CN112435162A - 一种基于复数域神经网络的太赫兹图像超分辨重建方法 - Google Patents

一种基于复数域神经网络的太赫兹图像超分辨重建方法 Download PDF

Info

Publication number
CN112435162A
CN112435162A CN202011267285.7A CN202011267285A CN112435162A CN 112435162 A CN112435162 A CN 112435162A CN 202011267285 A CN202011267285 A CN 202011267285A CN 112435162 A CN112435162 A CN 112435162A
Authority
CN
China
Prior art keywords
image
terahertz
neural network
complex
resolution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011267285.7A
Other languages
English (en)
Other versions
CN112435162B (zh
Inventor
祁峰
王莹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang Institute of Automation of CAS
Original Assignee
Shenyang Institute of Automation of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang Institute of Automation of CAS filed Critical Shenyang Institute of Automation of CAS
Priority to CN202011267285.7A priority Critical patent/CN112435162B/zh
Publication of CN112435162A publication Critical patent/CN112435162A/zh
Application granted granted Critical
Publication of CN112435162B publication Critical patent/CN112435162B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/40Scaling of whole images or parts thereof, e.g. expanding or contracting
    • G06T3/4053Scaling of whole images or parts thereof, e.g. expanding or contracting based on super-resolution, i.e. the output image resolution being higher than the sensor resolution
    • G06T3/4076Scaling of whole images or parts thereof, e.g. expanding or contracting based on super-resolution, i.e. the output image resolution being higher than the sensor resolution using the original low-resolution images to iteratively correct the high-resolution images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Image Processing (AREA)

Abstract

本发明涉及一种基于复数域神经网络的太赫兹图像超分辨重建方法,包括以下过程:制作样本图像;测量成像系统的点扩散函数的幅度和相位;将样本图像与点扩散函数的矩阵进行卷积操作,得到模拟太赫兹成像的模糊图像;将原样本图像与模糊图像作为一个训练对,将训练对分为训练集、验证集和测试集;设计复数域神经网络;训练数据并进行测试,将模糊图像恢复成高分辨率的图像。本发明利用太赫兹成像系统相对于光学图像独有的相位信息,首次将复数域神经网络引入太赫兹图像的超分辨率重建领域,实现图像复原,相对于实数域神经网络能够取得更好的超分辨率重建效果,提高太赫兹成像系统的分辨率,提升了成像系统的性能。

Description

一种基于复数域神经网络的太赫兹图像超分辨重建方法
技术领域
本发明涉及太赫兹超分辨率成像领域,具体地说是一种基于训练复数域神经网络以重建太赫兹超分辨图像的方法。
背景技术
太赫兹光谱图像不仅包含物质的外观几何信息,而且还包含物质对太赫兹脉冲响应的理化信息。太赫兹波以其独特的瞬态、超宽光谱和低光子能量的物理特性而被认为是最有发展前途的技术之一。自1995年太赫兹成像被提出开始,该技术在生物医学诊断、医学成像、无损检测、工业和安全检查等诸多应用领域得到了广泛的应用。然而,由于长波长导致的衍射现象和成像系统信噪比低等原因太赫兹成像相对于光学成像分辨率低。因此,如何提高这些图像的分辨率已成为一个亟待解决的问题。
在之前的工作中,已经采用了基于数据的超分辨率重建算法和基于硬件的方法来提高太赫兹成像系统的分辨率。然而,改进硬件需要更高的成本。因此,讨论和比较一种快速有效的超分辨率重建算法是非常重要的。在早期的研究过程中采用了基于滤波器的去噪方法,如高斯滤波、中值滤波、高通滤波等,既简单高效,又平滑了图像边缘。同时,提出了基于插值的增强分辨率的方法。然而,这些方法在实际应用中存在的问题还没有解决,并没有从根本上改进成像分辨率。为解决这一问题,在此基础上采用了基于图像先验的非局部相似度先验和稀疏度先验等改进算法。尽管它们可以灵活地生成相对高质量的太赫兹图像,但当图像统计数据与之前的图像存在偏差时,它们仍然会造成时间复杂度的增加和超分辨性能的下降。
随着神经网络、人工智能等相关技术快速发展,基于神经网络的超分辨率重建技术得到了广泛的关注和研究。近年来,基于神经网络的方法被应用于实现太赫兹图像反褶积和超分辨率重建,该方法直接学习低分辨率和高分辨率图像之间的端到端映射。由于神经网络对图像恢复问题强大的映射能力,该方法可以取得比解析算法更好的图像增强效果。尽管现有方法可以灵活地生成相对高质量的THz图像,但当图像统计数据与之前的图像存在偏差时,仍然会造成耗时和性能下降,无法满足实际应用过程中对成像系统的分辨率越来越高的需求。
发明内容
复数域神经网络对音频、图像和生理信号的潜在表征能力,且太赫兹成像系统在成像过程中受到衍射现象的影响,衍射模糊的过程与相位有关,因此图像的降质过程建模为复数模型更接近实际。为此本发明提出一种太赫兹图像超分辨重建方法,利用复数域神经网络对包含幅值信息和相位信息的复数数据矩阵进行模型的训练,通过训练好的模型权值矩阵对模糊图像进行超分辨率重建,从而提高其成像分辨率,解决了太赫兹成像系统由于衍射、噪声等干扰导致的成像质量差的问题。
本发明为实现上述目的所采用的技术方案是:
一种基于复数域神经网络的太赫兹图像超分辨重建方法,包括以下步骤:
步骤1:制作样本图像;
步骤2:测量太赫兹成像系统的点扩散函数的幅度和相位;
步骤3:将每一个样本图像与成像系统的复数矩阵进行卷积操作,分别得到模拟太赫兹成像的模糊图像;
步骤4:将原始样本图像与模糊图像作为一组图像对,将多组训练图像对作为输入用于训练;
步骤5:搭建复数域神经网络,将训练图像对输入该网络用于训练优化该网络参数,使得该网络能将模糊图像恢复成高分辨率的图像实现图像重建。
所述制作样本图像为采集高分辨率图像并剪裁成固定像素规格。
所述成像系统为透射式太赫兹成像系统,能够获取成像数据的相位信息。
所述成像系统的复数矩阵psf为:
psf=Ae
其中,A为点扩散函数的幅度信息,φ为点扩散函数的相位信息。
所述模拟太赫兹成像的模糊图像X:
X=Y*psf
其中,X为模糊图像的复数域矩阵,Y为样本图像的复数域矩阵,psf为成像系统点扩散函数的复数矩阵。
所述搭建复数域神经网络,包括依次连接的输入层、卷积层、激活层、池化层、全连接层。
所述训练图像对输入该网络用于训练优化该网络参数包括:
将模拟太赫兹成像系统的模糊图像输入该网络,输出恢复图像,计算恢复图像的损失函数,根据损失函数与预设阈值的比较调整该网络卷积层中的复数卷积核,从而优化该网络模型。
所述卷积层中采用的超分辨率重建复数模型为:
w*X=A*x-B*y+i(B*x+A*y)
其中,X为模拟太赫兹成像的模糊图像,w=A+iB为复数卷积核,X=x+iy为样本的复数矩阵;转换为矩阵形式如下式:
Figure BDA0002776464040000031
复数域神经网络的激活层激活函数如下式:
Figure BDA0002776464040000032
其中,P=angle(X)为样本的相位。
本发明与现有技术相比具有以下优点及有益效果:
1.本发明考虑到太赫兹成像系统在成像过程中受到衍射现象的影响,电磁波的波动性导致相位的变化,因此建立复数域的图像降质模型更满足实际需求;
2.本发明首次将复数域神经网络引入太赫兹图像超分辨重建领域,用于提高太赫兹成像系统的分辨率;
3.本发明的样本数据增加了相位信息,相对于只包含幅度的实数样本数据在提高太赫兹系统的成像分辨率方面得到了更好的效果,可提取物体的相位信息。
附图说明
图1为本发明的方法流程图;
图2为复数域神经网络和实数域神经网络训练过程损失函数收敛曲线对比图;
图3为复数域神经网络和实数域神经网络超分辨率重建效果对比图;
具体实施方式
下面结合附图及实施例对本发明做进一步的详细说明。
如图1所示为本发明的方法流程图。
一种太赫兹图像的超分辨率重建方法,包括以下过程:取一组高分辨率的图像作为样本数据的高分辨率图像;搭建太赫兹透射成像系统,将小孔样品放置于焦平面上,利用太赫兹透射式成像对小孔扫描成像,获取幅度和相位信息,通过计算得到小孔的复数矩阵,即点扩散函数的复数矩阵:psf=Ae,其中,A为点扩散函数的幅度信息,φ为点扩散函数的相位信息。通过将高分辨率样本图像与点扩散函数的矩阵进行卷积操作,得到模拟太赫兹成像系统的模糊图像;每一对高分辨率原图像与点扩散函数卷积的模糊图像作为一个训练对,将训练对按照一定比例分为神经网络的训练集、验证集和测试集。
结合局部残差学习、全局残差学习以及多权重递归学习,搭建复数域神经网络,复数域卷积的计算过程如下:w*X=A*x-B*y+i(B*x+A*y),其中,w=A+iB为复数卷积核,X=x+iy为样本的复数矩阵,转换为矩阵形式:
Figure BDA0002776464040000051
复数域神经网络的激活函数为:
Figure BDA0002776464040000052
训练数据,得到权值矩阵,通过测试集对模型进行验证,将模糊图像恢复成高分辨率的图像;搭建相同网络结构的实数域神经网络,训练数据,得到权值矩阵,通过测试集对模型进行验证,将模糊图像恢复成高分辨率的图像;通过计算峰值信噪比、均方误差以及结构相似性将两种方法得到的高分辨率图像进行对比。
实施例1.
太赫兹成像系统在成像过程中受到衍射现象的影响,衍射模糊的过程与相位有关,因此在本发明中将图像的降质过程建模为复数模型,如下式(1):
g(a+ib,c+id)=f(a+ib,c+id)*k(a+ib,c+id)+n(a+ib,c+id) (1)
其中,g(a+ib,c+id)是太赫兹成像系统得到的降质图像,f(a+ib,c+id)是高分辨率的清晰图像,k(a+ib,c+id)是太赫兹成像系统的点扩散函数,n(a+ib,c+id)表示系统的噪声。
从手写体识别数据库中取一组高分辨率的图像作为样本数据的高分辨率图像,搭建太赫兹透射成像系统,将小孔样品放置于焦平面上,利用太赫兹透射式成像对小孔扫描成像,获取幅度和相位信息,通过计算得到小孔的复数矩阵,即点扩散函数的复数矩阵,如下式(2):
psf=Ae (2)
其中,A为点扩散函数的幅度信息,φ为点扩散函数的相位信息。
通过将高分辨率样本图像与点扩散函数的矩阵进行卷积操作,得到模拟太赫兹成像系统的模糊图像,如下式(3):
X=Y*psf (3)
其中,X为模糊图像的复数域矩阵,Y为高分辨率图像的复数域矩阵。
每一对高分辨率原图像与点扩散函数卷积的模糊图像作为一个训练对,将训练对按照一定比例分为神经网络的训练集、验证集和测试集。训练集数据用于输入该网络用于训练优化该网络参数;验证集数据用于将网络输出的恢复图像与原始清晰样本图像比对,判断是否符合正确率要求;测试集数据用于通过计算恢复图像的峰值信噪比和结构相似性,判断恢复图像的质量。
构建复数域神经网络,包括:依次连接的输入层、卷积层、激活层、池化层、全连接层,将模拟太赫兹成像系统的模糊图像输入该网络,输出恢复图像,并计算恢复图像的损失函数,根据损失函数与预设阈值的比较调整网络参数,即卷积层中的复数卷积核w)。
其中,复数域卷积的计算过程如下式(4):
w*X=A*x-B*y+i(B*x+A*y) (4)
其中,w=A+iB为复数卷积核,X=x+iy为样本的复数矩阵,转换为矩阵形式,如下式(5):
Figure BDA0002776464040000062
复数域神经网络的激活函数,如下式(6):
Figure BDA0002776464040000061
其中,P=angle(X)为样本的相位。
训练数据,得到权值矩阵,损失函数和精度随着迭代次数增加的收敛曲线如图2(a)所示,横轴epoch代表迭代的次数,纵轴acc-loss代表损失函数的值,用来衡量复原图像质量,红线train loss代表训练集损失函数,绿线val loss代表验证集损失函数,对测试集模型进行验证,通过训练好的参数将模糊图像恢复成高分辨率的恢复图像,高分辨率的原始样本图像、模糊图像、复数域神经网络的恢复图像分别如图3(a)、(b)、(c)所示。
搭建相同网络结构的实数域神经网络,训练数据,得到权值矩阵,损失函数和精度随着迭代次数增加的收敛曲线如图2(b)所示,横轴epoch代表迭代的次数,纵轴acc-loss代表损失函数的值,用来衡量精度的,红线train loss代表训练集损失函数,绿线val loss代表验证集损失函数,通过测试集对模型进行测试,将模糊图像恢复成高分辨率的图像,实数域神经网络的恢复图像如图3(d)所示;通过计算峰值信噪比,如下式(7):
Figure BDA0002776464040000071
其中,Z为恢复图像的复数域矩阵,(max|z|)2为Z模值的最大值的平方,MSE为均方误差,如下式(8):
Figure BDA0002776464040000072
其中,Z为恢复图像的复数域矩阵,Y为高分辨率图像的复数域矩阵,m,n分别为每幅恢复图像的总行数和总列数,i、j分别为当前所在每幅恢复图像的行数和列数。
结构相似性,如下式(9):
S(x,y)=f(l(x,y),c(x,y),s(x,y)) (9)
其中,
Figure BDA0002776464040000073
其中,
Figure BDA0002776464040000074
其中,l(x,y)为亮度对比函数,c(x,y)为对比度对比函数,s(x,y)为结构相似度对比函数,μx为每幅恢复图像像素点的均值,δx为行标准差,δxy整幅图像的标准差。
均方误差越小说明恢复的图像与原图像差距越小,恢复效果越好,峰值信噪比越高说明图像的失真越小;结构相似性越高说明明恢复的图像与原图像差距越小。复数域神经网络与实数域神经网络恢复图像的对比数据如表1所示,可见本发明方法恢复图像的效果好。
表1
复数域神经网络 实数域神经网络
PSNR 26.757738947863317 19.64912459387843
MSE 0.9819392652625356 0.8814179666961051
SSIM 0.0021097262434385524 0.010841454228750323
以上所述,仅是本发明的较佳实施例,并非对本发明作任何限制,凡是根据本发明技术实质对以上实施例所作的任何简单修改、变更以及等效结构变化,均仍属于本发明技术方案的保护范围内。

Claims (8)

1.一种基于复数域神经网络的太赫兹图像超分辨重建方法,其特征在于,包括以下步骤:
步骤1:制作样本图像;
步骤2:测量太赫兹成像系统的点扩散函数的幅度和相位;
步骤3:将每一个样本图像与成像系统的复数矩阵进行卷积操作,分别得到模拟太赫兹成像的模糊图像;
步骤4:将原始样本图像与模糊图像作为一组图像对,将多组训练图像对作为输入用于训练;
步骤5:构建复数域神经网络,将训练图像对输入该网络用于训练优化该网络参数,使得该网络能将模糊图像恢复成高分辨率的图像实现图像重建。
2.根据权利要求1所述的一种基于复数域神经网络的太赫兹图像超分辨重建方法,其特征在于,所述制作样本图像为采集高分辨率图像并剪裁成固定像素规格。
3.根据权利要求1所述的一种基于复数域神经网络的太赫兹图像超分辨重建方法,其特征在于,所述成像系统为太赫兹成像系统,能够获取成像数据的相位信息。
4.根据权利要求1所述的一种基于复数域神经网络的太赫兹图像超分辨重建方法,其特征在于,所述成像系统的复数矩阵psf为:
psf=Ae
其中,A为点扩散函数的幅度信息,φ为点扩散函数的相位信息。
5.根据权利要求1所述的一种基于复数域神经网络的太赫兹图像超分辨重建方法,其特征在于,所述模拟太赫兹成像的模糊图像X:
X=Y*psf
其中,X为模糊图像的复数域矩阵,Y为样本图像的复数域矩阵,psf为成像系统点扩散函数的复数矩阵。
6.根据权利要求1所述的一种基于复数域神经网络的太赫兹图像超分辨重建方法,其特征在于,所述构建复数域神经网络,包括依次连接的输入层、卷积层、激活层、池化层、全连接层。
7.根据权利要求6所述的一种基于复数域神经网络的太赫兹图像超分辨重建方法,其特征在于,所述训练图像对输入该网络用于训练优化该网络参数包括:
将模拟太赫兹成像系统的模糊图像输入该网络,输出恢复图像,计算恢复图像的损失函数,根据损失函数与预设阈值的比较调整该网络卷积层中的复数卷积核,从而优化该网络模型。
8.根据权利要求7所述的一种基于复数域神经网络的太赫兹图像超分辨重建方法,其特征在于,所述卷积层中采用的超分辨率重建复数模型为:
w*X=A*x-B*y+i(B*x+A*y)
其中,X为模拟太赫兹成像的模糊图像,w=A+iB为复数卷积核,X=x+iy为样本的复数矩阵;转换为矩阵形式如下式:
Figure FDA0002776464030000021
复数域神经网络的激活层激活函数如下式:
Figure FDA0002776464030000022
其中,P=angle(X)为样本的相位。
CN202011267285.7A 2020-11-13 2020-11-13 一种基于复数域神经网络的太赫兹图像超分辨重建方法 Active CN112435162B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011267285.7A CN112435162B (zh) 2020-11-13 2020-11-13 一种基于复数域神经网络的太赫兹图像超分辨重建方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011267285.7A CN112435162B (zh) 2020-11-13 2020-11-13 一种基于复数域神经网络的太赫兹图像超分辨重建方法

Publications (2)

Publication Number Publication Date
CN112435162A true CN112435162A (zh) 2021-03-02
CN112435162B CN112435162B (zh) 2024-03-05

Family

ID=74699975

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011267285.7A Active CN112435162B (zh) 2020-11-13 2020-11-13 一种基于复数域神经网络的太赫兹图像超分辨重建方法

Country Status (1)

Country Link
CN (1) CN112435162B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113706383A (zh) * 2021-08-30 2021-11-26 上海亨临光电科技有限公司 一种太赫兹图像的超分辨率方法及其系统和装置
CN114037609A (zh) * 2021-10-21 2022-02-11 中国科学院沈阳自动化研究所 一种基于学习太赫兹成像逆过程的太赫兹图像超分辨算法
CN114187176A (zh) * 2021-11-19 2022-03-15 北京理工大学 一种去除振幅和相位混叠的复数域成像方法和系统
CN114219843A (zh) * 2021-12-16 2022-03-22 河南工业大学 太赫兹光谱图像重构模型的构建方法及系统和应用
CN114187176B (zh) * 2021-11-19 2024-06-07 北京理工大学 一种去除振幅和相位混叠的复数域成像方法和系统

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106204449A (zh) * 2016-07-06 2016-12-07 安徽工业大学 一种基于对称深度网络的单幅图像超分辨率重建方法
US20180075581A1 (en) * 2016-09-15 2018-03-15 Twitter, Inc. Super resolution using a generative adversarial network
CN107833180A (zh) * 2017-10-27 2018-03-23 北京大学 一种利用复数域神经网络快速求解非线性电磁逆散射问题的方法
CN108122197A (zh) * 2017-10-27 2018-06-05 江西高创保安服务技术有限公司 一种基于深度学习的图像超分辨率重建方法
CN108428212A (zh) * 2018-01-30 2018-08-21 中山大学 一种基于双拉普拉斯金字塔卷积神经网络的图像放大方法
CN108694700A (zh) * 2017-04-10 2018-10-23 三星电子株式会社 用于深度学习图像超分辨率的系统和方法
CN109740688A (zh) * 2019-01-09 2019-05-10 广东工业大学 一种太赫兹图像信息解译方法、网络及存储介质
CN109785237A (zh) * 2019-01-25 2019-05-21 广东工业大学 一种太赫兹图像超分辨率重建方法、系统及相关装置
CN109978764A (zh) * 2019-03-11 2019-07-05 厦门美图之家科技有限公司 一种图像处理方法及计算设备
WO2019144469A1 (zh) * 2018-01-24 2019-08-01 华讯方舟科技有限公司 一种图像质量分类方法、系统及终端设备
CN110163802A (zh) * 2019-05-20 2019-08-23 电子科技大学 一种基于神经网络的sar图像超分辨方法
CN110211035A (zh) * 2019-04-18 2019-09-06 天津中科智能识别产业技术研究院有限公司 融合互信息的深度神经网络的图像超分辨率方法
KR20190110965A (ko) * 2019-09-11 2019-10-01 엘지전자 주식회사 이미지 해상도를 향상시키기 위한 방법 및 장치
CN110400282A (zh) * 2018-04-24 2019-11-01 中国科学院沈阳自动化研究所 一种高分辨太赫兹图像处理方法
CN110490804A (zh) * 2019-08-14 2019-11-22 西安工程大学 一种基于生成对抗网络的生成超分辨图像的方法
CN110942424A (zh) * 2019-11-07 2020-03-31 昆明理工大学 一种基于深度学习的复合网络单图像超分辨率重建方法
CN111062872A (zh) * 2019-12-17 2020-04-24 暨南大学 一种基于边缘检测的图像超分辨率重建方法及系统
CN111080522A (zh) * 2019-12-13 2020-04-28 福州大学 一种基于双向对抗网络的图像超分辨率重建方法
CN111127317A (zh) * 2019-12-02 2020-05-08 深圳供电局有限公司 图像超分辨率重建方法、装置、存储介质和计算机设备
CN111123183A (zh) * 2019-12-27 2020-05-08 杭州电子科技大学 基于复数R2U_Net网络的快速磁共振成像方法
US20200167897A1 (en) * 2016-09-30 2020-05-28 Kiarash Ahi Method and System for Enhancing Resolution of Terahertz Imaging
US20200258197A1 (en) * 2017-11-24 2020-08-13 Tencent Technology (Shenzhen) Company Limited Method for generating high-resolution picture, computer device, and storage medium
CN111640067A (zh) * 2020-06-10 2020-09-08 华侨大学 基于三通道卷积神经网络的单幅图像超分辨率重建方法

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106204449A (zh) * 2016-07-06 2016-12-07 安徽工业大学 一种基于对称深度网络的单幅图像超分辨率重建方法
US20180075581A1 (en) * 2016-09-15 2018-03-15 Twitter, Inc. Super resolution using a generative adversarial network
US20200167897A1 (en) * 2016-09-30 2020-05-28 Kiarash Ahi Method and System for Enhancing Resolution of Terahertz Imaging
CN108694700A (zh) * 2017-04-10 2018-10-23 三星电子株式会社 用于深度学习图像超分辨率的系统和方法
CN107833180A (zh) * 2017-10-27 2018-03-23 北京大学 一种利用复数域神经网络快速求解非线性电磁逆散射问题的方法
CN108122197A (zh) * 2017-10-27 2018-06-05 江西高创保安服务技术有限公司 一种基于深度学习的图像超分辨率重建方法
US20200258197A1 (en) * 2017-11-24 2020-08-13 Tencent Technology (Shenzhen) Company Limited Method for generating high-resolution picture, computer device, and storage medium
WO2019144469A1 (zh) * 2018-01-24 2019-08-01 华讯方舟科技有限公司 一种图像质量分类方法、系统及终端设备
CN108428212A (zh) * 2018-01-30 2018-08-21 中山大学 一种基于双拉普拉斯金字塔卷积神经网络的图像放大方法
CN110400282A (zh) * 2018-04-24 2019-11-01 中国科学院沈阳自动化研究所 一种高分辨太赫兹图像处理方法
CN109740688A (zh) * 2019-01-09 2019-05-10 广东工业大学 一种太赫兹图像信息解译方法、网络及存储介质
CN109785237A (zh) * 2019-01-25 2019-05-21 广东工业大学 一种太赫兹图像超分辨率重建方法、系统及相关装置
CN109978764A (zh) * 2019-03-11 2019-07-05 厦门美图之家科技有限公司 一种图像处理方法及计算设备
CN110211035A (zh) * 2019-04-18 2019-09-06 天津中科智能识别产业技术研究院有限公司 融合互信息的深度神经网络的图像超分辨率方法
CN110163802A (zh) * 2019-05-20 2019-08-23 电子科技大学 一种基于神经网络的sar图像超分辨方法
CN110490804A (zh) * 2019-08-14 2019-11-22 西安工程大学 一种基于生成对抗网络的生成超分辨图像的方法
KR20190110965A (ko) * 2019-09-11 2019-10-01 엘지전자 주식회사 이미지 해상도를 향상시키기 위한 방법 및 장치
CN110942424A (zh) * 2019-11-07 2020-03-31 昆明理工大学 一种基于深度学习的复合网络单图像超分辨率重建方法
CN111127317A (zh) * 2019-12-02 2020-05-08 深圳供电局有限公司 图像超分辨率重建方法、装置、存储介质和计算机设备
CN111080522A (zh) * 2019-12-13 2020-04-28 福州大学 一种基于双向对抗网络的图像超分辨率重建方法
CN111062872A (zh) * 2019-12-17 2020-04-24 暨南大学 一种基于边缘检测的图像超分辨率重建方法及系统
CN111123183A (zh) * 2019-12-27 2020-05-08 杭州电子科技大学 基于复数R2U_Net网络的快速磁共振成像方法
CN111640067A (zh) * 2020-06-10 2020-09-08 华侨大学 基于三通道卷积神经网络的单幅图像超分辨率重建方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JINGKUN GAO ET AL: "Enhanced Radar Imaging Using a Complex-Valued Convolutional Neural Network", 《IEEE GEOSCIENCE AND REMOTE SENSING LETTERS》, pages 35 - 39 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113706383A (zh) * 2021-08-30 2021-11-26 上海亨临光电科技有限公司 一种太赫兹图像的超分辨率方法及其系统和装置
CN114037609A (zh) * 2021-10-21 2022-02-11 中国科学院沈阳自动化研究所 一种基于学习太赫兹成像逆过程的太赫兹图像超分辨算法
CN114037609B (zh) * 2021-10-21 2024-04-19 中国科学院沈阳自动化研究所 一种基于学习太赫兹成像逆过程的太赫兹图像超分辨算法
CN114187176A (zh) * 2021-11-19 2022-03-15 北京理工大学 一种去除振幅和相位混叠的复数域成像方法和系统
CN114187176B (zh) * 2021-11-19 2024-06-07 北京理工大学 一种去除振幅和相位混叠的复数域成像方法和系统
CN114219843A (zh) * 2021-12-16 2022-03-22 河南工业大学 太赫兹光谱图像重构模型的构建方法及系统和应用
CN114219843B (zh) * 2021-12-16 2022-11-01 河南工业大学 太赫兹光谱图像重构模型的构建方法及系统和应用

Also Published As

Publication number Publication date
CN112435162B (zh) 2024-03-05

Similar Documents

Publication Publication Date Title
CN112435162B (zh) 一种基于复数域神经网络的太赫兹图像超分辨重建方法
CN106952228B (zh) 基于图像非局部自相似性的单幅图像的超分辨率重建方法
CN109035142B (zh) 一种对抗网络结合航拍图像先验的卫星图像超分辨方法
CN111932461B (zh) 一种基于卷积神经网络的自学习图像超分辨率重建方法及系统
CN111080567A (zh) 基于多尺度动态卷积神经网络的遥感图像融合方法及系统
CN108734675A (zh) 基于混合稀疏先验模型的图像复原方法
CN111738954B (zh) 一种基于双层空洞U-Net模型的单帧湍流退化图像去畸变方法
CN113723171B (zh) 基于残差生成对抗网络的脑电信号去噪方法
Yang et al. License plate image super-resolution based on convolutional neural network
CN112347945A (zh) 一种基于深度学习的含噪遥感图像增强方法及系统
CN112950480A (zh) 一种融合多感受野和密集残差注意的超分辨率重建方法
CN114140442A (zh) 一种基于频域和图像域退化感知的深度学习稀疏角度ct重建方法
Wu et al. Feedback pyramid attention networks for single image super-resolution
CN114926883A (zh) 一种满足多种降质模型的人脸图像处理方法
Huang et al. Deep gaussian scale mixture prior for image reconstruction
CN113269691A (zh) 一种基于卷积稀疏进行噪声仿射拟合的sar图像去噪方法
Zou et al. Enhanced channel attention network with cross-layer feature fusion for spectral reconstruction in the presence of Gaussian noise
CN107622476A (zh) 基于概率生成模型的图像超分辨处理方法
CN112330549A (zh) 一种基于盲解卷积网络的模糊图像盲复原方法及系统
Yang et al. RSAMSR: A deep neural network based on residual self-encoding and attention mechanism for image super-resolution
CN111986079A (zh) 基于生成对抗网络路面裂缝图像超分辨率重建方法及装置
Zhuge et al. Single image denoising with a feature-enhanced network
Yang et al. Remote sensing image super‐resolution based on convolutional blind denoising adaptive dense connection
CN114998137A (zh) 一种基于生成对抗网络的探地雷达图像杂波抑制方法
CN115471580A (zh) 一种物理智能高清磁共振扩散成像方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant