CN112462107B - Probe and socket matching method - Google Patents

Probe and socket matching method Download PDF

Info

Publication number
CN112462107B
CN112462107B CN202011365971.8A CN202011365971A CN112462107B CN 112462107 B CN112462107 B CN 112462107B CN 202011365971 A CN202011365971 A CN 202011365971A CN 112462107 B CN112462107 B CN 112462107B
Authority
CN
China
Prior art keywords
probe
socket
frame
insulating
hollow shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011365971.8A
Other languages
Chinese (zh)
Other versions
CN112462107A (en
Inventor
金永斌
贺涛
丁宁
朱伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Fatedi Technology Co ltd
Original Assignee
FTdevice Technology Suzhou Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FTdevice Technology Suzhou Co Ltd filed Critical FTdevice Technology Suzhou Co Ltd
Priority to CN202011365971.8A priority Critical patent/CN112462107B/en
Publication of CN112462107A publication Critical patent/CN112462107A/en
Application granted granted Critical
Publication of CN112462107B publication Critical patent/CN112462107B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06733Geometry aspects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/07314Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card the body of the probe being perpendicular to test object, e.g. bed of nails or probe with bump contacts on a rigid support
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/66Testing of connections, e.g. of plugs or non-disconnectable joints
    • G01R31/68Testing of releasable connections, e.g. of terminals mounted on a printed circuit board
    • G01R31/69Testing of releasable connections, e.g. of terminals mounted on a printed circuit board of terminals at the end of a cable or a wire harness; of plugs; of sockets, e.g. wall sockets or power sockets in appliances

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Measuring Leads Or Probes (AREA)

Abstract

The invention relates to a probe and socket matching method, belonging to the technical field of semiconductor testing; the method comprises the steps that firstly, under the condition that the direction of a bending structure below a probe is consistent with that of an insulating column in an equalizing frame, the probe structure is inserted towards the direction of a socket structure, then the probe rotates around the probe, the bending structure points to a conducting layer, the equalizing frame is moved downwards at the moment to enable the bending structure below the probe to be in contact with the conducting layer, at the moment, the probe is tested, then the equalizing frame is moved upwards to enable the insulating column in the equalizing frame to be separated from an insulating plate on a triangular base, the probe rotates around the probe, the direction of the bending structure below the probe is consistent with that of the insulating column in the equalizing frame, and finally the probe structure is pulled out of the socket structure; the probe and the socket matching method reduce the alignment difficulty of the probe and the socket, are not easy to damage the probe, realize the reversibility of the disassembly and assembly process, are beneficial to carrying out repeatability test, and can solve the problem of short circuit caused by discharge between the probes under large current.

Description

Probe and socket matching method
Technical Field
The invention discloses a probe and socket matching method, and belongs to the technical field of semiconductor testing.
Background
With the development of semiconductor technology and MEMS technology, the integrated circuit chip structure is becoming more and more complex. In order to ensure the electrical quality of the integrated circuit, testing is required prior to chip packaging. During the test, the probe can be inserted into the socket for testing. However, as the size of the probe is gradually reduced, the alignment between the probe and the socket becomes difficult at the micron or even submicron size, and if the probe is inserted hard (the socket is not adjusted and fixed with the probe), the probe is easily damaged, and meanwhile, the probe is bent due to the insertion, so that the distance between two adjacent probes is too short, and during the high-power chip testing process, the problem of short circuit caused by the discharge between the probes is easily caused due to too large current.
Meanwhile, the precision measurement technology tells us that the repeated test of the probe is very important if the test result has a larger confidence interval, namely the test result is more reliable and reliable, and multiple measurements are needed, and the repeated test of the probe and the socket is very difficult to assemble and disassemble under the micron-scale or even submicron-scale size without damaging the probe.
The invention discloses a probe device of a vertical probe card, which is applied by the Chinese precision measurement science and technology corporation and has the application number of 201711115635.6, and relates to a needle mounting method. However, this method lacks a structure for precisely positioning the intermediate guide plate, so that when the intermediate guide plate is moved, the bending degree of the probe easily exceeds the elastic deformation range, the probe is not recoverable, and the probe mounting and dismounting are not reversible, so that the repeated test of mounting and dismounting the uniform probe cannot be performed.
Disclosure of Invention
Aiming at the problems, the invention discloses a probe and socket matching method, which is characterized in that through the mechanism arrangement of a triangular base and a uniform frame, and the steps of inserting, aligning and contacting are matched at the same time, so that the aligning difficulty of the probe and the socket is reduced, the probe is not easy to damage, the assembling and disassembling process is reversible, the repeatability test is facilitated, the distance between the probes can be limited, and the problem of short circuit caused by discharge between the probes under large current is solved.
The purpose of the invention is realized as follows:
a probe and socket structure comprises a probe structure and a socket structure which are matched with each other,
the probe structure comprises a limiting plate and probes which penetrate through the limiting plate and are distributed in an array mode, the probes can rotate around the probes, gears are arranged above the limiting plate, a rack frame is arranged on the same plane with the gears, the rack frame is composed of a plurality of parallel racks, the racks are meshed with the gears, bending structures are arranged below the probes, and the bending structures of all the probes bend in the same direction;
the socket structure comprises a substrate, a triangular base capable of sliding on the substrate and an even distribution frame capable of moving up and down; one side of the triangular base is provided with an opening, the inner side face of the opening is provided with a conducting layer, the conducting layer penetrates through the base plate from the lower portion of the triangular base through a conducting wire to be connected with the outside, the other side of the triangular base is provided with an insulating plate, the equal-division frame is composed of a plurality of parallel insulating columns with the same interval, and the direction of each insulating column is perpendicular to the direction of the rack.
According to the probe and socket structure, the bearing is arranged between the probe and the limiting plate, the outer ring of the bearing is in interference fit with the limiting plate, and the inner ring of the bearing is in interference fit with the probe.
According to the probe and socket structure, in the rack frame, the two ends of a plurality of parallel racks are respectively provided with the synchronous plates, the outer end part of one synchronous plate is provided with the lead screw, the lead screw is provided with the nut capable of rotating around the lead screw, the nut is installed inside the hollow shaft motor, the hollow shaft motor operates to drive the nut to rotate, and then the synchronous plates are driven to translate, and finally the probe is driven to rotate.
Above-mentioned probe and socket structure, be provided with the slide on the base plate, the triangle body base is sat on the slide to can move on the slide, the slide both ends are provided with spacing portion for inject the orbit of triangle body base, the base plate is provided with the wire guide in the middle of two adjacent slides, the wire stretches out from the wire guide, connects the outside.
The utility model provides a probe structure, includes the limiting plate, runs through the limiting plate and becomes array distribution's probe, the probe can be around self rotation, and the probe is provided with the gear above the limiting plate, on with the gear coplanar, is provided with the rack frame, the rack frame comprises the rack of a plurality of parallels, rack and gear engagement, the below of probe is provided with curved structure, and the curved structure of all probes is crooked to same direction.
A socket structure comprises a base plate, a triangular base capable of sliding on the base plate and an even distribution frame capable of moving up and down; one side of the triangular base is provided with an opening, the inner side face of the opening is provided with a conducting layer, the conducting layer penetrates through the base plate from the lower portion of the triangular base through a conducting wire to be connected with the outside, the other side of the triangular base is provided with an insulating plate, the equal-division frame is composed of a plurality of parallel insulating columns with the same interval, and the direction of each insulating column is perpendicular to the direction of the rack.
A probe and socket matching method comprises the following steps:
step a, operating a hollow shaft motor to enable a bending structure below a probe to be consistent with the direction of an insulating column in an equalizing frame;
b, inserting the probe structure to a fixed depth towards the socket structure;
c, operating a hollow shaft motor to enable the probe to rotate around the hollow shaft motor, wherein the bent structure below the probe points to the conductive layer on the inner side surface of the opening in the triangular base;
d, moving the uniform frame downwards to enable the insulating columns in the uniform frame to be in contact with the insulating plate on the triangular base, and further enabling the bent structure below the probe to be in contact with the conductive layer;
step e, testing the probe;
step f, moving the equalizing frame upwards to separate the insulating columns in the equalizing frame from the insulating plates on the triangular base;
step g, operating a hollow shaft motor to enable the probe to rotate around the hollow shaft motor, and enabling the bending structure below the probe to be consistent with the direction of the insulating column in the uniform distribution frame;
and h, pulling the probe structure out of the socket structure.
Has the advantages that:
first, owing to be provided with can be on the base plate gliding triangle base, consequently only need the probe fall into between two triangle bases can, consequently reduced the alignment degree of difficulty between probe and the socket, simultaneously, because the probe is at the in-process of inserting or contactless triangle base, or slightly contact with triangle base, consequently avoided the condition of "hard inserting", make the probe not fragile, be favorable to carrying out the repeatability test.
The second, because the probe below is provided with curved structure, and crooked direction receives rack frame's restriction, bends to same direction forever, just so can ensure that the distance between the probe is restricted, can not reach the distance that discharges, in addition, the triangle base is provided with the insulation board, can make equally insulating between two probes, discharges between the probe under the avoiding heavy current and cause the problem of short circuit.
Thirdly, under the structure of the probe and the socket, the matching method of the probe and the socket is matched, the assembling and disassembling processes of the probe are reciprocal, and in the assembling and disassembling process of the probe, because the bending direction of the bending structure is consistent with the direction of the insulating column in the uniform frame, the bending structure cannot interfere with the notch on the triangular base, the probe is further ensured not to be damaged in the assembling and disassembling process, and the repeated test is also facilitated.
Drawings
FIG. 1 is a schematic diagram of the matching relationship between the probe structure and the socket structure of the present invention.
FIG. 2 is a first schematic diagram of the probe structure of the present invention.
FIG. 3 is a schematic diagram of the probe structure of the present invention.
Fig. 4 is a schematic view of the socket structure of the present invention.
FIG. 5 is a flow chart of a method for mating a probe and a socket according to the present invention.
In the figure: 1-1 limiting plate, 1-2 probe, 1-3 gear, 1-4 rack frame, 1-4-1 rack, 1-4-2 synchronous plate, 1-4-3 lead screw, 1-4-4 nut, 1-4-5 hollow shaft motor, 1-5 bearing, 2-1 base plate, 2-1-1 slideway, 2-1-2 limiting part, 2-1-3 wire hole, 2-2 triangular base, 2-2-1 conducting layer, 2-2-2 conducting wire, 2-2-3 insulating plate and 2-3 uniform frame.
Detailed Description
The following describes embodiments of the present invention in further detail with reference to the accompanying drawings.
Detailed description of the invention
The following are specific embodiments of the probe and socket structure of the present invention.
The probe and socket structure in this embodiment includes a probe structure and a socket structure that are matched with each other, and the matching relationship is shown in fig. 1;
the probe structure is shown in fig. 2 and fig. 3, and comprises a limiting plate 1-1 and probes 1-2 which penetrate through the limiting plate 1-1 and are distributed in an array, wherein the probes 1-2 can rotate around themselves, a gear 1-3 is arranged above the limiting plate 1-1 of the probe 1-2, a rack frame 1-4 is arranged on the same plane with the gear 1-3, the rack frame 1-4 is composed of a plurality of parallel racks 1-4-1, the racks 1-4-1 are meshed with the gear 1-3, a bending structure is arranged below the probe 1-2, and the bending structures of all the probes 1-2 bend in the same direction;
the socket structure is shown in fig. 4 and comprises a base plate 2-1, a triangular base 2-2 capable of sliding on the base plate 2-1 and an even distribution frame 2-3 capable of moving up and down; one side of the triangular base 2-2 is provided with a notch, the inner side surface of the notch is provided with a conducting layer 2-2-1, the conducting layer 2-2-1 penetrates through the base plate 2-1 from the lower part of the triangular base 2-2 through a conducting wire 2-2-2 to be connected with the outside, the other side of the triangular base 2-2 is provided with an insulating plate 2-2-3, the uniform frame 2-3 is composed of a plurality of parallel insulating columns with the same interval, and the direction of the insulating columns is perpendicular to the direction of the rack 1-4-1.
Detailed description of the invention
The following are specific embodiments of the probe and socket structure of the present invention.
In the probe and socket structure according to the first embodiment, it is further limited that a bearing 1-5 is disposed between the probe 1-2 and the limiting plate 1-1, an outer ring of the bearing 1-5 is in interference fit with the limiting plate 1-1, and an inner ring of the bearing 1-5 is in interference fit with the probe 1-2, as shown in fig. 2.
Detailed description of the invention
The following are specific embodiments of the probe and socket structure of the present invention.
The probe and socket structure according to the present embodiment is further defined in the rack frames 1 to 4 in addition to the first embodiment, both ends of a plurality of parallel racks 1-4-1 are provided with synchronous plates 1-4-2, the outer end part of one synchronous plate 1-4-2 is provided with a screw rod 1-4-3, the screw rod 1-4-3 is provided with a nut 1-4-4 which can rotate around itself, the nut 1-4-4 is arranged inside the hollow shaft motor 1-4-5, the hollow shaft motor 1-4-5 operates to drive the nut 1-4-4 to rotate, thereby driving the synchronous plate 1-4-2 to translate and finally driving the probe 1-2 to rotate, as shown in fig. 3.
Detailed description of the invention
The following are specific embodiments of the probe and socket structure of the present invention.
In the probe and socket structure of the present embodiment, on the basis of the first specific embodiment, it is further limited that a slide 2-1-1 is disposed on a substrate 2-1, a triangular base 2-2 sits on the slide 2-1-1 and can move on the slide 2-1-1, two ends of the slide 2-1-1 are provided with limiting portions 2-1-2 for limiting a moving track of the triangular base 2-2, the substrate 2-1 is provided with a wire guide 2-1-3 between two adjacent slides 2-1-1, and the wire 2-2-2 extends out of the wire guide 2-1-3 and is connected to the outside, as shown in fig. 4.
Detailed description of the invention
The following are specific embodiments of the probe structure of the present invention.
The probe structure in the embodiment, as shown in fig. 2 and fig. 3, includes a limiting plate 1-1 and probes 1-2 penetrating through the limiting plate 1-1 and distributed in an array, the probes 1-2 can rotate around themselves, the probes 1-2 are provided with gears 1-3 above the limiting plate 1-1, a rack frame 1-4 is provided on the same plane with the gears 1-3, the rack frame 1-4 is composed of a plurality of parallel racks 1-4-1, the racks 1-4-1 are engaged with the gears 1-3, a bending structure is provided below the probes 1-2, and the bending structures of all the probes 1-2 are bent in the same direction.
Detailed description of the invention
The following is a specific embodiment of the socket structure of the present invention.
As shown in fig. 4, the socket structure of the present embodiment includes a base plate 2-1, a triangular base 2-2 capable of sliding on the base plate 2-1, and an even distribution frame 2-3 capable of moving up and down; one side of the triangular base 2-2 is provided with a notch, the inner side surface of the notch is provided with a conducting layer 2-2-1, the conducting layer 2-2-1 penetrates through the base plate 2-1 from the lower part of the triangular base 2-2 through a conducting wire 2-2-2 to be connected with the outside, the other side of the triangular base 2-2 is provided with an insulating plate 2-2-3, the uniform frame 2-3 is composed of a plurality of parallel insulating columns with the same interval, and the direction of the insulating columns is perpendicular to the direction of the rack 1-4-1.
Detailed description of the invention
The following are specific embodiments of the probe and socket matching method of the present invention.
A flow chart of the probe and socket matching method in this embodiment is shown in fig. 5, and the probe and socket matching method includes the following steps:
step a, a hollow shaft motor 1-4-5 is operated, so that the direction of a bending structure below a probe 1-2 is consistent with that of an insulating column in an equalizing frame 2-3;
b, inserting the probe structure to a fixed depth towards the socket structure;
step c, operating a hollow shaft motor 1-4-5 to enable the probe 1-2 to rotate around the hollow shaft motor, wherein the bent structure below the probe 1-2 points to the conducting layer 2-2-1 on the inner side surface of the opening in the triangular base 2-2;
d, moving the uniform distribution frame 2-3 downwards to enable the insulating columns in the uniform distribution frame 2-3 to be in contact with the insulating plates 2-2-3 on the triangular base 2-2, and further enabling the bent structure below the probe 1-2 to be in contact with the conducting layer 2-2-1;
step e, testing the probe 1-2;
step f, moving the uniform distribution frame 2-3 upwards to separate the insulating columns in the uniform distribution frame 2-3 from the insulating plates 2-2-3 on the triangular base 2-2;
step g, operating a hollow shaft motor 1-4-5 to enable a probe 1-2 to rotate around the hollow shaft motor, and enabling a bending structure below the probe 1-2 to be consistent with the direction of an insulating column in an equalizing frame 2-3;
and h, pulling the probe structure out of the socket structure.
It should be noted that all the technical features listed in the above embodiments can be arranged and combined without contradiction, and those skilled in the art can exhaust the results of each arrangement and combination according to the mathematical knowledge of the arrangement and combination learned in the high-school stage, and all the results of the arrangement and combination should be understood as being disclosed in the present application.

Claims (1)

1. A probe and socket matching method is characterized by comprising the following steps:
step a, a hollow shaft motor (1-4-5) operates to enable a bending structure below a probe (1-2) to be consistent with the direction of an insulating column in an equalizing frame (2-3);
b, inserting the probe structure to a fixed depth towards the socket structure;
step c, operating the hollow shaft motor (1-4-5) to enable the probe (1-2) to rotate around the hollow shaft motor, wherein the bent structure below the probe (1-2) points to the conducting layer (2-2-1) on the inner side surface of the notch in the triangular base (2-2);
d, moving the uniform distribution frame (2-3) downwards to enable the insulating column in the uniform distribution frame (2-3) to be in contact with the insulating plate (2-2-3) on the triangular base (2-2), and further enabling the bent structure below the probe (1-2) to be in contact with the conducting layer (2-2-1);
step e, testing the probe (1-2);
step f, moving the equalizing frame (2-3) upwards to separate the insulating columns in the equalizing frame (2-3) from the insulating plates (2-2-3) on the triangular base (2-2);
step g, operating a hollow shaft motor (1-4-5) to enable the probe (1-2) to rotate around the hollow shaft motor, and enabling the bending structure below the probe (1-2) to be consistent with the direction of the insulating columns in the uniform distribution frame (2-3);
and h, pulling the probe structure out of the socket structure.
CN202011365971.8A 2020-11-29 2020-11-29 Probe and socket matching method Active CN112462107B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011365971.8A CN112462107B (en) 2020-11-29 2020-11-29 Probe and socket matching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011365971.8A CN112462107B (en) 2020-11-29 2020-11-29 Probe and socket matching method

Publications (2)

Publication Number Publication Date
CN112462107A CN112462107A (en) 2021-03-09
CN112462107B true CN112462107B (en) 2021-09-14

Family

ID=74809337

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011365971.8A Active CN112462107B (en) 2020-11-29 2020-11-29 Probe and socket matching method

Country Status (1)

Country Link
CN (1) CN112462107B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114062972A (en) * 2021-12-09 2022-02-18 海光信息技术股份有限公司 Socket connector pin connectivity test device, system and test method
CN114966142B (en) * 2022-06-13 2023-01-31 法特迪精密科技(苏州)有限公司 Matching method of electromagnetic drive rotary probe and fixed socket
CN114966143B (en) * 2022-06-13 2023-01-31 法特迪精密科技(苏州)有限公司 Electromagnetic drive rotary probe and fixed socket structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10172990A (en) * 1996-10-05 1998-06-26 Samsung Electron Co Ltd Device for loading and unloading semiconductor chip package using servomotor
KR100804900B1 (en) * 2004-03-25 2008-02-20 동경 엘렉트론 주식회사 Turning device for heavy object
CN210142138U (en) * 2019-05-16 2020-03-13 陈龙 Probe for communication tower maintenance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10172990A (en) * 1996-10-05 1998-06-26 Samsung Electron Co Ltd Device for loading and unloading semiconductor chip package using servomotor
KR100804900B1 (en) * 2004-03-25 2008-02-20 동경 엘렉트론 주식회사 Turning device for heavy object
CN210142138U (en) * 2019-05-16 2020-03-13 陈龙 Probe for communication tower maintenance

Also Published As

Publication number Publication date
CN112462107A (en) 2021-03-09

Similar Documents

Publication Publication Date Title
CN113625018B (en) Probe structure
CN112462107B (en) Probe and socket matching method
CN112462105B (en) Probe adaptor and socket structure for synchronous or quasi-synchronous test and key structure
CN117192301A (en) Integrated liquid cooling plate airtight insulation detection equipment and detection method
CN117353842B (en) Multi-path multi-direction needle-shaped radio frequency port test platform
CN220795256U (en) Digital acceleration sensor circuit test platform
CN112462106B (en) Probe adapter and socket matching method for synchronous test or similar synchronous test
CN211698110U (en) Battery stress testing device
CN211554060U (en) Multifunctional circuit board test fixture
CN214622767U (en) Multidirectional adjusting device for probe card
CN110261253B (en) Bending performance testing device of automobile charger interface
CN114966143B (en) Electromagnetic drive rotary probe and fixed socket structure
CN210376579U (en) Middle test table capable of being used for detecting various wafers
CN221507130U (en) Testing device for millimeter wave imaging radar production aging test
CN111478142A (en) Method for improving assembly precision of conductive slip ring
CN114966142B (en) Matching method of electromagnetic drive rotary probe and fixed socket
CN118610850A (en) Automatic bending and plugging device of flexible FPC connector and bending and plugging machine thereof
CN221726207U (en) Lamp panel detection device
CN117434300B (en) Digital acceleration sensor circuit interchangeability multi-station test platform
US6265887B1 (en) Mounting fixture for a pin grid array device
CN112345914B (en) Automatic burning and function testing jig
CN220348162U (en) Backing plate for operation and maintenance of photovoltaic module
CN220719055U (en) Positioning device for carrying disc
CN221631494U (en) Testing arrangement is used in semiconductor processing
CN220289741U (en) Test fixture

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: 215000 Suzhou Industrial Park, Suzhou City, Jiangsu Province, No. 200 Xingpu Road, 5 # 101, 102, 201, 202

Patentee after: Suzhou Fatedi Technology Co.,Ltd.

Country or region after: China

Address before: 215000 Suzhou Industrial Park, Suzhou City, Jiangsu Province, No. 200 Xingpu Road, 5 # 101, 102, 201, 202

Patentee before: FTDEVICE TECHNOLOGY (SUZHOU) CO.,LTD.

Country or region before: China

CP03 Change of name, title or address