合性能的评估方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
凌亮: ""高速列车—轨道三维刚柔耦合动力学研究"", 《中国优秀博硕士学位论文全文数据库(博士)工程科技Ⅱ辑》 *
张振先等: ""复杂运行环境下高速轮轨最佳撒砂增黏策略试验"", 《中国铁道科学》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113139293A (zh) * 2021-04-29 2021-07-20 国家高速列车青岛技术创新中心 一种铁道车辆橡胶元件的动态仿真建模方法
CN114802350A (zh) * 2021-09-28 2022-07-29 株洲中车时代电气股份有限公司 列车滑行异常检测方法、装置、存储介质及电子设备
CN115659873A (zh) * 2022-12-12 2023-01-31 西南交通大学 一种气动升力协同高速列车轮轨黏着性能评估方法
CN115659873B (zh) * 2022-12-12 2023-03-17 西南交通大学 一种气动升力协同高速列车轮轨黏着性能评估方法
CN117851727A (zh) * 2024-03-06 2024-04-09 西南交通大学 机车起动最优牵引力确定方法
CN117851727B (zh) * 2024-03-06 2024-05-14 西南交通大学 机车起动最优牵引力确定方法

Similar Documents

Publication Publication Date Title
CN112464368A (zh) 一种评估轮轨黏着系数的方法
CN109657339B (zh) 一种铁道车辆坡道运行综合性能的评估方法
Liu et al. High-speed train overturning safety under varying wind speed conditions
Sharma Recent advances in railway vehicle dynamics
Ding et al. Application of the semi-Hertzian method to the prediction of wheel wear in heavy haul freight car
CN109766635B (zh) 一种机车机械部件状态感知传感器优化布局方法
CN111859610A (zh) 一种考虑优化列车操纵方式的铁路货车安全评估方法
JPWO2010064453A1 (ja) 脱線予兆の検知方法および脱線再現装置
CN113624521A (zh) 一种基于轴箱振动的列车蛇形失稳的监测方法和系统
CN111859580A (zh) 一种铁路线路线型动态分析与设计方法
RU2394120C2 (ru) Способ оценки состояния железнодорожного пути
Xiao et al. The traction behaviour of high-speed train under low adhesion condition
Sun et al. A novel measuring system for high-speed railway vehicles hunting monitoring able to predict wheelset motion and wheel/rail contact characteristics
Chen et al. Mechanism of track random irregularity affecting dynamic characteristics of rack vehicle
KR20130013133A (ko) 차축에 작용하는 외력을 이용한 차륜의 탈선 예측방법
CN111444574A (zh) 基于动力学分析的传感器布局优化方法
CN112364426B (zh) 基于行车安全及动力响应的铁路桥墩伤损评定方法及系统
CN113654699A (zh) 轮轨垂向力检测方法及装置
Allotta et al. Numerical simulation of a HIL full scale roller-rig model to reproduce degraded adhesion conditions in railway applications
Petrov et al. Mathematical Model of Wheel Pairs Movement of a Rail Vehicles
CN111639395B (zh) 横向扩轨下车辆振动信息的获取装置和方法
Wang et al. A diagnostic method of freight wagons hunting performance based on wayside hunting detection system
Wu et al. Coupler force and fatigue assessments with stochasticdraft gear frictions
Tong et al. Research on the evaluation criteria for safety state of train operation based on the scaled model
CN113139293A (zh) 一种铁道车辆橡胶元件的动态仿真建模方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Zhang Tao

Inventor after: Guo Xinru

Inventor after: Ling Liang

Inventor after: Jin Xiao

Inventor after: Jin Taimu

Inventor after: Wang Kaiyun

Inventor after: Zhai Wanming

Inventor before: Zhang Tao

CB03 Change of inventor or designer information