CN112455291B - 一种燃料电池汽车复合电源瞬时最优能量管理方法 - Google Patents

一种燃料电池汽车复合电源瞬时最优能量管理方法 Download PDF

Info

Publication number
CN112455291B
CN112455291B CN202011420417.5A CN202011420417A CN112455291B CN 112455291 B CN112455291 B CN 112455291B CN 202011420417 A CN202011420417 A CN 202011420417A CN 112455291 B CN112455291 B CN 112455291B
Authority
CN
China
Prior art keywords
soc
power
power supply
super capacitor
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011420417.5A
Other languages
English (en)
Other versions
CN112455291A (zh
Inventor
宋大凤
岳一霖
曾小华
郑琦
段朝胜
李亚朋
黄钰峰
向远贵
李敦迈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN202011420417.5A priority Critical patent/CN112455291B/zh
Publication of CN112455291A publication Critical patent/CN112455291A/zh
Application granted granted Critical
Publication of CN112455291B publication Critical patent/CN112455291B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/40Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for controlling a combination of batteries and fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明提供了一种燃料电池汽车复合电源瞬时最优能量管理方法,包括:第一步,瞬时最优寻优函数的确定;第二步,确定复合电源需求功率;第三步,初始化寻优边值a、b;第四步,基于寻优边值进行黄金分割;第五步,确定当前复合电源需求功率下分配给蓄电池的功率;第六步,计算每个功率条件下分配给蓄电池的最优功率;第七步,应用最优参数进行整车能量管理。本发明提供的方法基于瞬时最优的控制思想,实现燃料电池汽车复合电源之间最优功率分流,解决了复合电源耦合度高,控制策略复杂的问题,充分发挥了复合电源燃料电池汽车的高能量密度和功率密度等优点。

Description

一种燃料电池汽车复合电源瞬时最优能量管理方法
技术领域
本发明属于汽车控制系统,更确切地说,本发明涉及燃料电池汽车复合电源能量管理方法。
背景技术
近年来,石油资源短缺,环境污染问题日益严峻,燃料电池汽车作为一种新能源汽车,凭借良好的动力性与经济性,成为一种优秀的解决方案。
传统的单动力源或双动力源燃料电池汽车系统储能方案,控制相对简单,但难以兼顾寿命、经济性等因素。而燃料电池-蓄电池-超级电容复合电源系统构型,拥有良好的功率密度与能量密度,能够充分发挥各电源的优势,提高车辆日常行驶要求的动力性和经济性,逐渐成为燃料电池汽车的发展趋势。
但是复合电源系统彼此间存在复杂的耦合关系,工作模式多,控制自由度高,若复合电源能量管理方法不够合理高效,将难以实现各电源之间最优功率分流、发挥系统优势。
发明内容
本发明所要解决的技术问题是克服现有燃料电池汽车复合电源功率分配方法难以实现系统经济性最优的问题,提供了一种基于局部瞬时最优的复合电源瞬时最优能量管理方法。
第一步,瞬时最优寻优函数的确定。
首先确定瞬时最优寻优函数,蓄电池与超级电容的功率损耗,计算过程如下式所示。
Figure GDA0003369050110000011
Figure GDA0003369050110000012
其中,Pbatloss为蓄电池功率损耗,Pcaploss为超级电容的功率损耗,Ibat为蓄电池工作电流,Rbat为蓄电池内阻,Icap为超级电容工作电流,Rcap为超级电容等效内阻。
双向DC/DC功率损耗计算公式为
PDCloss=Pcap(1-ηDC)
其中,PDCloss为双向DC/DC功率损耗,Pcap为超级电容功率,ηDC为双向DC/DC效率
复合电源的总输出功率Psum与总功率损耗Psumloss
Psum=Pbat+PcapηDC
Psumloss=Pbatloss+Pcaploss+PDCloss
其中,Psum为复合电源的总输出功率,Psumloss为复合电源的总功率损耗,Pbat为蓄电池功率。
蓄电池输出功率Pbat与超级电容输出功率Pcap分流比例不同,对应的功率损失Pbatloss与Pcaploss也不同。所以,针对每一个复合电源输出功率Psum,能够找到一组最优Pbat与Pcap,使得总功率损耗Psumloss最小。最终确定瞬时最优寻优函数为f=min Psumloss
第二步,确定复合电源需求功率。
复合电源需求功率Psum的最大值为Psummax,在区间[0,Psummax]取n个值P1、P2、P3、…、Pi、…、Pn将区间[0,Psummax]划分为n+1个等区间,
Figure GDA0003369050110000021
Figure GDA0003369050110000022
n的取值应尽可能的大,从而提高计算精度。i作为计数变量,初值为0,取值为1、2、3、…、n。
第三步,初始化寻优边值a、b;
第四步,基于寻优边值进行黄金分割;
两黄金分割点的计算过程为:
xa=a+0.382(b-a)
xb=a+0.618(b-a)
其中,xa、xb为复合电源分配给蓄电池的功率
之后计算复合电源的总功率损失Paloss、Pbloss
第五步,确定当前复合电源需求功率下分配给蓄电池的功率
若|Paloss-Pbloss|<Δ,则认为两边值相差足够小,此时
Pibat=(xa+xb)/2
其中,Pibat为复合电源需求功率为Pi时分配给蓄电池的功率值
Pibat为复合电源需求功率为Pi时分配给蓄电池的功率值,同时,i=i+1,返回第②步继续计算复合电源需求功率为Pi+1时最优功率比。若|Paloss-Pbloss|>Δ,则需更新寻优的边值,当Paloss≥Pbloss时,取b=xb;当Paloss≤Pbloss时,取a=xa,同时返回第三步继续计算;
第六步,计算每个功率条件下分配给蓄电池的最优功率
计算出复合电源需求功率为P1、P2、P3、…、Pi、…、Pn时应当分配给蓄电池的最优功率P1bat、P2bat、P3bat、…、Pibat、…、Pnbat后,将其做出二维数表。在寻优工作模式下,针对不同的复合电源需求功率,通过插值计算应当分配给蓄电池的功率。
第七步,应用最优参数进行整车能量管理。
根据蓄电池与超级电容SOC确定瞬时最优的工作区间,维持二者之间的电量平衡,是基于瞬时最优思想进行能量管理的必要前提。
按照蓄电池与超级电容SOC的不同,将复合电源划分成不同的工作模式。其中,中等SOC指蓄电池与超级电容的SOC处于高值SOCH与低值SOCL之间,蓄电池与超级电容中等SOC时为寻优工作模式,该工作模式下按照瞬时最优能量管理策略进行功率输出,其他工作模式采用单一能量源进行功率输出。
在第三步中所述寻优的边值a=0,b=Pi;在第五步中所述Δ的取值为0.00。
复合电源划分的不同工作模式包括寻优工作模式和其他工作模式,其他工作模式包括驱动模式和制动模式,驱动模式包括超级电容输出模式和蓄电池输出模式,制动模式包括超级电容回收模式和蓄电池回收模式,工作模式判定如下:
为使得寻优工作模式能够工作于较宽的SOC区间,同时不影响蓄电池与超级电容的输出与能量回收,设定蓄电池与超级电容SOC的处于高值SOCH与低值SOCL之间时进入寻优工作模式,该方法既能够实现复合电源在宽SOC范围内的最优模式输出,同时也能够避免蓄电池和超级电容过度充电或放电。
驱动模式下,当超级电容SOCcap>SOCcapH时,采用超级电容输出模式,当SOCcap<SOCcapH且蓄电池SOCbat>SOCbatH时,采用蓄电池输出模式,当SOCcap>SOCcapL且SOCbat<SOCbatL时,采用超级电容输出模式,当SOCbat>SOCbatL且SOCcap<SOCcapL时,采用蓄电池输出模式,当SOCcapL<SOCcap<SOCcapH且SOCbatL<SOCbat<SOCbatH时,采用基于瞬时最优控制策略的寻优工作模式,制动模式下,当SOCcap<SOCcapL时,采用超级电容回收模式,SOCcap>SOCcapL且SOCbat<SOCbatL时,采用蓄电池回收模式。
本发明提出了一种燃料电池汽车复合电源瞬时最优能量管理方法。
与现有技术相比本发明的有益效果是:
本发明提供了的一种燃料电池汽车复合电源瞬时最优能量管理方法是在燃料电池功率跟随控制策略下,确定燃料电池与蓄电池、超级电容的功率分配后,基于瞬时最优的控制思想,实现蓄电池与超级电容之间最优功率分流,实现复合电源系统的最优能量管理。解决了复合电源耦合度高,控制策略复杂的问题,充分发挥了复合电源燃料电池汽车的高能量密度和功率密度等优点。
附图说明
下面结合附图对本发明作进一步的说明:
图1为复合电源瞬时最优寻优工作模式流程图;
图2为复合电源瞬时最优能量管理策略工作模式判断图。
具体实施方式
下面结合附图对本发明作详细的描述:
本发明提供了一种燃料电池汽车复合电源瞬时最优能量管理方法,在燃料电池功率跟随控制策略下,确定燃料电池与蓄电池、超级电容的功率分配后,基于瞬时最优的控制思想,实现蓄电池与超级电容之间最优功率分流,实现复合电源系统的最优能量管理。
参阅图1,本发明所述的一种燃料电池汽车复合电源瞬时最优能量管理方法包括下列步骤:
第一步,瞬时最优寻优函数的确定
首先确定瞬时最优寻优函数,蓄电池与超级电容的功率损耗,计算过程如下式所示。
Figure GDA0003369050110000041
Figure GDA0003369050110000042
其中,Pbatloss为蓄电池功率损耗,Pcaploss为超级电容的功率损耗,Ibat为蓄电池工作电流,Rbat为蓄电池内阻,Icap为超级电容工作电流,Rcap为超级电容等效内阻。
双向DC/DC功率损耗计算公式为
PDCloss=Pcap(1-ηDC)
其中,PDCloss为双向DC/DC功率损耗,Pcap为超级电容功率,ηDC为双向DC/DC效率
复合电源的总输出功率Psum与总功率损耗Psumloss
Psum=Pbat+PcapηDC
Psumloss=Pbatloss+Pcaploss+PDCloss
其中,Psum为复合电源的总输出功率,Psumloss为复合电源的总功率损耗,Pbat为蓄电池功率。
蓄电池输出功率Pbat与超级电容输出功率Pcap分流比例不同,对应的功率损失Pbatloss与Pcaploss也不同。所以,针对每一个复合电源输出功率Psum,能够找到一组最优Pbat与Pcap,使得总功率损耗Psumloss最小。最终确定瞬时最优寻优函数为f=min Psumloss
第二步,确定复合电源需求功率
复合电源需求功率Psum的最大值为Psummax,在区间[0,Psummax]取n个值P1、P2、P3、…、Pi、…、Pn将区间[0,Psummax]划分为n+1个等区间,
Figure GDA0003369050110000051
Figure GDA0003369050110000052
n的取值应尽可能的大,从而提高计算精度。i作为计数变量,初值为0,取值为1、2、3、…、n。
第三步,初始化寻优边值a、b;
第四步,基于寻优边值进行黄金分割;
两黄金分割点的计算过程为:
xa=a+0.382(b-a)
xb=a+0.618(b-a)
其中,xa、xb为复合电源分配给蓄电池的功率
之后计算复合电源的总功率损失Paloss、Pbloss
第五步,确定当前复合电源需求功率下分配给蓄电池的功率
若|Paloss-Pbloss|<Δ,则认为两边值相差足够小,此时
Pibat=(xa+xb)/2
其中,Pibat为复合电源需求功率为Pi时分配给蓄电池的功率值
Pibat为复合电源需求功率为Pi时分配给蓄电池的功率值,同时,i=i+1,返回第②步继续计算复合电源需求功率为Pi+1时最优功率比。若|Paloss-Pbloss|>Δ,则需更新寻优的边值,当Paloss≥Pbloss时,取b=xb;当Paloss≤Pbloss时,取a=xa,同时返回第三步继续计算;
第六步,计算每个功率条件下分配给蓄电池的最优功率
计算出复合电源需求功率为P1、P2、P3、…、Pi、…、Pn时应当分配给蓄电池的最优功率P1bat、P2bat、P3bat、…、Pibat、…、Pnbat后,制定出蓄电池的最优功率表如表1所示,在寻优工作模式下,针对不同的复合电源需求功率,通过插值计算应当分配给蓄电池的功率,
表1蓄电池的最优功率表
复合电源需求功率/kW P<sub>1</sub> P<sub>2</sub> P<sub>3</sub> ... P<sub>i</sub> ... P<sub>n</sub>
蓄电池的最优功率/kW P<sub>1bat</sub> P<sub>2bat</sub> P<sub>3bat</sub> ... P<sub>ibat</sub> ... P<sub>nbat</sub>
参阅图2,复合电源瞬时最优能量管理策略工作模式判断包括下列步骤,
根据蓄电池与超级电容SOC确定瞬时最优的工作区间,维持二者之间的电量平衡,是基于瞬时最优思想进行能量管理的必要前提,按照蓄电池与超级电容SOC的不同,将复合电源划分成不同的工作模式,其中,中等SOC指蓄电池与超级电容的SOC处于高值SOCH与低值SOCL之间,蓄电池与超级电容中等SOC时为寻优工作模式,该工作模式下按照瞬时最优能量管理策略进行功率输出,其他工作模式采用单一能量源进行功率输出。
为使得寻优工作模式能够工作于较宽的SOC区间,同时不影响蓄电池与超级电容的输出与能量回收,设定蓄电池与超级电容SOC的处于高值SOCH与低值SOCL之间时进入寻优工作模式,该方法既能够实现复合电源在宽SOC范围内的最优模式输出,同时也能够避免蓄电池和超级电容过度充电或放电。
驱动模式下,当超级电容SOCcap>SOCcapH时,采用超级电容输出模式,当SOCcap<SOCcapH且蓄电池SOCbat>SOCbatH时,采用蓄电池输出模式,当SOCcap>SOCcapL且SOCbat<SOCbatL时,采用超级电容输出模式,当SOCbat>SOCbatL且SOCcap<SOCcapL时,采用蓄电池输出模式,当SOCcapL<SOCcap<SOCcapH且SOCbatL<SOCbat<SOCbatH时,采用基于瞬时最优控制策略的寻优工作模式,制动模式下,当SOCcap<SOCcapL时,采用超级电容回收模式,SOCcap>SOCcapL且SOCbat<SOCbatL时,采用蓄电池回收模式。

Claims (4)

1.一种燃料电池汽车复合电源瞬时最优能量管理方法,其特征在于包括下列步骤:
第一步,瞬时最优寻优函数的确定,
首先确定瞬时最优寻优函数,蓄电池与超级电容的功率损耗,计算过程如下式所示
Figure FDA0003395748180000011
Figure FDA0003395748180000012
其中,Pbatloss为蓄电池功率损耗,Pcaploss为超级电容的功率损耗,Ibat为蓄电池工作电流,Rbat为蓄电池内阻,Icap为超级电容工作电流,Rcap为超级电容等效内阻,
双向DC/DC功率损耗计算公式为
PDCloss=Pcap(1-ηDC)
其中,PDCloss为双向DC/DC功率损耗,Pcap为超级电容功率,ηDC为双向DC/DC效率
复合电源的总输出功率Psum与总功率损耗Psumloss
Psum=Pbat+PcapηDC
Psumloss=Pbatloss+Pcaploss+PDCloss
其中,Psum为复合电源的总输出功率,Psumloss为复合电源的总功率损耗,Pbat为蓄电池功率,
蓄电池输出功率Pbat与超级电容输出功率Pcap分流比例不同,对应的功率损失Pbatloss与Pcaploss也不同,所以,针对每一个复合电源输出功率Psum,能够找到一组最优Pbat与Pcap,使得总功率损耗Psumloss最小,最终确定瞬时最优寻优函数为f=minPsumloss
第二步,确定复合电源需求功率,
将复合电源需求功率Psum在0到Psummax之间等距离散出n个点,分别为P1、P2、P3、…、Pi、…、Pn,n的取值应尽可能的大,从而提高计算精度,i作为计数变量,初值为0,取值为1、2、3、…、n,
第三步,初始化寻优边值a、b,
第四步,基于寻优边值进行黄金分割,
两黄金分割点的计算过程为
xa=a+0.382(b-a)
xb=a+0.618(b-a)
其中,xa、xb为复合电源分配给蓄电池的功率,
之后计算复合电源的总功率损失Paloss、Pbloss
第五步,确定当前复合电源需求功率下分配给蓄电池的功率,
若|Paloss-Pbloss|<Δ,则认为两边值相差足够小,此时
Pibat=(xa+xb)/2
其中,Pibat为复合电源需求功率为Pi时分配给蓄电池的功率值,
同时,i=i+1,返回第②步继续计算复合电源需求功率为Pi+1时最优功率比,若|Paloss-Pbloss|>Δ,则需更新寻优的边值,当Paloss≥Pbloss时,取b=xb,当Paloss≤Pbloss时,取a=xa,同时返回第三步继续计算,
第六步,计算每个功率条件下分配给蓄电池的最优功率,
计算出复合电源需求功率为P1、P2、P3、…、Pi、…、Pn时应当分配给蓄电池的最优功率P1bat、P2bat、P3bat、…、Pibat、…、Pnbat后,制定出蓄电池的最优功率表如表1所示,在寻优工作模式下,针对不同的复合电源需求功率,通过插值计算应当分配给蓄电池的功率,
表1蓄电池的最优功率表
复合电源需求功率/kW P<sub>1</sub> P<sub>2</sub> P<sub>3</sub> P<sub>i</sub> P<sub>n</sub> 蓄电池的最优功率/kW P<sub>1bat</sub> P<sub>2bat</sub> P<sub>3bat</sub> P<sub>ibat</sub> P<sub>nbat</sub>
第七步,应用最优参数进行整车能量管理,
根据蓄电池与超级电容SOC确定瞬时最优的工作区间,维持二者之间的电量平衡,是基于瞬时最优思想进行能量管理的必要前提,
按照蓄电池与超级电容SOC的不同,将复合电源划分成不同的工作模式,其中,中等SOC指蓄电池与超级电容的SOC处于高值SOCH与低值SOCL之间,蓄电池与超级电容中等SOC时为寻优工作模式,该工作模式下按照瞬时最优能量管理策略进行功率输出,其他工作模式采用单一能量源进行功率输出。
2.按照权利要求1所述的一种燃料电池汽车复合电源瞬时最优能量管理方法,其特征在于:所述Δ的取值为0.001,所述寻优的边值a=0,b=Pi
3.按照权利要求1所述的一种燃料电池汽车复合电源瞬时最优能量管理方法,其特征在于:工作模式包括寻优工作模式和其他工作模式,其他工作模式包括驱动模式和制动模式,驱动模式包括超级电容输出模式和蓄电池输出模式,制动模式包括超级电容回收模式和蓄电池回收模式。
4.按照权利要求1所述的一种燃料电池汽车复合电源瞬时最优能量管理方法,其特征在于:中等SOC指蓄电池与超级电容的SOC处于高值SOCH与低值SOCL之间,寻优工作模式判定如下,
为使得寻优工作模式能够工作于较宽的SOC区间,同时不影响蓄电池与超级电容的输出与能量回收,设定蓄电池与超级电容SOC的处于高值SOCH与低值SOCL之间时进入寻优工作模式,该方法既能够实现复合电源在宽SOC范围内的最优模式输出,同时也能够避免蓄电池和超级电容过度充电或放电,
驱动模式下,当超级电容SOCcap>SOCcapH时,采用超级电容输出模式,当SOCcap<SOCcapH且蓄电池SOCbat>SOCbatH时,采用蓄电池输出模式,当SOCcap>SOCcapL且SOCbat<SOCbatL时,采用超级电容输出模式,当SOCbat>SOCbatL且SOCcap<SOCcapL时,采用蓄电池输出模式,当SOCcapL<SOCcap<SOCcapH且SOCbatL<SOCbat<SOCbatH时,采用基于瞬时最优控制策略的寻优工作模式,制动模式下,当SOCcap<SOCcapL时,采用超级电容回收模式,SOCcap>SOCcapL且SOCbat<SOCbatL时,采用蓄电池回收模式。
CN202011420417.5A 2020-12-08 2020-12-08 一种燃料电池汽车复合电源瞬时最优能量管理方法 Active CN112455291B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011420417.5A CN112455291B (zh) 2020-12-08 2020-12-08 一种燃料电池汽车复合电源瞬时最优能量管理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011420417.5A CN112455291B (zh) 2020-12-08 2020-12-08 一种燃料电池汽车复合电源瞬时最优能量管理方法

Publications (2)

Publication Number Publication Date
CN112455291A CN112455291A (zh) 2021-03-09
CN112455291B true CN112455291B (zh) 2022-02-08

Family

ID=74801615

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011420417.5A Active CN112455291B (zh) 2020-12-08 2020-12-08 一种燃料电池汽车复合电源瞬时最优能量管理方法

Country Status (1)

Country Link
CN (1) CN112455291B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113002370B (zh) * 2021-04-16 2022-06-21 吉林大学 一种燃料电池汽车实时能量管理控制方法
CN116512980B (zh) * 2023-07-04 2023-09-15 北京重理能源科技有限公司 基于动力电池内阻的功率分配方法、装置、设备和介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105730256A (zh) * 2016-02-17 2016-07-06 陆玉正 一种带超级电容的燃料电池电动汽车动力装置
CN107901776A (zh) * 2017-11-15 2018-04-13 吉林大学 电动汽车复合电源燃料电池混合能量系统功率分流方法
CN108656981A (zh) * 2018-03-22 2018-10-16 河南科技大学 一种燃料电池混合动力汽车功率分配方法
CN109606137A (zh) * 2019-01-23 2019-04-12 吉林大学 融合成本寿命因素的多源电驱动系统经济性优化方法
CN110758122A (zh) * 2019-11-28 2020-02-07 福州大学 一种电-电混合电源系统的燃料电池效率优化方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105730256A (zh) * 2016-02-17 2016-07-06 陆玉正 一种带超级电容的燃料电池电动汽车动力装置
CN107901776A (zh) * 2017-11-15 2018-04-13 吉林大学 电动汽车复合电源燃料电池混合能量系统功率分流方法
CN108656981A (zh) * 2018-03-22 2018-10-16 河南科技大学 一种燃料电池混合动力汽车功率分配方法
CN109606137A (zh) * 2019-01-23 2019-04-12 吉林大学 融合成本寿命因素的多源电驱动系统经济性优化方法
CN110758122A (zh) * 2019-11-28 2020-02-07 福州大学 一种电-电混合电源系统的燃料电池效率优化方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
燃料电池混合动力系统多目标优化方法;宋大凤,等;《湖南大学学报(自然科学版)》;20191024;第46卷(第10期);全文 *

Also Published As

Publication number Publication date
CN112455291A (zh) 2021-03-09

Similar Documents

Publication Publication Date Title
Teng et al. A comprehensive review of energy management optimization strategies for fuel cell passenger vehicle
CN109606137B (zh) 融合成本寿命因素的多源电驱动系统经济性优化方法
Li et al. Optimal fuzzy power control and management of fuel cell/battery hybrid vehicles
CN110254418A (zh) 一种混合动力汽车增强学习能量管理控制方法
CN108987770A (zh) 一种多堆燃料电池发电系统的协调优化控制方法
CN113022385B (zh) 燃料电池锂电池混合动力系统参数匹配方法
CN111459025A (zh) 一种运用粒子算法优化的复合电源电动汽车功率分配策略
CN112455291B (zh) 一种燃料电池汽车复合电源瞬时最优能量管理方法
CN112706753B (zh) 一种基于灰狼优化的ecms混动汽车能量管理策略
CN110979030A (zh) 一种复合模糊控制的电动汽车复合电源系统控制方法
CN112677956B (zh) 一种考虑电池寿命的行星混联式混动车实时优化控制方法
CN113085860B (zh) 一种跟车环境下的燃料电池混合动力汽车的能量管理方法
Hong et al. Research on integration simulation and balance control of a novel load isolated pure electric driving system
Liu et al. Multi-objective optimization of energy management strategy on hybrid energy storage system based on radau pseudospectral method
CN111064214A (zh) 基于电动汽车两阶段滚动式策略的配电网优化调度方法
CN109849694B (zh) 一种基于在线凸规划的混合储能式有轨电车能量管理方法
Yang et al. Research on the energy management strategy of extended range electric vehicles based on a hybrid energy storage system
CN112069600A (zh) 一种多动力源混合动力系统及其能量管理方法
CN111159916B (zh) 一种车载双电池复合储能系统及其参数优化设计方法
CN105207241A (zh) 一种基于荷电状态检测的电动汽车调频优化控制方法
CN113352946B (zh) 一种燃料电池汽车动力系统的能量管理方法
Hou et al. Dynamic programming algorithm for energy management strategy of the fuel cell vehicle
Sun et al. Optimization Design of Powertrain Parameters for Electromechanical Flywheel Hybrid Electric Vehicle.
CN115848217B (zh) 一种基于多能源模组的能源管理方法
CN114030392B (zh) 燃料电池-锂电池混源供电系统效率优化能量管理策略

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant