CN112461719A - Non-uniform sound field testing method for main particle size of wide-screening particles - Google Patents

Non-uniform sound field testing method for main particle size of wide-screening particles Download PDF

Info

Publication number
CN112461719A
CN112461719A CN202011297519.2A CN202011297519A CN112461719A CN 112461719 A CN112461719 A CN 112461719A CN 202011297519 A CN202011297519 A CN 202011297519A CN 112461719 A CN112461719 A CN 112461719A
Authority
CN
China
Prior art keywords
particles
particle size
particle
sound field
wide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011297519.2A
Other languages
Chinese (zh)
Other versions
CN112461719B (en
Inventor
乔正辉
潘效军
陈明
王娟
张长飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Institute of Technology
Original Assignee
Nanjing Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Institute of Technology filed Critical Nanjing Institute of Technology
Priority to CN202011297519.2A priority Critical patent/CN112461719B/en
Publication of CN112461719A publication Critical patent/CN112461719A/en
Application granted granted Critical
Publication of CN112461719B publication Critical patent/CN112461719B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0272Investigating particle size or size distribution with screening; with classification by filtering

Abstract

The invention discloses a non-uniform sound field test method for main particle size of wide-screened particles, which is characterized in that the wide-screened particles with different particle size are placed in a non-uniform sound field, the particles are suspended, migrated, aggregated, agglomerated and settled in the non-uniform sound field with certain frequency and sound pressure intensity to form a plurality of particle cluster stripes, the particle cluster stripes are shot by a camera or a camera with a microscope function, the distance between the adjacent particle cluster stripes is counted, measured and calculated, and the particle diameter is calculated by combining the physical properties of the particles and the sound field parameters; screening test data according to whether the test data fall on a plurality of particle size-stripe spacing-frequency change curves; the primary particle size of the wide screened particles is screened out based on the approximate particle size values but different frequencies and test stripe spacing. The method for testing the main particle size of the wide-screening particles has very high measurement precision for various particles with the sizes smaller than the wavelength of a sound field, such as nano particles, micron particles, millimeter particles and the like.

Description

Non-uniform sound field testing method for main particle size of wide-screening particles
Technical Field
The invention relates to a non-uniform sound field testing method for the main particle size of wide-screening particles, and belongs to the field of microparticle size testing and control.
Background
The actual polydisperse particulate matters usually encountered in production and living occasions such as combustion source suspended particles, pulverized coal ground by a coal mill, dust collected by a dust remover, particulate matters in smoke generated by combustion, air suspended particles in atmospheric environment, cosmetic aerosol particles and the like are complex in size and type, and the measurement of the particle characteristics of a complex-size particle system is an important issue of major particle study attention, and has great significance for guiding the industrial production and application of particulate products.
The method for accurately testing the particle size of the wide-screening particles, particularly the particle size of the particles with the number of main particles in nano, submicron and micron order, faces huge challenges. As the sizes of nano and submicron particles are smaller, in the occasion of gas-solid two-phase flow with lower concentration, the traditional weighing method needs a large amount of aerosol samples and quite long testing time, has high requirement on the weighing sensitivity of a testing instrument, and leads the commercial instrument to be expensive.
Disclosure of Invention
The purpose of the invention is as follows: in order to overcome the problems in the prior art, the invention provides a non-uniform sound field testing method for the main particle size of wide-screening particles.
The technical scheme is as follows: in order to achieve the purpose, the invention adopts the technical scheme that:
a non-uniform sound field testing method for the main particle size of wide-screening particles is characterized in that: the method comprises the following steps:
the first step is as follows: connecting a signal generator with a signal output and a power amplification function and a loudspeaker in the non-uniform sound field generating device into an electric loop by using a lead;
the second step is that: changing the output sound pressure and frequency of a loudspeaker in the non-uniform sound field generating device by adjusting the output frequency and voltage amplitude of the signal generator, and generating a non-uniform sound field with specific sound pressure intensity and frequency similar to standing waves in the non-uniform sound field generating device;
the third step: introducing wide screened particles with different particle sizes into a non-uniform sound field generated in a non-uniform sound field generating device;
the fourth step: suspending, transferring, collecting and dispersing, agglomerating and settling wide-screened particles in a non-uniform sound field to form a plurality of particle cluster stripes;
shooting the particle cluster stripes by a camera or a camera with a microscope function;
counting, measuring and calculating the distance between a plurality of adjacent particle cluster stripes according to the shot particle cluster stripe picture;
the fifth step: calculating the particle diameter d of the particles by a particle cluster stripe formula under the condition of certain particle properties and sound field parametersp(ii) a Wherein, a particle cluster stripe formula can be expressed as:
Figure BDA0002785851030000021
in the formula DesRepresenting the adjacent fringe spacing of the measured cluster fringes; dpRepresents the particle size of the particles constituting the cluster grain; rhoaAnd ρpRespectively representing the density of a main flow gas medium and particles in a non-uniform sound field; beta is aaAnd betapRespectively representing the compressibility of a mainstream gaseous medium and particles in a non-uniform sound field; k 2 pi f/c represents wave number, f and c represent frequency and sound velocity of the non-uniform sound field respectively;
calculating corresponding different particle diameters, namely the particle diameters with large particle number in the wide-screening particles, by using different spacing parameters of different adjacent particle cluster stripes;
and a sixth step: changing the output frequency and voltage amplitude of the signal generator, repeating the second step to the fifth step for more than one time to obtain a plurality of groups of data combinations of frequency, particle size and stripe spacing;
the seventh step: using the particle cluster stripe formula to calculate the particle diameter dpFor lying onMark, adjacent stripe spacing DesDrawing a two-dimensional linear chart with the vertical and horizontal coordinate axes in a logarithmic coordinate system form under different frequency conditions selected in the sixth step to obtain a plurality of particle size-stripe spacing-frequency change data lines;
eighth step: drawing the frequency, particle size and stripe spacing data combination obtained by experimental test and calculation in the sixth step into the two-dimensional graph in the seventh step, removing the data combination which is not on the particle size-stripe spacing-frequency change data line in the two-dimensional graph in the data combination, and obtaining the correct data combination according to the screening method;
screening out data combinations with similar particle sizes by taking the similar particle size values but different frequencies and stripe intervals as judgment standards, and taking the average values of different particle sizes with similar values as the main particle sizes of the wide-screening particles; the standard of the approximate particle size value is that for a certain particle size value range interval surrounding the main particle size, the number proportion of the particles corresponding to the main particle size value is the maximum value of the number proportion of the particles corresponding to other particle sizes in the interval, namely, the number proportion of the particles corresponding to the main particle size value is more;
the ninth step: the primary particle size of the broad sieving particles comprises a plurality of primary particle sizes obtained in the eighth step.
Preferably: the source of the wide-screening particles is combustion source suspended particles in gas-liquid two-phase flow, gas-solid two-phase flow or gas-liquid-solid three-phase flow, or pulverized coal ground by a coal mill, or dust collected by a dust remover, or particles in smoke generated by combustion, or air suspended particles in the atmospheric environment.
Has the advantages that: the invention has the following remarkable beneficial effects:
the invention provides a non-uniform sound field testing method for the main particle size of wide-screening particles, which screens effective test data by controlling and measuring the particle stripe spacing formed by various particles with the sizes of nanometer, micrometer, millimeter and the like smaller than the wavelength of a sound field in a non-uniform standing wave sound field through variables and combining a plurality of drawn particle size-stripe spacing-frequency change two-dimensional line graphs. The primary particle size of the wide screened particles is screened according to a large number of data combinations of similar particle size values but different frequencies and test stripe spacings. The method has low requirements on environmental parameter conditions such as temperature, pressure and the like, and can ensure higher measurement precision under high/low temperature conditions.
Drawings
FIG. 1 is a schematic diagram of a method for forming cluster striations by using non-uniform sound field to control particles according to the present invention;
FIG. 2 is a two-dimensional line chart of the variation curve of particle size, fringe spacing and frequency in the present invention;
in the figure: 1-wide sieving of the particles; 11-cluster streaks; 111-a first cluster of particles; 112-a second cluster of particles; 113-a third cluster of particles; 2-non-uniform sound field.
Detailed Description
The present invention will be further described with reference to the accompanying drawings.
A non-uniform sound field testing method for the main particle size of wide-screening particles comprises the following steps:
the first step is as follows: a signal generator having a power amplifying function and having a signal output and a speaker of the non-uniform sound field generating device are connected to each other by a wire to form an electrical circuit. The non-uniform sound field generating device is provided with a sealed cavity, and the loudspeakers at two ends of the non-uniform sound field generating device can generate a non-uniform sound field in the cavity.
The second step is that: by adjusting the output frequency and voltage amplitude of the signal generator, the output sound pressure and frequency of the loudspeaker are changed, and the method comprises the following steps: the output sound pressure is changed but the frequency is not changed, the output sound pressure is changed and the frequency is changed, thereby generating the non-uniform sound field 2 having a specific sound pressure intensity and frequency similar to the standing wave in the non-uniform sound field generating apparatus, wherein the value of the sound pressure intensity is more than 0Pa and less than 1000 Pa.
The third step: wide sized particles 1 having different particle sizes are put into a non-uniform sound field 2 generated in a non-uniform sound field generating apparatus.
The fourth step: the wide-sized particles 1 are suspended, migrated, aggregated, agglomerated, and settled in a non-uniform sound field with a certain frequency and sound pressure intensity to form a plurality of particle cluster stripes 11.
Further, the particle cluster streaks 11 are photographed by a camera or a camera with a microscope function.
Further, for the shot particle cluster stripe 11 picture, the distance between a plurality of adjacent particle cluster stripes is counted, measured and calculated, and the distance between the adjacent particle cluster stripes is the distance between the center lines of the adjacent particle clusters.
The fifth step: calculating the particle diameter d of the particles by a particle cluster stripe formula under the condition of certain particle properties and sound field parametersp(ii) a Wherein, a particle cluster stripe formula can be expressed as:
Figure BDA0002785851030000041
in the formula, DesRepresenting the adjacent fringe spacing of the measured cluster fringes; dpRepresents the particle size of the particles constituting the cluster grain; rhoaAnd ρpRespectively representing the density of a main flow gas medium and particles in a non-uniform sound field; beta is aaAnd betapRespectively representing the compressibility of a mainstream gaseous medium and particles in a non-uniform sound field; k 2 pi f/c denotes wave number, and f and c denote frequency and sound velocity of the non-uniform sound field, respectively.
Furthermore, a plurality of distance parameters of a plurality of adjacent particle cluster stripes are utilized to calculate a plurality of corresponding particle size parameters, namely the particle size of the wide-screening particles with more number of particles.
And a sixth step: and changing the output frequency and the voltage amplitude of the signal generator, and repeating the second step to the fifth step for multiple times to obtain multiple groups of data combined by frequency, particle size and stripe spacing, wherein the frequency can be the output frequency of the signal generator, the output frequency of a loudspeaker or the frequency of a sound field.
The seventh step: using the particle cluster stripe formula to calculate the particle diameter dpAs abscissa, distance D between adjacent stripesesDrawing a two-dimensional linear chart with the vertical and horizontal coordinate axes in the form of a logarithmic coordinate system under different frequency conditions selected in the sixth step to obtain a plurality of particle sizes, stripe spacing and frequency changesThe particle size and the stripe spacing of the data line under the same frequency satisfy a primary curve relationship, namely:
Figure BDA0002785851030000042
eighth step: and drawing a plurality of groups of frequency, particle size and stripe spacing data combinations obtained by experimental test calculation in the sixth step into the two-dimensional graph in the seventh step, further removing data combinations obviously not on particle size-stripe spacing-frequency change data lines in the two-dimensional graph in the experimental data combinations, and obtaining correct data combinations according to the screening method.
Further, screening out data combinations with similar particle size values by taking the similar particle size values but different frequencies and stripe intervals as judgment standards, and taking the average value of different particle sizes with similar values as the main particle size of the wide screening particles; in a certain range of the particle size around the main particle size, the ratio of the number of the particles corresponding to the main particle size is the maximum value of the ratio of the number of the particles corresponding to the particle size in the range, i.e. the number of the particles corresponding to the main particle size is relatively more than that of the particles corresponding to other particle sizes in the range.
The ninth step: the primary particle size of the broad sieving particle 1 includes a plurality of primary particle sizes obtained in the eighth step.
In addition, the source of the wide sieving particles 1 is combustion source suspended particles in gas-liquid two-phase flow, gas-solid two-phase flow or gas-liquid-solid three-phase flow, or pulverized coal ground by a coal mill, or dust collected by a dust remover, or particles in smoke generated by combustion, or air suspended particles in the atmospheric environment.
FIG. 1 is a schematic diagram of a method for forming cluster stripes by using particles under the control of a non-uniform sound field in the invention. A large number of wide-sized particles 1 form a first particle group 111, a second particle group 112 and a third particle group 113 under the action of a non-uniform sound field 2 with specific frequency and sound pressure intensity, different particle groups jointly form particle group stripes, and the stripe interval is Des
FIG. 2 is a graph showing the particle diameter-fringe spacing-frequency variation in the present inventionLine two-dimensional line chart schematic. Wherein the experimental wide-screening particle source is coke particles, beta, generated by rice hull combustionp=1.99×10-5Pa-1,βa=7.15×10-6Pa-1,ρp=164kg/m3,ρa=1.21kg/m3Where c is 340m/s and f is 0.191kHz, the frequencies of the non-uniform acoustic field include 0.12kHz, 0.191kHz, 0.2kHz, 0.8kHz, 1.3kHz, 0.82kHz, 0.83kHz, 1.9kHz, and the experimentally obtained fringe spacing includes: 8mm, 16.7mm and 21.5mm at a frequency of 0.12 kHz; 6.4mm, 16.7mm, 21.5mm and 38mm at a frequency of 0.191 kHz; 3.25mm, 6.4mm and 8mm at the frequency of 0.8 kHz; 2.5mm, 6.4mm and 8mm at a frequency of 1.3 kHz; frequency of 3.25mm at 0.82 kHz.
In conjunction with the two-dimensional graph method described above, it can be seen that the major particle size dimensions of the wide-sized particles include 22 μm (corresponding to experimental fringe spacing of 2.5mm (1.3kHz), 3.25mm (0.82kHz), 6.4mm (0.191kHz), 8mm (0.12kHz)), 0.1mm (corresponding to experimental fringe spacing of 6.4mm (0.8kHz), 16.7mm (0.12kHz)), 0.15mm (corresponding to particle size spacing of 6.4mm (1.3kHz), 8mm (0.8kHz), 16.7mm (0.191kHz), 21.5mm (0.12kHz)), 0.25mm (corresponding to experimental fringe spacing of 8mm (1.3kHz), 21.5mm (0.191kHz)), and 0.84mm (corresponding to experimental fringe spacing of 38mm (0.191 kHz)).
The above description is only of the preferred embodiments of the present invention, and it should be noted that: it will be apparent to those skilled in the art that various modifications and adaptations can be made without departing from the principles of the invention and these are intended to be within the scope of the invention.

Claims (2)

1. A non-uniform sound field testing method for the main particle size of wide-screening particles is characterized in that: the method comprises the following steps:
the first step is as follows: connecting a signal generator with a signal output and a power amplification function and a loudspeaker in the non-uniform sound field generating device into an electric loop by using a lead;
the second step is that: changing the output sound pressure and frequency of a loudspeaker in the non-uniform sound field generating device by adjusting the output frequency and voltage amplitude of the signal generator, and generating a non-uniform sound field (2) with specific sound pressure intensity and frequency similar to standing waves in the non-uniform sound field generating device;
the third step: introducing wide screened particles (1) with different particle sizes into a non-uniform sound field (2) generated in a non-uniform sound field generating device;
the fourth step: suspending, transferring, gathering and dispersing, agglomerating and settling wide-screened particles (1) in a non-uniform sound field to form a plurality of particle cluster stripes (11);
shooting the particle cluster stripes (11) by a camera or a camera with a microscope function;
counting, measuring and calculating the distance between a plurality of adjacent particle cluster stripes (11) according to the shot particle cluster stripe (11) picture;
the fifth step: calculating the particle diameter d of the particles by a particle cluster stripe formula under the condition of certain particle properties and sound field parametersp(ii) a Wherein, a particle cluster stripe formula can be expressed as:
Figure FDA0002785851020000011
in the formula DesRepresenting the adjacent fringe spacing of the measured cluster fringes; dpRepresents the particle size of the particles constituting the cluster grain; rhoaAnd ρpRespectively representing the density of a main flow gas medium and particles in a non-uniform sound field; beta is aaAnd betapRespectively representing the compressibility of a mainstream gaseous medium and particles in a non-uniform sound field; k 2 pi f/c represents wave number, f and c represent frequency and sound velocity of the non-uniform sound field (2), respectively;
calculating corresponding different particle diameters, namely the particle diameters with a large number of particles in the wide-screening particles, by using different spacing parameters of different adjacent particle cluster stripes (11);
and a sixth step: changing the output frequency and voltage amplitude of the signal generator, repeating the second step to the fifth step for more than one time to obtain a plurality of groups of data combinations of frequency, particle size and stripe spacing;
the seventh step: using the particle cluster stripe formula to calculate the particle diameter dpAs the abscissaSpacing of adjacent stripes DesDrawing a two-dimensional linear chart with the vertical and horizontal coordinate axes in a logarithmic coordinate system form under different frequency conditions selected in the sixth step to obtain a plurality of particle size-stripe spacing-frequency change data lines;
eighth step: drawing the frequency, particle size and stripe spacing data combination obtained by experimental test and calculation in the sixth step into the two-dimensional graph in the seventh step, removing the data combination which is not on the particle size-stripe spacing-frequency change data line in the two-dimensional graph in the data combination, and obtaining the correct data combination according to the screening method;
screening out data combinations with similar particle sizes by taking the similar particle size values but different frequencies and stripe intervals as judgment standards, and taking the average values of different particle sizes with similar values as the main particle sizes of the wide-screening particles; the standard of the approximate particle size value is that for a certain particle size value range interval surrounding the main particle size, the number proportion of the particles corresponding to the main particle size value is the maximum value of the number proportion of the particles corresponding to other particle sizes in the interval, namely, the number proportion of the particles corresponding to the main particle size value is more;
the ninth step: the primary particle size of the broad sieving particles comprises a plurality of primary particle sizes obtained in the eighth step.
2. The non-uniform acoustic field testing method for the primary particle size of wide-screened particles as claimed in claim 1, comprising: the source of the wide-screening particles (1) is combustion source suspended particles in gas-liquid two-phase flow, gas-solid two-phase flow or gas-liquid-solid three-phase flow, or pulverized coal ground by a coal mill, or dust collected by a dust remover, or particles in smoke generated by combustion, or air suspended particles in the atmospheric environment.
CN202011297519.2A 2020-11-19 2020-11-19 Non-uniform sound field testing method for main particle size of wide-screening particles Active CN112461719B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011297519.2A CN112461719B (en) 2020-11-19 2020-11-19 Non-uniform sound field testing method for main particle size of wide-screening particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011297519.2A CN112461719B (en) 2020-11-19 2020-11-19 Non-uniform sound field testing method for main particle size of wide-screening particles

Publications (2)

Publication Number Publication Date
CN112461719A true CN112461719A (en) 2021-03-09
CN112461719B CN112461719B (en) 2022-11-18

Family

ID=74837245

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011297519.2A Active CN112461719B (en) 2020-11-19 2020-11-19 Non-uniform sound field testing method for main particle size of wide-screening particles

Country Status (1)

Country Link
CN (1) CN112461719B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112179818A (en) * 2020-11-16 2021-01-05 南京工程学院 Pulverized coal fuel particle characteristic testing device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991007646A2 (en) * 1989-11-13 1991-05-30 E.I. Du Pont De Nemours And Company Method and apparatus for determining particle size distribution and concentration in a suspension using ultrasonics
CN1664501A (en) * 2005-03-25 2005-09-07 东南大学 Apparatus and method for measuring particle diameters of superfine particles
CN102590054A (en) * 2012-03-08 2012-07-18 上海理工大学 Method and device for measuring particle size distribution of discrete-state particles
CN103630471A (en) * 2013-11-20 2014-03-12 江苏大学 Method for measuring median particle diameter of particles in exhaust gas of diesel engine
US20140226158A1 (en) * 2004-03-06 2014-08-14 Michael Trainer Methods and apparatus for determining particle characteristics
CN104147891A (en) * 2014-08-25 2014-11-19 东南大学 Device and method for controlling fine particle emission in wet flue gas desulfurization
CN105050020A (en) * 2015-07-31 2015-11-11 浙江省计量科学研究院 Free sound field device based on optical non-destructive monitoring technology
CN105842130A (en) * 2016-05-18 2016-08-10 陕西煤业化工技术研究院有限责任公司 Ultrasonic monitoring device and method for nano-particle aggregation in non-Newtonian base-liquid fluid
CN110639308A (en) * 2019-09-23 2020-01-03 南京工程学院 Device or method for trapping fine particles by multi-stage sound field coupling multi-channel
CN110652815A (en) * 2019-09-20 2020-01-07 南京工程学院 Sound wave dust removal method for cooperatively controlling smoke suspended particles through sound field test and simulation

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991007646A2 (en) * 1989-11-13 1991-05-30 E.I. Du Pont De Nemours And Company Method and apparatus for determining particle size distribution and concentration in a suspension using ultrasonics
US20140226158A1 (en) * 2004-03-06 2014-08-14 Michael Trainer Methods and apparatus for determining particle characteristics
CN1664501A (en) * 2005-03-25 2005-09-07 东南大学 Apparatus and method for measuring particle diameters of superfine particles
CN102590054A (en) * 2012-03-08 2012-07-18 上海理工大学 Method and device for measuring particle size distribution of discrete-state particles
CN103630471A (en) * 2013-11-20 2014-03-12 江苏大学 Method for measuring median particle diameter of particles in exhaust gas of diesel engine
CN104147891A (en) * 2014-08-25 2014-11-19 东南大学 Device and method for controlling fine particle emission in wet flue gas desulfurization
CN105050020A (en) * 2015-07-31 2015-11-11 浙江省计量科学研究院 Free sound field device based on optical non-destructive monitoring technology
CN105842130A (en) * 2016-05-18 2016-08-10 陕西煤业化工技术研究院有限责任公司 Ultrasonic monitoring device and method for nano-particle aggregation in non-Newtonian base-liquid fluid
CN110652815A (en) * 2019-09-20 2020-01-07 南京工程学院 Sound wave dust removal method for cooperatively controlling smoke suspended particles through sound field test and simulation
CN110639308A (en) * 2019-09-23 2020-01-03 南京工程学院 Device or method for trapping fine particles by multi-stage sound field coupling multi-channel

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
姚刚等: "可吸入颗粒粒径声学夹带法测量的实验研究", 《热能动力工程》 *
姚刚等: "燃煤可吸入颗粒物声波团聚效果的实验研究和数值分析", 《热能动力工程》 *
程梅等: "结构化的复合声场及其操纵颗粒有效性的实验研究", 《东南大学学报(自然科学版)》 *
陈厚涛等: "燃煤飞灰超细颗粒物声波团聚清除的实验研究", 《中国电机工程学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112179818A (en) * 2020-11-16 2021-01-05 南京工程学院 Pulverized coal fuel particle characteristic testing device
CN112179818B (en) * 2020-11-16 2023-12-26 南京工程学院 Pulverized coal fuel particle characteristic testing device

Also Published As

Publication number Publication date
CN112461719B (en) 2022-11-18

Similar Documents

Publication Publication Date Title
CN112461719B (en) Non-uniform sound field testing method for main particle size of wide-screening particles
CN108680764A (en) Gas velocity measurement device based on ionic trace and its measurement method
CN107644132B (en) Calculation method for simulating dust removal efficiency of electrified dust remover
CN203494762U (en) Millet grading screening device
CN102133496A (en) Dust filtering performance testing method and system of air filter for cab of vehicle on road
CN208607331U (en) A kind of generator stator core detection device and system
CN106768045A (en) Airborne dust monitor
CN108122560A (en) A kind of system and method for extracting engine noise tone degree
JP6248652B2 (en) Ventilation measurement system and ventilation measurement method
CN111398102B (en) Method for measuring average speed of solid particles of gas-solid two-phase flow in pipeline
CN110426333B (en) Method for detecting particle content of suspension by using cylinder scattering sound pressure
CN110652815B (en) Sound wave dust removal method for cooperatively controlling smoke suspended particles through sound field test and simulation
CN107167626A (en) Three-dimensional ultrasonic wind meter and wind detection method based on nonopiate survey wind formation
CN113615211A (en) Measuring non-linearity and asymmetry of a loudspeaker
CN110134154A (en) A kind of reaction type optimization device and method of sound field manipulation particle concentration spatial and temporal distributions
CN102095399A (en) Road spectrum based method for extracting quantified road characteristic parameters
He et al. An experimental study on the mobility characteristics of corona ions produced by a HVDC test line
CN206847774U (en) Sound pressure level test device
Buiat et al. Application of acoustic horns for the amplification of a pv probe velocimetric signal
CN206709877U (en) A kind of airborne dust monitor
Gee et al. Measurement and prediction of nonlinearity in outdoor propagation of periodic signals
CN216132987U (en) Sound insulation measuring system based on near-field acoustic holography
CN207964078U (en) A kind of on-line measuring device of middle pressure transformer running noises
CN206609754U (en) Air particle concentration sensing detection light path
KR20140114926A (en) Apparatus for classifying particle

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20210309

Assignee: Nanjing Geruns Environmental Protection Technology Co.,Ltd.

Assignor: NANJING INSTITUTE OF TECHNOLOGY

Contract record no.: X2023980035202

Denomination of invention: A non-uniform sound field testing method for the main particle size of wide sieved particles

Granted publication date: 20221118

License type: Common License

Record date: 20230505