CN112444315A - 一种被动淬灭电路 - Google Patents

一种被动淬灭电路 Download PDF

Info

Publication number
CN112444315A
CN112444315A CN202011103716.6A CN202011103716A CN112444315A CN 112444315 A CN112444315 A CN 112444315A CN 202011103716 A CN202011103716 A CN 202011103716A CN 112444315 A CN112444315 A CN 112444315A
Authority
CN
China
Prior art keywords
constant current
quenching
circuit
avalanche
current element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202011103716.6A
Other languages
English (en)
Inventor
梁毅
李长忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liangye Technology Group Co Ltd
Original Assignee
Liangye Technology Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liangye Technology Group Co Ltd filed Critical Liangye Technology Group Co Ltd
Priority to CN202011103716.6A priority Critical patent/CN112444315A/zh
Publication of CN112444315A publication Critical patent/CN112444315A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • G01J2001/4446Type of detector
    • G01J2001/446Photodiode
    • G01J2001/4466Avalanche

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Light Receiving Elements (AREA)

Abstract

本申请公开了一种被动淬灭电路,所述电路包括:恒流元件、雪崩光电二极管;其中,所述恒流元件与所述雪崩光电二极管串联。本申请通过将所述恒流元件替换传统电路中使用的淬灭电阻,从而解决现有技术中存在的淬灭恢复慢、死时间长、光计数率低的问题。

Description

一种被动淬灭电路
技术领域
本申请涉及一种光电探测领域,尤其涉及一种被动淬灭电路。
背景技术
雪崩光电二级管(APD)是一种具有光探测功能的二极管,属于光敏元件。在以硅或锗为材料制成的光电二极管的P-N结上加上反向偏压后,射入的光被P-N结吸收后会形成光电流。加大反向偏压会产生“雪崩”(即光电流成倍地激增)的现象。因此这种二极管被称为雪崩光电二极管。
在实际应用中,APD如果要实现反复光探测功能,就需要对其进行被动淬灭。传统的被动淬灭电路中,通过给APD元件串联一个电阻来实现淬灭功能。但是该被动淬灭电路在发生雪崩后淬灭恢复慢,死时间较长,光计数低。
发明内容
为解决上述问题,本发明提出了一种被动淬灭电路,具体采用了如下的技术方案:
一种被动淬灭电路,其特征在于,所述电路包括:恒流元件、雪崩光电二极管;其中,
所述恒流元件与所述雪崩光电二极管串联。
可选地,所述雪崩光电二极管的阴极与所述恒流元件的阴极相连接。
可选地,所述电路还包括电源,
所述雪崩二极管的阳极与所述电源的负极相连接;
所述恒流元件的阳极与所述电源的正极相连接。
可选地,所述恒流元件为恒流二极管。
可选地,所述电路还包括取样电阻,所述取样电阻连接于所述电源的负极和所述雪崩光电二极管的阳极之间。
可选地,所述取样电阻的与所述雪崩光电二极管的阳极连接的一端为信号输出端。
与现有技术相比,本发明的有益效果如下:本申请通过采用恒流元件替换传统中使用的淬灭电阻,加快了淬灭恢复、提高了光计数率。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为现有技术中的被动淬灭电路;
图2为本申请实施例提供的一种被动淬灭电路。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请具体实施例及相应的附图对本申请技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例提供了一种被动淬灭电路,通过将所述恒流元件替换传统电路中使用的淬灭电阻,从而解决现有技术中存在的淬灭恢复慢、死时间长、光计数率低的问题。
首选介绍一下被动淬灭电路的工作过程,所述过程分为两个阶段,分别是淬灭阶段和恢复阶段,具体过程如下:
淬灭阶段:未发生雪崩时,APD(雪崩光电二极管)处于开路状态,APD两端的电压等于电源电压(雪崩电压),回路中无电流;当有光子到达APD致使其发生雪崩时,APD处于通路状态,回路中产生雪崩电流,随着雪崩电流的急剧增大,由于与其串联的淬灭元件的分压作用,所述APD两端的电压快速下降且低于雪崩电压,同时雪崩电流也快速下降直至淬灭,到此淬灭阶段结束,此时APD再次处于开路状态。
恢复阶段:淬灭阶段结束时,由于结电容的存在,APD两端的偏置电压低于电源电压(雪崩电压),此时即使有光子到达,也无法产生雪崩。接下来回路经由淬灭元件给APD(的结电容)充电,直至APD两端偏置电压等于雪崩电压。此时如果有光子达到,将使APD再次发生雪崩。
在淬灭阶段和恢复阶段的循环交替中,不断完成光子的检测与计数。
综上所述,可知,在淬灭阶段,淬灭元件的电阻越大,淬灭越快;而在恢复阶段,淬灭元件的电阻越小,恢复越快。而在实际应用中,传统的淬灭元件采用淬灭电阻,而为了兼顾淬灭阶段和恢复阶段,淬灭电阻的阻值只能折中。而本申请中为了克服上述的问题,采用恒流元件来替代淬灭电阻。
如附图2所述,是实施例提供的一种被动淬灭电路,所述电路包括:恒流元件、APD元件,所述恒流元件与所述雪崩光电二极管串联。本申请实施例通过将所述恒流元件替换传统电路中使用的淬灭电阻(如图1),从而解决现有技术中存在的淬灭恢复慢、死时间长、光计数率低的问题。
进一度地,所述雪崩光电二极管的阴极与所述恒流元件的阴极相连接。
可选地,所述雪崩二极管的阳极与所述电源的负极相连接;
所述恒流元件的阳极与所述电源的正极相连接。
进一步地,所述恒流元件为恒流二极管。
在实际应用中,当有光子到达APD时,致使其发生雪崩时,APD处于通路状态,电路中产生雪崩电流,所述雪崩电流流经恒流元件和APD,快速增大的雪崩电流很快达到恒流元件的恒流值IH,此时无论恒流元件两端电压如何增加,流经恒流元件的电流基本不变,恒流元件进入高阻抗状态。由于在淬灭阶段,淬灭元件的电阻越高,淬灭越快,因而高阻抗的恒流元件比传统电路中使用的淬灭电阻有更明显的分压作用,从而使得淬灭阶段更快结束。
雪崩淬灭后,即进入恢复阶段,电路中的电流低于恒流元件的IH值,此时恒流元件类似于一个普通的二极管,呈现很低的阻抗,在接下来的恢复阶段,回路通过处于低阻抗状态的恒流元件给APD(的结电容)充电,由于在恢复阶段,淬灭元件的电阻越小,恢复越快,因而,相较于传统的淬灭电路,本申请实施例的电路的充电时间更短,加快了淬灭恢复、从而提高了光计数率。
可选地,所述电路还包括取样电阻,所述取样电阻连接于所述电源的负极和所述雪崩光电二极管的阳极之间。当发生雪崩时,电路中产生雪崩电流,雪崩电流流经恒流元件和APD后,又流经取样电阻,取样电阻将电路中的雪崩电流转化成电压信号并输出。
进一步地,所述取样电阻的与所述雪崩光电二极管的阳极连接的一端为信号输出端。取样电阻转化将雪崩电流转化为电压后,由信号输出端输出,根据信号端输出的电信号,就可以判断是否存在光子信号以及计算光子数量,即实现光检测与光计数功能。
以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (6)

1.一种被动淬灭电路,其特征在于,所述电路包括:恒流元件、雪崩光电二极管;其中,
所述恒流元件与所述雪崩光电二极管串联。
2.根据权利要求1所述的电路,其特征在于,所述雪崩光电二极管的阴极与所述恒流元件的阴极相连接。
3.根据权利要求2所述的电路,其特征在于,所述电路还包括电源,
所述雪崩二极管的阳极与所述电源的负极相连接;
所述恒流元件的阳极与所述电源的正极相连接。
4.根据权利要求1所述的电路,其特征在于,所述恒流元件为恒流二极管。
5.根据权利要求3所述的电路,其特征在于,所述电路还包括取样电阻,所述取样电阻连接于所述电源的负极和所述雪崩光电二极管的阳极之间。
6.根据权利要求5所述的电路,其特征在于,所述取样电阻的与所述雪崩光电二极管的阳极连接的一端为信号输出端。
CN202011103716.6A 2020-10-15 2020-10-15 一种被动淬灭电路 Withdrawn CN112444315A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011103716.6A CN112444315A (zh) 2020-10-15 2020-10-15 一种被动淬灭电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011103716.6A CN112444315A (zh) 2020-10-15 2020-10-15 一种被动淬灭电路

Publications (1)

Publication Number Publication Date
CN112444315A true CN112444315A (zh) 2021-03-05

Family

ID=74736176

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011103716.6A Withdrawn CN112444315A (zh) 2020-10-15 2020-10-15 一种被动淬灭电路

Country Status (1)

Country Link
CN (1) CN112444315A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT8822367A0 (it) * 1988-10-20 1988-10-20 Consiglio Nazionale Ricerche Circuito di spegnimento attivo per fotodiodi a semiconduttore a valanga per singoli fotoni, adatto per il funzionamento con fotodiodo in posizione remota
GB9215882D0 (en) * 1992-07-25 1992-09-09 Roke Manor Research Improvements in or relating to photon counters
US5168154A (en) * 1989-03-22 1992-12-01 Kidde-Graviner Limited Electrical avalanche photodiode quenching circuit
US5532474A (en) * 1993-12-17 1996-07-02 Eg&G Limited Active quench circuit and reset circuit for avalanche photodiode
JPH08288752A (ja) * 1995-04-10 1996-11-01 Fujitsu General Ltd 超再生復調回路
US20060231742A1 (en) * 2005-04-14 2006-10-19 Forsyth Keith W Method and apparatus for providing non-linear, passive quenching of avalanche currents in Geiger-mode avalanche photodiodes

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT8822367A0 (it) * 1988-10-20 1988-10-20 Consiglio Nazionale Ricerche Circuito di spegnimento attivo per fotodiodi a semiconduttore a valanga per singoli fotoni, adatto per il funzionamento con fotodiodo in posizione remota
US5168154A (en) * 1989-03-22 1992-12-01 Kidde-Graviner Limited Electrical avalanche photodiode quenching circuit
GB9215882D0 (en) * 1992-07-25 1992-09-09 Roke Manor Research Improvements in or relating to photon counters
US5532474A (en) * 1993-12-17 1996-07-02 Eg&G Limited Active quench circuit and reset circuit for avalanche photodiode
JPH08288752A (ja) * 1995-04-10 1996-11-01 Fujitsu General Ltd 超再生復調回路
US20060231742A1 (en) * 2005-04-14 2006-10-19 Forsyth Keith W Method and apparatus for providing non-linear, passive quenching of avalanche currents in Geiger-mode avalanche photodiodes

Similar Documents

Publication Publication Date Title
CN102333195B (zh) 一种工作于线性模式apd阵列的主、被动成像读出电路
Gallivanoni et al. Progress in quenching circuits for single photon avalanche diodes
CN107271036B (zh) 高速淬灭及恢复的自由运行单光子探测系统
CN108681362A (zh) 一种阵列单光子雪崩光电二极管增益自适应调节电路
CN101197623B (zh) 一种差分光接收机及灵敏度和带宽同时倍增的方法
CN106052857A (zh) 一种具有温度补偿功能的光电检测电路
US10636918B2 (en) Single electron transistor triggered by photovoltaic diode
CN106249798B (zh) 一种用于gpon光猫中apd的灵敏度调试系统及方法
CN109443555B (zh) 基于主动淬灭主动恢复电路的单光子探测系统
CN112444315A (zh) 一种被动淬灭电路
CN104266770A (zh) 一种近红外多光子探测器
CN103746744A (zh) 一种支持apd应用的平均光电流监控电路
CN202261578U (zh) 一种apd阵列的主、被动成像读出电路
CN107018597B (zh) Led可持续等光强照明集成控制电路
Mu et al. Evaluation and experimental comparisons of different photodetector receivers for visible light communication systems under typical scenarios
CN106330337B (zh) 突发接收机恢复电路和光模块
CN110044479A (zh) 一种基于无时钟电流舵dac结构的硅光电倍增管
CN203423692U (zh) 一种兼容型平均光功率监控电路
CN107024288A (zh) 一种应用于单光子探测器的淬灭和限流电路
CN206847792U (zh) 一种高速自反馈的单光子探测淬火控制电路
KR102368114B1 (ko) 서로 다른 2개의 모드로 동작되는 단일광자 검출소자 중 어느 하나로 동작할 수 있는 아발란치 포토 다이오드
CN100399727C (zh) 一种光突发模式接收机
CN203166918U (zh) Gpon olt模块rssi快速采样电路
CN221077825U (zh) 一种单光子探测器雪崩信号提取电路
CN107024286A (zh) 应用于单光子探测器的控制电路与阵列架构

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20210305