CN112432904B - 一种新型液晶偏振调制器及其探测方法 - Google Patents

一种新型液晶偏振调制器及其探测方法 Download PDF

Info

Publication number
CN112432904B
CN112432904B CN202110106802.0A CN202110106802A CN112432904B CN 112432904 B CN112432904 B CN 112432904B CN 202110106802 A CN202110106802 A CN 202110106802A CN 112432904 B CN112432904 B CN 112432904B
Authority
CN
China
Prior art keywords
liquid crystal
wave plate
nematic liquid
crystal wave
twisted nematic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110106802.0A
Other languages
English (en)
Other versions
CN112432904A (zh
Inventor
王海峰
骆永全
储松南
沈志学
曹宁翔
温伟峰
黄立贤
曾建成
刘海涛
乔冉
李大鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Fluid Physics of CAEP
Original Assignee
Institute of Fluid Physics of CAEP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Fluid Physics of CAEP filed Critical Institute of Fluid Physics of CAEP
Priority to CN202110106802.0A priority Critical patent/CN112432904B/zh
Publication of CN112432904A publication Critical patent/CN112432904A/zh
Application granted granted Critical
Publication of CN112432904B publication Critical patent/CN112432904B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1717Systems in which incident light is modified in accordance with the properties of the material investigated with a modulation of one or more physical properties of the sample during the optical investigation, e.g. electro-reflectance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J4/00Measuring polarisation of light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • G01N21/23Bi-refringence
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J4/00Measuring polarisation of light
    • G01J4/04Polarimeters using electric detection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1717Systems in which incident light is modified in accordance with the properties of the material investigated with a modulation of one or more physical properties of the sample during the optical investigation, e.g. electro-reflectance
    • G01N2021/1725Modulation of properties by light, e.g. photoreflectance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N2021/1765Method using an image detector and processing of image signal

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Mathematical Physics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)

Abstract

本发明公开了一种新型液晶偏振调制器及其探测方法,新型液晶偏振调制器包括液晶偏振调制组件,所述液晶偏振调制组件包括扭曲型向列液晶波片、反平行向列液晶波片和线偏振片,所述反平行向列液晶波片设置在扭曲型向列液晶波片和线偏振片之间,所述扭曲型向列液晶波片位于前端;所述扭曲型向列液晶波片的前端面取向膜和后端面取向膜的取向方向均位于探测光入射方向的垂直面;所述反平行向列液晶波片的前端面取向膜和后端面取向膜的取向方向均位于x‑y平面。本发明解决了现有基于两片向列相液晶可调相位延迟器和一片线偏振片所组成的液晶偏振调制模块存在误差源多,调制精度不高的问题。

Description

一种新型液晶偏振调制器及其探测方法
技术领域
本发明涉及偏振成像技术领域,具体涉及一种新型液晶偏振调制器及其探测方法。
背景技术
高分辨偏振成像设备可以实现偏振成像技术与光强成像技术的优势互补,有效增加光学探测的信息量,完成复杂背景下目标的边界提取和特征识别,实现光学成像的多模态信息融合,使在普通成像系统下“不可见”的目标成为“可见”,在航空遥感探测、农业气象与洪涝应急监测、环保监测、刑侦物证鉴定和目标探测等领域具有重要应用价值和广泛的应用前景。
目前常用偏振调制方式主要由偏振片机械旋转型、分振幅型、分波前型、分焦平面型和电控调制型,其中液晶偏振调制探测技术通过控制加载到液晶可调相位延迟器上的电压即可实现入射光束的偏振状态控制和全斯托克斯偏振参数反演计算,具有体积小、重量轻、功耗低、通光口径大、探测精度高、可移植性强等技术特色,已在材料薄膜缺陷检测、物证鉴定、医疗诊断、星载观测等领域中发挥了重要作用。
目前常用的液晶偏振调制模块主要由两片向列相液晶可调相位延迟器和一片线偏振片所组成。该类偏振调制模块在进行偏振测量和标定时至少会存在着线偏振片快轴方位角、第一片液晶可调相位延迟器的快轴方位角和相位延迟量、第二片液晶可调相位延迟器快轴方位角和相位延迟量等五个误差源。在标定中,误差源很难实现逐一区分,并且标定矩阵参量会存在两种或更多种误差源的混合状态,这样标定出来的数据可能不是唯一解,从而无法达到高精度校准的目的。
发明内容
本发明的目的在于提供一种新型液晶偏振调制器及其探测方法,解决现有基于两片向列相液晶可调相位延迟器和一片线偏振片所组成的液晶偏振调制模块存在误差源多,调制精度不高的问题。
本发明通过下述技术方案实现:
一种新型液晶偏振调制器,包括液晶偏振调制组件,所述液晶偏振调制组件包括扭曲型向列液晶波片、反平行向列液晶波片和线偏振片,所述反平行向列液晶波片设置在扭曲型向列液晶波片和线偏振片之间,所述扭曲型向列液晶波片位于前端;
所述扭曲型向列液晶波片的前端面取向膜和后端面取向膜的取向方向均位于探测光入射方向的垂直面,扭曲型向列液晶波片的前端面取向膜包括但不限于x方向;扭曲型向列液晶波片的后端面取向膜的取向方向包括但不限于y方向;
所述反平行向列液晶波片的前端面取向膜和后端面取向膜的取向方向均位于x-y平面,且反平行向列液晶波片的前端面取向膜和后端面取向膜的取向方向反平行,所述反平行向列液晶波片的前端面取向膜和后端面取向膜的取向方向包括但不限于x-y平面的45°和135°方向(即当反平行向列液晶波片的前端面取向膜的取向方向为x-y平面的45°方向时,反平行向列液晶波片的后端面取向膜的取向方向为x-y平面的135°方向时;当反平行向列液晶波片的前端面取向膜的取向方向为x-y平面的135°方向时,反平行向列液晶波片的后端面取向膜的取向方向为x-y平面的45°方向时);
线偏振片位于后端,线偏振片的起偏方向可设置包括但不限于y方向。
本发明的探测光入射方向定义为z方向,测光入射方向的垂直面即为x-y平面,所述前端后端是相对探测光入射方向而言。
本发明的液晶偏振调制器的第一级和第二级分别采用了扭曲型向列液晶波片和反平行向列液晶波片,当扭曲型向列液晶波片加载电压超过一定阈值时,其相当于一个各向同性材料,不会对探测光的相位延迟量产生应用;而当加载电压在某一个低电压区间时,扭曲型向列液晶波片其可认为是由一片旋光器和一片液晶可调相位延迟器的组合。
本发明的工作原理为:当确定波长、两片液晶波片(扭曲型向列液晶波片和反平行向列液晶波片)的快轴偏角和线性偏振片的偏振透射方向后,控制加载到液晶偏振调制器的电压,可以实现参考光束的偏振状态调制,通过对液晶偏振调制器进行至少四组不同的调制状态,并获得探测光的透光光强,可以推算出探测光束的偏振参数,进而实现探测光偏振参数探测的功能。
由于本发明所用扭曲型向列液晶波片当加载电压超过某一阈值(即处于饱和工作状态)时,其对透射光的偏振态不会产生应用,此时液晶偏振调制器将只有第二级LCAP的相位延迟量和快轴方位、以及线偏振片快轴方位角等三个误差源。因此,在本发明需要加载的四组调制状态中,通过尽量多的利用LCTN波片的饱和状态,即可有效减少系统的误差源数目和校准难度。
因此,本发明相比于传统液晶偏振调制器,利用扭曲型向列液晶波片作为第一级,并通过优化器件的调制状态序列,可有效降低液晶偏振控制器的误差源数目和分析难度,对实际标定工作带来很大的简化,实现高精度偏振调制功能。
进一步地,还包括温控组件和驱动控制器,所述液晶偏振调制组件置于温控组件内,所述驱动控制器与温控组件、扭曲型向列液晶波片、反平行向列液晶波片电连接。
进一步地,温控组件包括内金属框、温度检测传感器、半导体制热制冷器、隔热框和外金属框;
所述内金属框和外金属框分别位于温控组件的最内层和最外层,所述液晶偏振调制组件置于内金属框内侧,所述温度检测传感器安装在内金属框内,所述隔热框和半导体制热制冷器均置于内金属框和外金属框之间;所述温度检测传感器和半导体制热制冷器与驱动控制器电连接。
进一步地,温度检测传感器采用热敏传感器。
进一步地,隔热框由两个相对设置的U形框组成,两个U形框之间的间隙设置半导体制热制冷器。
进一步地,扭曲型向列液晶波片包括玻璃基板、透明导电膜、取向膜、间隔装置和液晶层;
所述液晶层设置在扭曲型向列液晶波片的中部,所述液晶层的两侧由内到外依次设置有取向膜、透明导电膜和玻璃基板,所述间隔装置设置在液晶层内用于控制液晶层的厚度,所述透明导电膜通过电极与驱动控制器连接;
所述反平行向列液晶波片与扭曲型向列液晶波片具有相同结构。
进一步地,间隔装置采用玻璃纤维、玻璃微珠或塑料微珠制成。
基于新型液晶偏振调制器的探测方法,包括以下步骤:
S1、获取液晶偏振调制器的至少4组调制状态,并获得探测光的透光光强,调制状态包括第一个工作状态T1、第二个工作状态T2、第三个工作状态T3和第四个工作状态T4
第一个工作状态T1的扭曲型向列液晶波片工作在饱和态,反平行向列液晶波片相位延迟量调制为0°,记录此时透光光强为I T1 ;第二个工作状态T2的扭曲型向列液晶波片工作在饱和态,反平行向列液晶波片相位延迟量调制为90°,记录此时透光光强为I T2 ;第三个工作状态T3的扭曲型向列液晶波片工作在饱和态,反平行向列液晶波片相位延迟量调制180°,记录此时透光光强为I T3 ;第四个工作状态T4的扭曲型向列液晶波片工作在非饱和态,其相位延迟量调制为90°度,反平行向列液晶波片相位延迟量调制90°,记录此时透光光强为I T4
S2、根据以下公式计算入射光的偏振Stokes分量
Figure 190457DEST_PATH_IMAGE001
Figure 514122DEST_PATH_IMAGE002
本发明与现有技术相比,具有如下的优点和有益效果:
本发明很大程度上降低了液晶偏振控制器的误差源数目和分析难度,对实际标定工作带来了很大的简化,实现了高精度偏振调制功能。
附图说明
此处所说明的附图用来提供对本发明实施例的进一步理解,构成本申请的一部分,并不构成对本发明实施例的限定。在附图中:
图1为液晶偏振调制器的结构示意图;
图2为温控组件的结构示意图;
图3为扭曲型向列液晶波片或反平行向列液晶波片的结构示意图;
图4为扭曲型向列液晶波片的上下取向膜取向示意图;
图5为反平行向列液晶波片的上下取向膜取向示意图;
图6为液晶偏振调制器调制状态序列图。
附图中标记及对应的零部件名称:
101-扭曲型向列液晶波片,102-反平行向列液晶波片,103-线偏振片,104-温控组件,105-驱动控制器,201-液晶偏振调制组件,202-内金属框,203-温度检测传感器,204-半导体制热制冷器,205-隔热框,206-外金属框,301-玻璃基板,302-透明导电膜,303-取向膜,304-间隔装置,305-液晶层。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下面结合实施例和附图,对本发明作进一步的详细说明,本发明的示意性实施方式及其说明仅用于解释本发明,并不作为对本发明的限定。
实施例1:
如图1-图6所示,一种新型液晶偏振调制器,包括液晶偏振调制组件201,所述液晶偏振调制组件201包括扭曲型向列液晶波片101、反平行向列液晶波片102和线偏振片103,所述反平行向列液晶波片102设置在扭曲型向列液晶波片101和线偏振片103之间,所述扭曲型向列液晶波片101位于前端,所述扭曲型向列液晶波片101、反平行向列液晶波片102和线偏振片103平行设置;
所述扭曲型向列液晶波片101的前端面取向膜和后端面取向膜的取向方向均位于探测光入射方向的垂直面,扭曲型向列液晶波片101的前端面取向膜包括但不限于x方向;扭曲型向列液晶波片101的后端面取向膜的取向方向包括但不限于y方向;
所述反平行向列液晶波片102的前端面取向膜和后端面取向膜的取向方向均位于x-y平面,且反平行向列液晶波片102的前端面取向膜和后端面取向膜的取向方向反平行,所述反平行向列液晶波片102的前端面取向膜和后端面取向膜的取向方向包括但不限于x-y平面的45°或135°方向;
线偏振片103位于后端,线偏振片103的起偏方向可设置包括但不限于y方向。
在本实施例中,液晶偏振调制组件201即为光束液晶偏振调制单元,完成入射光束的偏振调制和解耦。
本实施例的液晶偏振调制器的探测方法包括以下步骤:
S1、获取液晶偏振调制器的至少4组调制状态,并获得探测光的透光光强,调制状态包括第一个工作状态T1、第二个工作状态T2、第三个工作状态T3和第四个工作状态T4
第一个工作状态T1的扭曲型向列液晶波片101工作在饱和态,反平行向列液晶波片102相位延迟量调制为0°,记录此时透光光强为I T1 ;第二个工作状态T2的扭曲型向列液晶波片101工作在饱和态,反平行向列液晶波片102相位延迟量调制为90°,记录此时透光光强为I T2 ;第三个工作状态T3的扭曲型向列液晶波片101工作在饱和态,反平行向列液晶波片102相位延迟量调制180°,记录此时透光光强为I T3 ;第四个工作状态T4的扭曲型向列液晶波片101工作在非饱和态,其相位延迟量调制为90°度,反平行向列液晶波片102相位延迟量调制90°,记录此时透光光强为I T4
S2、根据以下公式计算入射光的偏振Stokes分量
Figure 559438DEST_PATH_IMAGE001
Figure 220227DEST_PATH_IMAGE002
本实施例的关键点在于:第一级和第二级分别采用了扭曲型向列液晶波片101和反平行向列液晶波片102,其波片的取向膜取向方向如图4、图5所示,当扭曲型向列液晶波片101加载电压超过一定阈值(饱和态)时,其相当于一个各向同性材料,不会对探测光的相位延迟量产生应用;而当加载电压在某一个低电压区间时,扭曲型向列液晶波片101其可认为是由一片旋光器和一片液晶可调相位延迟器的组合;因此在T1,T2和T3工作状态中,可只考虑反平行向列液晶波片102中相位延迟量和快轴方位两个误差源,而在T4工作状态下,可利用前期的标定结果,对LCTN的相位延迟量和快轴方位的误差进行分析,因此本实施例的液晶偏振调制器可有效降低液晶偏振控制器的误差源数目和分析难度,对实际标定工作带来了很大的简化,实现了高精度偏振调制功能。
实施例2:
如图1-图6所示,本实施例基于实施例1,还包括温控组件104和驱动控制器105,所述液晶偏振调制组件201置于温控组件104内,所述驱动控制器105与温控组件104、扭曲型向列液晶波片101、反平行向列液晶波片102电连接:
所述温控组件104包括内金属框202、温度检测传感器203、半导体制热制冷器204、隔热框205和外金属框206;
所述内金属框202和外金属框206分别位于温控组件104的最内层和最外层,外金属框206装在最外侧,实现整个组件的封装,所述液晶偏振调制组件201置于内金属框202内侧,即将内金属框202安装在液晶偏振调制组件201外侧,用于实现快速温度传导,所述温度检测传感器203安装在内金属框202内,用于实时检测液晶偏振调制组件201的温度变化,所述隔热框205和半导体制热制冷器204均置于内金属框202和外金属框206之间;所述温度检测传感器203和半导体制热制冷器204与驱动控制器105电连接,半导体制热制冷器204具有双向制冷和制热的能力,通过改变加载电流大小和方向调节被控温物体接触表面的温度,隔热框205安装在内金属框202外,用于阻隔内部热量和外部热量的快速交换;所述温度检测传感器203采用热敏传感器;所述隔热框205由两个相对设置的U形框组成,两个U形框之间的间隙设置半导体制热制冷器204;
所述扭曲型向列液晶波片101包括玻璃基板301、透明导电膜302、取向膜303、间隔装置304和液晶层305;
所述液晶层305设置在扭曲型向列液晶波片101的中部,所述液晶层305的两侧由内到外依次设置有取向膜303、透明导电膜302和玻璃基板301,所述间隔装置304设置在液晶层305内用于控制液晶层305的厚度,所述透明导电膜302通过电极与驱动控制器105连接,为液晶层305提供电场,使液晶分子的指向发生旋转,改变液晶波片的相位延迟,从而控制入射光的偏振态,取向膜303涂覆在透明导电膜302上,取向膜303经过烘烤、摩擦等工艺处理后,可以诱导液晶层305中的液晶分子按照特定的方向排列,使电控液晶波片具有晶体的双折射光学特性;液晶层305是在玻璃基板301之间灌注向列相液晶材料形成的,其所采用的液晶材料选用具有旋光性质的手性分子和具有双折射特性的液晶组成的一定浓度的混合物的组成。
所述反平行向列液晶波片102与扭曲型向列液晶波片101具有相同结构;所述间隔装置304采用玻璃纤维、玻璃微珠或塑料微珠制成。
在本实施例中,温控组件104和驱动控制器105组成主动温控单元,为液晶器件提供稳定的工作温度,同时驱动控制器105还需要为液晶提供工作所需要的驱动电压序列。
本实施例采取主动温控措施消除温度对液晶波片(扭曲型向列液晶波片101、反平行向列液晶波片102)相位延迟的影响,将液晶波片稳定在特定的温度范围内工作,以实现偏振调制的稳定。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种新型液晶偏振调制器,包括液晶偏振调制组件(201),其特征在于,所述液晶偏振调制组件(201)包括扭曲型向列液晶波片(101)、反平行向列液晶波片(102)和线偏振片(103),所述反平行向列液晶波片(102)设置在扭曲型向列液晶波片(101)和线偏振片(103)之间,所述扭曲型向列液晶波片(101)位于前端;
所述扭曲型向列液晶波片(101)的前端面取向膜和后端面取向膜的取向方向均位于探测光入射方向的垂直面,扭曲型向列液晶波片(101)的前端面取向膜包括x方向;扭曲型向列液晶波片(101)的后端面取向膜的取向方向包括y方向;
所述反平行向列液晶波片(102)的前端面取向膜和后端面取向膜的取向方向均位于x-y平面,且反平行向列液晶波片(102)的前端面取向膜和后端面取向膜的取向方向反平行,当反平行向列液晶波片(102)的前端面取向膜的取向方向为x-y平面的45°方向时,反平行向列液晶波(102)的后端面取向膜的取向方向为x-y平面的135°方向;当反平行向列液晶波片(102)的前端面取向膜的取向方向为x-y平面的135°方向时,反平行向列液晶波片(102)的后端面取向膜的取向方向为x-y平面的45°方向;
线偏振片(103)位于后端,线偏振片(103)的起偏方向包括y方向。
2.根据权利要求1所述的一种新型液晶偏振调制器,其特征在于,还包括温控组件(104)和驱动控制器(105),所述液晶偏振调制组件(201)置于温控组件(104)内,所述驱动控制器(105)与温控组件(104)、扭曲型向列液晶波片(101)、反平行向列液晶波片(102)电连接。
3.根据权利要求2所述的一种新型液晶偏振调制器,其特征在于,所述温控组件(104)包括内金属框(202)、温度检测传感器(203)、半导体制热制冷器(204)、隔热框(205)和外金属框(206);
所述内金属框(202)和外金属框(206)分别位于温控组件(104)的最内层和最外层,所述液晶偏振调制组件(201)置于内金属框(202)内侧,所述温度检测传感器(203)安装在内金属框(202)内,所述隔热框(205)和半导体制热制冷器(204)均置于内金属框(202)和外金属框(206)之间;所述温度检测传感器(203)和半导体制热制冷器(204)与驱动控制器(105)电连接。
4.根据权利要求3所述的一种新型液晶偏振调制器,其特征在于,所述温度检测传感器(203)采用热敏传感器。
5.根据权利要求3所述的一种新型液晶偏振调制器,其特征在于,所述隔热框(205)由两个相对设置的U形框组成,两个U形框之间的间隙设置半导体制热制冷器(204)。
6.根据权利要求2所述的一种新型液晶偏振调制器,其特征在于,所述扭曲型向列液晶波片(101)包括玻璃基板(301)、透明导电膜(302)、取向膜(303)、间隔装置(304)和液晶层(305);
所述液晶层(305)设置在扭曲型向列液晶波片(101)的中部,所述液晶层(305)的两侧由内到外依次设置有取向膜(303)、透明导电膜(302)和玻璃基板(301),所述间隔装置(304)设置在液晶层(305)内用于控制液晶层(305)的厚度,所述透明导电膜(302)通过电极与驱动控制器(105)连接;
所述反平行向列液晶波片(102)与扭曲型向列液晶波片(101)具有相同结构。
7.根据权利要求6所述的一种新型液晶偏振调制器,其特征在于,所述间隔装置(304)采用玻璃纤维、玻璃微珠或塑料微珠制成。
8.基于权利要求1-7任一项所述的一种新型液晶偏振调制器的探测方法,其特征在于,包括以下步骤:
S1、获取液晶偏振调制器的至少4组调制状态,并获得探测光的透光光强,调制状态包括第一个工作状态T1、第二个工作状态T2、第三个工作状态T3和第四个工作状态T4
第一个工作状态(T1)的扭曲型向列液晶波片(101)工作在饱和态,反平行向列液晶波片(102)相位延迟量调制为0°,记录此时透光光强为I T1 ;第二个工作状态(T2)的扭曲型向列液晶波片(101)工作在饱和态,反平行向列液晶波片(102)相位延迟量调制为90°,记录此时透光光强为I T2 ;第三个工作状态(T3)的扭曲型向列液晶波片(101)工作在饱和态,反平行向列液晶波片(102)相位延迟量调制180°,记录此时透光光强为I T3 ;第四个工作状态(T4)的扭曲型向列液晶波片(101)工作在非饱和态,其相位延迟量调制为90°度,反平行向列液晶波片(102)相位延迟量调制90°,记录此时透光光强为I T4
S2、根据以下公式计算入射光的偏振Stokes分量
Figure DEST_PATH_IMAGE001
Figure 560070DEST_PATH_IMAGE002
CN202110106802.0A 2021-01-27 2021-01-27 一种新型液晶偏振调制器及其探测方法 Active CN112432904B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110106802.0A CN112432904B (zh) 2021-01-27 2021-01-27 一种新型液晶偏振调制器及其探测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110106802.0A CN112432904B (zh) 2021-01-27 2021-01-27 一种新型液晶偏振调制器及其探测方法

Publications (2)

Publication Number Publication Date
CN112432904A CN112432904A (zh) 2021-03-02
CN112432904B true CN112432904B (zh) 2021-04-23

Family

ID=74697252

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110106802.0A Active CN112432904B (zh) 2021-01-27 2021-01-27 一种新型液晶偏振调制器及其探测方法

Country Status (1)

Country Link
CN (1) CN112432904B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113917719B (zh) * 2021-10-15 2022-06-24 上海交通大学 一种实现偏振无关液晶器件大相位大fov的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204216398U (zh) * 2014-09-17 2015-03-18 长春理工大学 一种可变相位延迟器的偏振激光器
CN105044988A (zh) * 2015-08-20 2015-11-11 南京大学 一种液晶偏振转换器、制备方法和矢量光控取向系统

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4807976A (en) * 1987-04-01 1989-02-28 Hughes Aircraft Company Light valve system and method with pulsed readout
FR2660448B1 (fr) * 1990-04-03 1992-06-05 Thomson Csf Dispositif de projection d'images.
US5414540A (en) * 1993-06-01 1995-05-09 Bell Communications Research, Inc. Frequency-selective optical switch employing a frequency dispersive element, polarization dispersive element and polarization modulating elements
US5689314A (en) * 1995-06-14 1997-11-18 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Common path point diffraction interferometer using liquid crystal phase shifting
WO1997001792A1 (en) * 1995-06-26 1997-01-16 Honeywell Inc. Full color display of subtractive color type
JPH11133380A (ja) * 1997-10-31 1999-05-21 Sony Corp 液晶素子の駆動方法、並びに光変調素子及びその駆動方法
US6765635B1 (en) * 2000-12-28 2004-07-20 Coadna Photonics, Inc. Apparatus and method for achromatic liquid crystal electro-optic modulation
CN100353216C (zh) * 2005-08-30 2007-12-05 中国工程物理研究院流体物理研究所 手性液晶退偏器及其制备方法
CN100555052C (zh) * 2007-04-19 2009-10-28 汕头超声显示器有限公司 一种被动驱动的液晶显示器
US8023052B1 (en) * 2010-08-17 2011-09-20 Lc-Tec Displays Ab High-speed liquid crystal polarization modulator
EP3077870A1 (en) * 2013-12-03 2016-10-12 Essilor International (Compagnie Générale D'Optique) Transparent thin film, process for manufacturing a film and spatial phase modulator
JP6325740B2 (ja) * 2014-04-02 2018-05-16 エシロール アンテルナシオナル (コンパニー ジェネラル ドプティック) 色消し位相変調器および光学用具
EP3365411B1 (en) * 2015-10-23 2020-05-13 Merck Patent GmbH Light modulation element
EP3617786B1 (en) * 2017-04-28 2022-12-28 LG Chem, Ltd. Optical modulation device
CN110221456B (zh) * 2019-06-06 2022-01-18 京东方科技集团股份有限公司 偏振成像装置及其方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204216398U (zh) * 2014-09-17 2015-03-18 长春理工大学 一种可变相位延迟器的偏振激光器
CN105044988A (zh) * 2015-08-20 2015-11-11 南京大学 一种液晶偏振转换器、制备方法和矢量光控取向系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
液晶相位可变延迟器对光偏振态的调制;丁海兵 等;《光子学报》;20060930;第35卷(第9期);第1397-1399页 *

Also Published As

Publication number Publication date
CN112432904A (zh) 2021-03-02

Similar Documents

Publication Publication Date Title
US6636322B1 (en) Method and device for measuring cell gap of liquid crystal display using near-IR radiation
JP3910352B2 (ja) プレチルト角検出方法及び検出装置
CN103837476A (zh) 一种Mueller矩阵的自校准测量方法
CN104062049B (zh) 一种基板检测方法和装置
CN112432904B (zh) 一种新型液晶偏振调制器及其探测方法
CN101097300B (zh) 测量液晶显示器的定向轴的样本
US11656484B2 (en) Voltage-tunable polarizer
CN101738369B (zh) 相位差检测装置
CN203688946U (zh) 一种液晶电控可调滤光片
AU2009278568B2 (en) Vertically aligned liquid crystal display device
CN101995292B (zh) 反射法测量有机聚合物薄膜材料的电光系数的方法及装置
CN103116057A (zh) 石榴石型光电式电流传感器装置及制备方法
KR101296905B1 (ko) 액정 표시장치용 편광판의 편광 방향 측정 장치 및 방법
CN112525493B (zh) 一种铁电液晶延迟器光学特性检测方法及装置
JPH0498223A (ja) 液晶素子
CN112129704A (zh) 一种基于液晶微阵列器件的分焦平面型偏振成像装置
JP2006322787A (ja) 劣化試験装置及び劣化試験方法
JP3142805B2 (ja) 液晶セルパラメータ検出方法及び装置
CN111121970A (zh) 光偏振态测试装置及其测试方法
JP4257000B2 (ja) 円二色性測定装置
JP2778935B2 (ja) ネマチック液晶素子の方位角方向のアンカリングエネルギ−測定方法
JP3006806B2 (ja) 液晶セルのセル厚測定方法
JP2009133850A (ja) 偏光変調器及び計測装置
JP4977671B2 (ja) 偏光変調器及び計測装置
JP4202619B2 (ja) プレチルト角測定方法およびプレチルト角測定装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant