CN112449164B - 用于对车辆定位的方法以及用于执行该方法的车辆 - Google Patents

用于对车辆定位的方法以及用于执行该方法的车辆 Download PDF

Info

Publication number
CN112449164B
CN112449164B CN202010915141.1A CN202010915141A CN112449164B CN 112449164 B CN112449164 B CN 112449164B CN 202010915141 A CN202010915141 A CN 202010915141A CN 112449164 B CN112449164 B CN 112449164B
Authority
CN
China
Prior art keywords
vehicle
projection
ground
driving
optical sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010915141.1A
Other languages
English (en)
Other versions
CN112449164A (zh
Inventor
R·柯尼希
M·伊格纳托夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde Material Handling GmbH
Original Assignee
Linde Material Handling GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde Material Handling GmbH filed Critical Linde Material Handling GmbH
Publication of CN112449164A publication Critical patent/CN112449164A/zh
Application granted granted Critical
Publication of CN112449164B publication Critical patent/CN112449164B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0246Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
    • G05D1/0253Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means extracting relative motion information from a plurality of images taken successively, e.g. visual odometry, optical flow
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3161Modulator illumination systems using laser light sources
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2513Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object with several lines being projected in more than one direction, e.g. grids, patterns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • G01B11/303Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces using photoelectric detection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/005Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 with correlation of navigation data from several sources, e.g. map or contour matching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/46Indirect determination of position data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/06Systems determining the position data of a target
    • G01S15/08Systems for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Automation & Control Theory (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明涉及一种用于对在行驶地面(5)上可运动的车辆(1)、尤其地面运输工具进行定位的方法,以及用于执行该方法的车辆(1)。本发明提出,借助于布置在所述车辆(1)上的投影单元(3)将投影图案(7)投影到所述行驶地面(5)上,借助于布置在所述车辆(1)上的光学传感器(4)检测所述投影图案(7),并且在数据处理单元中评估传感器数据,其中,从所述投影图案(7)的由于所述行驶地面(5)的地面不平而引起的改变中建立所述行驶地面(5)的粗糙度图像,所述粗糙度图像能够实现所述车辆(1)在所述行驶地面(5)上的定位。

Description

用于对车辆定位的方法以及用于执行该方法的车辆
技术领域
本发明涉及一种用于对在行驶地面上可运动的车辆、尤其地面运输工具进行定位的方法以及用于执行该方法的车辆。
背景技术
当在内部物流系统中运行地面运输工具时,经常使用辅助系统,所述辅助系统应使地面运输工具的操作变容易或者甚至能够实现自动化或部分自动化的运行。因为地面运输工具大多在限定的运行区域、例如在货物仓库中使用,所以可以为此使用地点相关的辅助系统。在此,在货物仓库中例如安装有标志、线条和标牌或者条形码以及用于传输识别信号(无线电信标)的无线电站。但是,仅当这些信息被输入到用于运行地面运输工具的管理系统中时,才能调用所述信息。地面运输工具可以通过传感器、例如光学传感器检测这些信息并且借助于数据处理装置将这些信息与管理系统中的记录进行比较。以这种方式,能够在货物仓库中容易地进行地面运输工具的手动或自动导航。
例如在EP 2 711 880A1中说明了一种无人驾驶的运输系统,在该运输系统中使用标记、例如反射元件,其可以借助于光学传感器、尤其激光传感器被良好地扫描。这些标记被用于实现货物仓库中的导航。为此,货物仓库的坐标作为参考数据被保存在数据处理装置中。运输车辆识别所述标记并且对运输车辆的当前坐标(实际位置)与保存在数据处理装置中的货物仓库的参考数据进行比较。因此,运输车辆可以自动地移动到目标位置(期望位置)用于分拣下一个货物。条形码或快速反应码(QR码)也可以作为标记使用,这些标记可以被视觉检测单元、例如摄像机检测。
现今,摄像机在地面运输工具中主要用于显示难以看到的车辆区域的图像。因此,用于监视后部空间的摄像机或者在负载接收器件、例如负载叉附近的摄像机已经被广泛使用,所述摄像机在此应辅助驾驶员在高的工作高度下工作。一段时间以来,与车辆连接的摄像机也被用于借助于图像处理装置识别周围的人员或者自动化地扫描货物上的条形码。
通常,根据现有技术,自主车辆通过使用例如感应环、磁体定位、具有形成人工地标的反射器的激光定位或GPS定位的方法在生产性使用中定位。
所提到的技术具有以下技术缺点:
所述技术通常与传感装置的高成本相关联。传感器的结构尺寸通常会引起关于安装空间限制和可见性或者说所需的安装高度的问题。尤其在持续使用时,所述传感器具有受限的传感器稳定性和稳健性。此外,所述传感器通常仅提供有限的精确性。
附加地,所述技术具有下述过程方面的缺点:
所述技术需要对基础设施进行修改。例如必须提供人工地标和/或线缆连接的能量/数据附接部。此外,所述技术还与高的地图绘制和维护花费相关联。此外,所述技术仅提供受限的可扩展性。经常由于需要融合数据或过滤测量信号而产生大量的计算花费。
发明内容
本发明所基于的任务是,提供一种用于对在行驶地面上可运动的车辆进行定位的方法以及用于执行该方法的车辆,它们能够以少的基础设施花费实现可靠的定位。
根据本发明,该任务通过以下方式解决:借助于布置在车辆上的投影单元将投影图案投影到行驶地面上,借助于布置在车辆上的光学传感器检测所述投影图案,并且在数据处理单元中评估传感器数据,其中,从投影图案的由于行驶地面的地面不平而引起的改变中建立行驶地面的粗糙度图像,该粗糙度图像能够实现车辆在行驶地面上的定位。
现有的使用地面相关信息的定位技术依赖于人工地标(通常作为用于绝对定位的标记)或者光流用于相对定位。在这两种情况下,这些方法均使用2D摄像机图像(即场景的带有色彩的2D投影)作为输入数据。
在这里所示的发明不评估光学的2D投影,而是以地面的粗糙度图像代替输入信号。为此,本发明采用了已知的激光-线条-三角测量的方法。通常,三角测量被理解为通过在三角形内的精确的角度测量进行光学间距测量的几何方法。借助于三角函数进行计算。简化地也可以说,进行从两个已知其间距的点到空间中的任意其它点的角度测量,以便明确地标明所述其它点的位置。主动的方法使用光源、通常是激光器,该激光器在一角度下照亮应测量其表面的对象。电子图像转换器、通常是摄像机或光学位置传感器记录散射光。因此,在知晓射束方向和摄像机与光源之间的间距的情况下可以确定从该对象到摄像机的距离。摄像机-光源的连接部以及来自对象和到对象的两条射束在此形成一个三角形,因此称为三角测量。
本发明在激光器-光投影方面扩展该方法并且将该方法适当地匹配于在移动式车辆中的使用。
因此,在本发明的一个优选构型中,使用激光投影仪作为投影单元。
有利地使用摄像机作为光学传感器。
与传统的三角测量方法相比,根据一个特别优选的构型设置,借助于投影单元将投影射束成锐角地朝行驶地面指向,并且借助于与投影单元间隔开的光学传感器来检测正交于行驶地面的投影图案。如果投影束照射到地面不平、例如地面中的截球形状的坑上,则在沿投影射束方向的延长中产生投影射束与地面的接触点。相对于在平坦地面中的状况,在地面不平坦时的接触点的移位呈现在投影图案的变化中。该变化可以被光学传感器检测并且被数据处理单元评估。由此可以建立行驶地面的粗糙度图像,该粗糙度图像能够实现车辆的定位。
优选地,借助于投影单元将投影射束沿车辆的行驶方向朝行驶地面指向。
符合目的地,投影图案包括平行线条。在此,根据一个优选的变型,平行线条正交于车辆的行驶方向定向。如果投影射束照射到地面不平、即构造为粗糙度特征的地面特征、例如坑上,则在投影线条中产生凸块(Beule)。在此,与理想线条的偏差通过泰勒斯定理(Strahlensatz)代表坑的深度。
在假设车辆的行驶速度为2.2m/s(8km/h)并且地面特征的空间维度为100μm以及在地面特征中需要10个采样值的情况下,得到4.5MHz的采样率。该假设在使用投影线条时适用。当通过大量投影线条检测地面特征时,可以降低采样率。因此,有利的是,在投影图案中使用尽可能大数量的平行线条。
在投影线条正交于行驶方向定向的情况下,地面特征仅在短时间内呈现在投影图案中。为了实现更长久的呈现,根据另一有利的变型设置,平行线条纵向于车辆的行驶方向定向。
然而,为此必须匹配投影单元和光学传感器的布置。如果将投影单元和光学传感器布置在平行于行驶方向的共同的假想轴线上,则在照射到地面中的坑上时,投影射束的射束延长与其它光点重叠并且因此在投影图像中将不可见。因此,在这种情况下,投影单元和光学传感器在车辆纵向方向上错开地布置。由此产生对角线投影基底,该对角线投影基底能够实现使用沿驶向方向定向的投影线条。
该变型的优点在于,地面特征在纵向方向上通过投影线条行进(wandert),因此可以选择较低的采样率。车辆在纵向方向上的相对运动可以直接由特征投影在投影线条中的间距求取。
此外,该变型的优点在于,作为评估算法可以计算线条的投影符号之间的相对低复杂度的交叉相关性,所述投影符号尤其在明确的、不再现的特征与较低的采样率相结合的情况下允许明确的相对定位。这是有利的,因为需要实时合适的方法用于评估,该方法能够以有限的计算能力实现。
根据另一有利构型,投影图案包括由彼此垂直定向的平行线条组成的投影网格。在此,在一个优选的变型中,一部分线条正交于车辆的行驶方向定向,并且一部分线条纵向于车辆的行驶方向定向。
在另一有利的变型中,线条与车辆的行驶方向成45°的角度定向。
利用这样的投影网格,除了沿车辆纵向方向的车辆运动之外,也可以检测沿横向方向的车辆运动以及沿组合的纵向和横向方向的车辆运动。在易操纵的车辆中、尤其在地面运输工具中这尤其是有利的,所述地面运输工具例如能够原地转动,其中,车辆在具有小半径的圆形轨道上运动。
在使用投影网格时,优选使用对角线投影基底,在所述对角线投影基底中,投影单元和光学传感器在车辆纵向方向上错开地布置。
另一变型设置,投影图案包括非笛卡尔(nicht kartesische)元素、尤其同心圆。
有利地,行驶地面的地面不平以投影图案中的弯曲和/或错位的形式被光学传感器检测为地面特征。如果车辆在行驶地面上运动,则地面特征在投影图案中移位。由地面特征在投影图案中的这种移动,数据处理单元可以计算车辆相对于行驶地面的运动。
如果车辆在较大的地面不平上运动,例如在驶过隆起时,不能精确地保持投影单元与行驶地面之间的竖直间距。这导致由数据处理单元计算出的行驶路段的失真。
因此,根据本发明构思的一个特别优选的扩展方案设置,数据处理单元借助于参考路段被校准。
为此,在一个优选的变型中,参考路段借助于至少两个参考射束到光学传感器附近的行驶地面上的正交投影来实现。例如可以借助于两个激光器、尤其点式激光器产生参考射束,所述两个激光器直接靠近光学传感器地布置并且垂直地辐射到行驶地面上并且在行驶地面上产生两个光点。在行驶地面上以已知间距彼此远离的两个光点的连接部形成参考路段。
另一变型设置,借助于间距测量单元、尤其激光-距离测量单元或超声-距离测量单元来测量车辆在行驶地面之上的高度,并且在数据处理单元中由所测量的高度计算投影单元的投影直线的间距作为参考路段。
在另一变型中,在数据处理单元中由车辆的驱动信息计算参考路段。在此,由行驶地面的粗糙度图像生成的运动信息与行驶驱动器的里程信息相关联。由与预期车辆运动的偏差得到与投影单元和地面之间的假想竖直间距的偏差。
根据本发明的一个优选的扩展方案设置,布置在行驶地面上的人工地标被光学传感器检测。在使用例如作为标签施加在地面上的已知的人工地标时,关于特征结构(例如线条或圆直径)的间距的信息明确地作为认识存在。因此能够由此求取光学传感器与地标的竖直间距。因此,已知车辆与行驶地面的竖直间距。相应地,如上面所说明地可以由已知的竖直间距和投影图案的图像变化来确定车辆在行驶地面上的相对运动。
此外,本发明涉及一种用于执行所述方法的车辆。
在所述车辆中,通过以下方式解决所提出的任务:在车辆上布置有构造成用于将投影图案投影到行驶地面上的投影单元和构造成用于检测投影图案的光学传感器,并且在车辆上设置有构造成用于评估传感器数据的数据处理单元,该数据处理单元设置成用于从投影图案的由于行驶地面的地面不平而引起的变化中建立行驶地面的粗糙度图像,该粗糙度图像能够实现车辆在行驶地面上的定位。
符合目的地,投影单元构造为激光投影仪。
光学传感器优选构造为摄像机。
根据一个特别优选的构型,投影单元的投影射束方向成锐角地朝行驶地面定向。此外,光学传感器的接收方向正交于行驶地面定向。在此,投影单元和光学传感器彼此间隔开成使得投影射束方向和接收方向在行驶地面上相交。
为了即使当投影线条在行驶方向上时也能够评估地面特征,本发明的另一有利的构型设置,投影单元和光学传感器在车辆纵向方向上错开地布置。
所述车辆优选地构造为地面运输工具,尤其构造为平台车、牵引车、物流列车-车辆、叉车或分拣车辆。
特别有利的是将所述车辆构造为自主式车辆。这包括无人驾驶的运输车辆(FTF,英文:Automated Guided Vehicle,AGV)。这理解为具有自身的行驶驱动器的、地面连接的输送车辆,所述输送车辆被自动控制并且无接触地引导。也存在可以自主地承担装载的无人驾驶的运输车辆。
在一个优选的构型中,所述车辆构造为移动式分拣机器人。分拣机器人可以自主地借助于机器人手臂接收包裹件并将其放置在所携带的平台上。
本发明提供一系列优点:
除了使用地面的2D摄像机图像之外,本发明还能够使用附加的自然地标。同时,本发明使用现有的传感器、尤其2D地面摄像机,它们例如在探测光流时使用并且因此形成成本有利的另一种定位可能性。通过使用被投影的网格结构能够根据沿着在纵向方向上的线条的连续运动而非常准确地观察并且因此定位地面表面的粗糙度。在此,通过投影单元、例如激光投影仪投影的图案却不限于网格结构并且可以根据应用领域和地面特性被改变和匹配。被用作投影单元的激光投影仪通常利用平板印刷生产的光圈工作,所述光圈与成本有利的激光二极管结合地导致投影单元的低购置成本。在这种背景下,可以紧凑地(小型化地)并且在没有可运动机构的情况下实现激光投影仪,由此使磨损部分最小化。
附图说明
根据在示意性的附图中所示的实施例详细地阐述本发明的另外的优点和细节。在此示出:
图1具有投影单元和光学传感器的根据本发明的车辆,
图2具有平行线条的投影图案,
图3地面不平对投影图案的影响,
图4行驶地面在对角线投影基底中的粗糙度图像,
图5通过粗糙度图像示出地面特征的运动,
图6具有投影网格的投影图案,
图7具有同心圆的投影图案,
图8具有用于校准的点式激光器的车辆,
图9具有用于标明参考路段的激光点的投影图像,
图10具有用于校准的激光-距离测量单元的车辆,
图11具有投影线条的投影图像和用于确定线条间距的几何示图,和
图12具有用于校准的人工地标的示例。
具体实施方式
图1示出车辆1、例如自主式地面运输工具,其具有车轮2、投影单元3和光学传感器4。车辆1在行驶地面5上运动。投影单元3是激光投影仪。使用摄像机作为光学传感器4。对于传统的三角测量方法修改地,根据本发明的方法使用了宽泛的三角测量基底,其中,构造为激光投影仪、优选构造为线条投影仪或网格投影仪的投影单元3与光学传感器4进一步远离地装配,并且投影单元3的投影射束6成锐角地朝行驶地面5指向。
与已知的激光三角测量不同,光学传感器4在此与对象、即行驶地面5正交地指向,而投影射束6非正交地布置。
投影单元3可以构造为半导体激光器,该半导体激光器具有在上游连接的光学器件而没有机械上可运动的构件。投影单元3在行驶地面5的理想是平的面上产生在图2中所示的、由平行延伸的线条8组成的投影图案7。线条8例如正交地并且因此横向于车辆1的行驶方向布置。
如果与图2不同地考虑不平的地面,则地面不平如在图3中所示地产生影响。在图3中,在左侧示图中示出行驶地面5的侧视图,并且在右侧示图中示出行驶地面5的俯视图,它们具有产生的投影图案并且因此具有行驶地面的粗糙度图像。如果投影射束6照射到构造为地面不平的地面特征9、例如行驶地面5中的截球形状的小坑上,则产生投影射束6与行驶地面5的在纵向方向上超过预期接触点11移位的接触点12。这导致,凸块形式的地面特征9呈现在投影图案7的相应的线条8中。在此,与理想线条的偏差通过泰勒斯定理代表坑的深度。
在本发明的在图3中所示的变型中,使用具有平行线条8的投影图案7,所述平行线条正交地并且因此正交于车辆1的行驶方向定向。线条8正交于车辆1的行驶方向定向的缺点在于,地面特征9仅在短时间内呈现在投影图案7中。理想的是沿车辆1的行驶方向的假想投影线条,然而,这在方法方面而言不能在无结构匹配的情况下实现,因为射束延长与其它光点重叠并且在投影图案中不可见。
然而,如果与图3不同地,投影单元3和光学传感器4沿车辆纵向方向错开地装配,即投影单元3和光学传感器4沿车辆横向方向彼此间隔开地布置在车辆1上,则由此得到对角线投影基底,该对角线投影基底能够实现使用沿车辆1的行驶方向定向的投影线条13。具有沿车辆1的行驶方向定向的线条13的投影图案7在图4中示出,其示出行驶地面5的相应的粗糙度图像。
图4的这种布置的优点在于,在投影线条13中作为偏移和/或移位示出的地面特征9沿纵向方向通过线条13行进,因此可以选择较低的采样率。沿纵向方向的车辆相对运动能够由线条13中的地面特征投影的间距并且因此由行驶地面5在不同时间点的粗糙度图像直接求取。因此,数据处理单元可以由投影图案7中的地面特征9的被光学传感器4检测到的移位来计算车辆1相对于行驶地面5的运动。
在图5中通过粗糙度图像阐明地面特征9的运动。在图5的左上示图中,示出时间点t=t0时的投影图案7,在该时间点,地面特征9位于位置r1处。由结构决定地已知形成投影图案7的端部的投影点10之间的间距x。由于车辆1在纵向方向上的运动,地面特征9通过投影图案7的线条13行进。在图5的右侧示图中所示的时间点t=t1时,地面特征9位于位置r2处。通过叠加两个粗糙度图像(图5的左上示图和右上示图)产生在图5的下方示图中所示的具有长度说明d的完整的图。
结合图2至5所说明的方法将车辆运动聚焦在车辆纵向方向上并且在此忽略了以下事实:在易操纵的车辆中(如在地面运输工具领域中常见的那样),在横向方向或组合的纵向和横向方向上出现显著的车辆运动。这例如在原地转动时是这种情况,其中,车辆在具有小半径的圆形轨道上运动。
在图6中所示的投影网格形式的投影图案7呈现为横向和纵向线条8、13的组合,其中,使用了对角线投影基底。以这种方式也可以检测在横向方向或者组合的纵向和横向方向上的车辆运动。
对此扩展地,也可以考虑使用转动45°的菱形投影网格。
此外,可以考虑使用非笛卡尔元素、例如圆形作为投影图案。在图7中示出具有同心圆14的投影图案7。
结合图2至7所示的考虑基于对投影单元3和行驶地面5之间的精确已知的竖直间距的假设。因为该假设在实践中例如由于较大的地面不平、例如隆起而不确定地给出,所以根据图8至11设置,借助于参考路段校准数据处理单元,该数据处理单元由行驶地面的粗糙度图像确定车辆运动。
为此,在图8中所示的变型中,借助于至少两个参考射束15到光学传感器4附近的行驶地面5上的正交投影来实现所述参考路段。参考射束15例如可以借助于两个激光器16、尤其点式激光器来产生,所述两个激光器直接靠近光学传感器4地布置并且垂直地辐射到行驶地面5上并且在行驶地面5上产生相应的光点或者说投影点。在地面5上以已知间距x彼此远离的两个光点的连接部形成参考路段。
在图9中示出利用图8的布置实现的投影图像。在使用摄像机作为光学传感器4时,这在此涉及摄像机图像。借助于两个激光器16,在摄像机图像中以结构上预给定的并且因此已知的间距x投影两个激光点17、18。该间距x可以作为测量标准使用。根据激光点17、18之间的间距x可以成比例地求取车辆1的已经经过的未知距离段d或者说两条投影线条8之间的间距。
替代地,通过使用用于间距测量的明确的单元,例如基于激光或超声波,能够求取投影直线的间距,如图10和11中所示的那样。
如在图10中所示的那样,车辆1为此具有(例如构造为两点式激光器的)间距测量单元19,该间距测量单元检测并且测量车辆1与行驶地面5之间的竖直间距h。在间距h0已知的情况下,利用投影单元3的已知的投影角度φ得到两个投影线条8之间的被校准的距离段d0或者说被校准的间距。
在图11的下方示图中示出光学传感器4的在此产生的投影图像。如在图11的上方示图中阐明的那样,在借助于间距测量单元19求取的、车辆1在行驶地面5之上的高度h已知的情况下,能够以几何方式求取未知的距离段d或者说两条投影线条8之间的随高度h变化的间距,如在图11右侧的公式中所阐明的那样。
图12示出用于校准的人工地标20、21、22的示例,所述人工地标可以对图8至11的实施例替代或补充地使用。在使用已知的人工地标20、21、22时,关于特征结构(例如线条或圆直径)的间距的信息明确地作为用于参考路段的认识存在,所述人工地标例如作为标签施加在行驶地面5上。因此,可以由此求取光学传感器4与地标的竖直间距,因此已知车辆1与行驶地面5的竖直间距。相应地,如上面所说明地,可以由已知的竖直间距和投影线条的图像变化并且因此由行驶地面5的变化的粗糙度图像确定车辆1在行驶地面5上的相对运动。

Claims (30)

1.一种用于对在行驶地面(5)上可运动的车辆(1)进行定位的方法,其中,借助于布置在所述车辆(1)上的投影单元(3)将投影图案(7)投影到所述行驶地面(5)上,借助于布置在所述车辆(1)上的光学传感器(4)检测所述投影图案(7),并且在数据处理单元中评估传感器数据,其特征在于,从所述投影图案(7)的由于所述行驶地面(5)的地面不平而引起的改变中建立所述行驶地面(5)的粗糙度图像,所述粗糙度图像能够实现所述车辆(1)在所述行驶地面(5)上的定位。
2.根据权利要求1所述的方法,其特征在于,使用激光投影仪作为投影单元(3)。
3.根据权利要求1或2所述的方法,其特征在于,使用摄像机作为光学传感器(4)。
4.根据权利要求1或2所述的方法,其特征在于,借助于所述投影单元(3)将投影射束(6)成锐角地朝所述行驶地面(5)指向,并且借助于与所述投影单元(3)间隔开的光学传感器(4)以正交于所述行驶地面(5)的方式检测所述投影图案(7)。
5.根据权利要求1或2所述的方法,其特征在于,借助于所述投影单元(3)将投影射束(6)沿所述车辆(1)的行驶方向朝所述行驶地面(5)指向。
6.根据权利要求1或2所述的方法,其特征在于,所述投影图案(7)包括平行线条(8、13)。
7.根据权利要求6所述的方法,其特征在于,所述平行线条(8)正交于所述车辆(1)的行驶方向定向。
8.根据权利要求6所述的方法,其特征在于,所述平行线条(13)纵向于所述车辆(1)的行驶方向定向。
9.根据权利要求6所述的方法,其特征在于,所述投影图案(6)包括由彼此垂直定向的平行线条(8、13)组成的投影网格。
10.根据权利要求9所述的方法,其特征在于,一部分线条(8)正交于所述车辆(1)的行驶方向定向,并且一部分线条(13)纵向于所述车辆(1)的行驶方向定向。
11.根据权利要求9所述的方法,其特征在于,所述线条(8、13)与所述车辆(1)的行驶方向成45°的角度定向。
12.根据权利要求1或2所述的方法,其特征在于,所述投影图案(7)包括同心圆(14)。
13.根据权利要求1或2所述的方法,其特征在于,所述行驶地面(5)的地面不平以所述投影图案(7)中的弯曲和/或错位的形式被所述光学传感器(4)检测为地面特征(9)。
14.根据权利要求13所述的方法,其特征在于,所述数据处理单元由所述地面特征(9)在所述投影图案中的移位来计算所述车辆(1)相对于所述行驶地面(5)的运动,所述移位被所述光学传感器(4)检测到。
15.根据权利要求1或2所述的方法,其特征在于,所述数据处理单元借助于参考路段被校准。
16.根据权利要求15所述的方法,其特征在于,所述参考路段借助于至少两个参考射束(15)到所述光学传感器(4)附近的行驶地面(5)上的正交投影来产生。
17.根据权利要求15所述的方法,其特征在于,借助于间距测量单元(19)来测量所述车辆(1)在所述行驶地面(5)之上的高度,并且在所述数据处理单元中由所测量的高度计算所述投影单元(3)的投影直线的间距作为参考路段。
18.根据权利要求15所述的方法,其特征在于,在所述数据处理单元中由所述车辆(1)的驱动信息计算所述参考路段。
19.根据权利要求1或2所述的方法,其特征在于,布置在所述行驶地面(5)上的人工地标(20、21、22)被所述光学传感器(4)检测。
20.根据权利要求1所述的方法,其特征在于,所述车辆(1)构造为地面运输工具。
21.根据权利要求17所述的方法,其特征在于,所述间距测量单元(19)是激光-距离测量单元或超声-距离测量单元。
22.一种用于执行根据权利要求1至21中任一项所述的方法的车辆(1),其中,在所述车辆(1)上布置有构造成用于将投影图案(7)投影到行驶地面(5)上的投影单元(3)和构造成用于检测所述投影图案(7)的光学传感器(4),并且在所述车辆(1)上设置有构造成用于评估传感器数据的数据处理单元,其特征在于,所述数据处理单元设置成用于从所述投影图案(7)的由于所述行驶地面(5)的地面不平而引起的变化中建立所述行驶地面(5)的粗糙度图像,所述粗糙度图像能够实现所述车辆(1)在所述行驶地面(5)上的定位。
23.根据权利要求22所述的车辆(1),其特征在于,所述投影单元(3)构造为激光投影仪。
24.根据权利要求22或23所述的车辆(1),其特征在于,所述光学传感器(4)构造为摄像机。
25.根据权利要求22或23所述的车辆(1),其特征在于,所述投影单元(3)的投影射束方向成锐角地朝所述行驶地面(5)定向,并且所述光学传感器(4)的接收方向正交于所述行驶地面(5)定向,其中,所述投影单元(3)和所述光学传感器(4)彼此间隔开成使得所述投影射束方向和所述接收方向在所述行驶地面(5)上相交。
26.根据权利要求22或23所述的车辆(1),其特征在于,所述投影单元(3)和所述光学传感器(4)在车辆纵向方向上错开地布置。
27.根据权利要求22或23所述的车辆(1),其特征在于,所述车辆(1)构造为地面运输工具。
28.根据权利要求22或23所述的车辆(1),其特征在于,所述车辆(1)构造为自主式车辆。
29.根据权利要求28所述的车辆(1),其特征在于,所述车辆(1)构造为移动式分拣机器人。
30.根据权利要求27所述的车辆(1),其特征在于,所述车辆(1)构造为平台车、牵引车、物流列车-车辆、叉车或分拣车辆。
CN202010915141.1A 2019-09-04 2020-09-03 用于对车辆定位的方法以及用于执行该方法的车辆 Active CN112449164B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019123647.9A DE102019123647A1 (de) 2019-09-04 2019-09-04 Verfahren zur Lokalisierung eines Fahrzeugs sowie Fahrzeug zur Durchführung des Verfahrens
DE102019123647.9 2019-09-04

Publications (2)

Publication Number Publication Date
CN112449164A CN112449164A (zh) 2021-03-05
CN112449164B true CN112449164B (zh) 2024-04-30

Family

ID=72234628

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010915141.1A Active CN112449164B (zh) 2019-09-04 2020-09-03 用于对车辆定位的方法以及用于执行该方法的车辆

Country Status (3)

Country Link
EP (1) EP3789842B1 (zh)
CN (1) CN112449164B (zh)
DE (1) DE102019123647A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021105263A1 (de) 2021-03-04 2022-09-08 Schaeffler Technologies AG & Co. KG Verfahren zum Ermitteln einer Fahrtrichtung und/oder einer Positionsveränderung und/oder Geschwindigkeit eines fahrerlosen Transportfahrzeugs, fahrerloses Transportfahrzeug und fahrerloses Transportsystem
DE102021114067A1 (de) * 2021-05-31 2022-12-01 Jungheinrich Aktiengesellschaft Flurförderzeug mit einer optischen Überwachungseinrichtung
CN113608524B (zh) * 2021-06-16 2024-04-16 深圳甲壳虫智能有限公司 自动行走装置及其控制方法、控制装置及存储介质

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2192384A1 (de) * 2008-11-27 2010-06-02 DS Automation GmbH Vorrichtung und Verfahren zur optischen Lagebestimmung eines Fahrzeugs
CN102778754A (zh) * 2011-05-12 2012-11-14 罗伯特·博世有限公司 用于使车辆的投影装置的投影对齐的方法和装置
DE102015010746A1 (de) * 2015-08-17 2016-03-24 Daimler Ag Verfahren zur Selbstlokalisation eines Fahrzeugs
CN106062849A (zh) * 2014-02-24 2016-10-26 日产自动车株式会社 自己位置计算装置及自己位置计算方法
EP3260357A1 (de) * 2016-06-24 2017-12-27 Deutsche Post AG Fahrzeug mit rangiersystem
CN107571866A (zh) * 2016-07-05 2018-01-12 罗伯特·博世有限公司 用于分析传感器数据的方法
DE102016117203A1 (de) * 2016-09-13 2018-03-15 Linde Material Handling Gmbh Ortungssystem zum Erfassen der Position eines Fahrzeugs, insbesondere eines Flurförderzeugs, in einer Umgebung
CN109291922A (zh) * 2018-09-30 2019-02-01 东风汽车集团有限公司 一种自动识别小型障碍物并制动的驾驶辅助系统及控制方法
CN109564431A (zh) * 2016-09-12 2019-04-02 索尤若驱动有限及两合公司 用于引导车辆的系统以及方法
CN109716060A (zh) * 2016-07-19 2019-05-03 视觉机械有限公司 通过事件相机利用地表的车辆定位

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040221790A1 (en) * 2003-05-02 2004-11-11 Sinclair Kenneth H. Method and apparatus for optical odometry
US9840003B2 (en) * 2015-06-24 2017-12-12 Brain Corporation Apparatus and methods for safe navigation of robotic devices

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2192384A1 (de) * 2008-11-27 2010-06-02 DS Automation GmbH Vorrichtung und Verfahren zur optischen Lagebestimmung eines Fahrzeugs
CN102778754A (zh) * 2011-05-12 2012-11-14 罗伯特·博世有限公司 用于使车辆的投影装置的投影对齐的方法和装置
CN106062849A (zh) * 2014-02-24 2016-10-26 日产自动车株式会社 自己位置计算装置及自己位置计算方法
DE102015010746A1 (de) * 2015-08-17 2016-03-24 Daimler Ag Verfahren zur Selbstlokalisation eines Fahrzeugs
EP3260357A1 (de) * 2016-06-24 2017-12-27 Deutsche Post AG Fahrzeug mit rangiersystem
CN107571866A (zh) * 2016-07-05 2018-01-12 罗伯特·博世有限公司 用于分析传感器数据的方法
CN109716060A (zh) * 2016-07-19 2019-05-03 视觉机械有限公司 通过事件相机利用地表的车辆定位
CN109564431A (zh) * 2016-09-12 2019-04-02 索尤若驱动有限及两合公司 用于引导车辆的系统以及方法
DE102016117203A1 (de) * 2016-09-13 2018-03-15 Linde Material Handling Gmbh Ortungssystem zum Erfassen der Position eines Fahrzeugs, insbesondere eines Flurförderzeugs, in einer Umgebung
CN109291922A (zh) * 2018-09-30 2019-02-01 东风汽车集团有限公司 一种自动识别小型障碍物并制动的驾驶辅助系统及控制方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Jyun-Min Dai Department of Electrical Engineering, National Chung Cheng University, Chiayi, Taiwan *
Lu-Ting Wu ; Huei-Yung Lin ; Wen-Lung Tai.A driving assistance system with vision based vehicle detection techniques.《2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA)》.2017,全文. *
三维激光雷达在无人车环境感知中的应用研究;张银 任国全 程子阳 孔国杰;《激光与光电子学进展》;20190715;第56卷(第13期);全文 *
基于车联网的车辆定位修正方法设计与实现;姚浪;《万方硕士学位论文数据库》;20180416;全文 *

Also Published As

Publication number Publication date
DE102019123647A1 (de) 2021-03-04
CN112449164A (zh) 2021-03-05
EP3789842B1 (de) 2022-05-25
EP3789842A1 (de) 2021-03-10

Similar Documents

Publication Publication Date Title
CN112449164B (zh) 用于对车辆定位的方法以及用于执行该方法的车辆
US8694236B2 (en) Road environment recognition device and method of recognizing road environment
CA2307206C (en) Method and device for association of anonymous reflectors to detected angle positions
KR100264719B1 (ko) 차량의위치를테스트하기위한측정시스템
RU2246098C2 (ru) Способ и устройство для определения местоположения транспортного средства на определенной территории
US7535558B2 (en) Method for optical chassis measurement
FI88655C (fi) Saett foer navigering av en foerarloes farkost samt farkost foer utoevning av saettet
US11243292B2 (en) Automatic calibration of a vehicle radar sensor
WO2017123301A2 (en) Negative obstacle detector
CN110441734B (zh) 激光定位系统及使用此系统的位置测量方法
CN206075134U (zh) 一种巷道自动导引车和导引系统
JP2004198330A (ja) 物体の位置検出方法及び装置
JPH11278799A (ja) 無人フォークリフトにおける荷取り制御装置および無人フォークリフトにおける荷取り制御方法
US11513525B2 (en) Server and method for controlling laser irradiation of movement path of robot, and robot that moves based thereon
US20210122620A1 (en) Method for Controlling a Working Platform, Control Device, and Inclination Angle Measuring System for a Working Platform
US20200387166A1 (en) Autonomous Loading and Unloading of Cargo Container
JP2017032329A (ja) 障害物判定装置、移動体、及び障害物判定方法
CN109828569A (zh) 一种基于2d-slam导航的智能agv叉车
JP3149661B2 (ja) 無人搬送車の位置同定方法
US11256258B2 (en) System and method for determining the position of a vehicle for automated driving on a site
WO1995029380A1 (en) Navigation system for fast automated vehicles and mobile robots
JP2012113765A (ja) 移動体システム
CN111045404A (zh) 一种窄巷道定位堆垛车、堆垛车的定位系统及定位方法
JP7045421B2 (ja) 移動体位置検出システムおよび移動体位置検出方法
JP2015056123A (ja) 移動体の環境地図生成制御装置、移動体、及び移動体の環境地図生成方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant