CN112429702B - 一种连续制氢系统及固体燃料 - Google Patents

一种连续制氢系统及固体燃料 Download PDF

Info

Publication number
CN112429702B
CN112429702B CN202011410144.6A CN202011410144A CN112429702B CN 112429702 B CN112429702 B CN 112429702B CN 202011410144 A CN202011410144 A CN 202011410144A CN 112429702 B CN112429702 B CN 112429702B
Authority
CN
China
Prior art keywords
solid
liquid
storage tank
borohydride
hydrogen production
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN202011410144.6A
Other languages
English (en)
Other versions
CN112429702A (zh
Inventor
尹思雨
曹江行
梁攀飞
刘凯元
范美强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Jiliang University
Original Assignee
China Jiliang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Jiliang University filed Critical China Jiliang University
Priority to CN202011410144.6A priority Critical patent/CN112429702B/zh
Publication of CN112429702A publication Critical patent/CN112429702A/zh
Application granted granted Critical
Publication of CN112429702B publication Critical patent/CN112429702B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/08Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents with metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/065Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by dissolution of metals or alloys; by dehydriding metallic substances
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Fuel Cell (AREA)

Abstract

本发明涉及一种连续制氢系统及固体燃料;通过设计水储罐、固液分离桶、固液分离膜、液泵、阀门、储水罐和不锈钢管,实现液体燃料在固液反应器和固态硼氢化物储罐之间的持续反应与更换,并实现固态燃料与水的在线补充,保证了制氢系统的连续运行;固体燃料为硼氢化物与硅合金;硅合金为硅、高还原性金属和高催化活性金属的三元及以上合金,高还原性金属为锂、钾、钠和钙的一种;高催化活性金属为镍、钴、钯、铁、钨的一种或两种;本专利设计的制氢系统及固体燃料,可稳定输出氢气,可为便携式燃料电池提供氢源。

Description

一种连续制氢系统及固体燃料
技术领域
本发明属于制氢领域,具体涉及一种连续制氢系统及固体燃料。
背景技术
近20年来,随着燃料电池的迅猛发展,尤其是质子交换膜燃料电池的推广和应用,便携式氢源及系统日益收到关注。常用的便携式氢源有金属材料、硼氢化物、氢化物以及有机化合物等。相比有机化合物裂解产生有毒性的一氧化碳,金属材料、硼氢化物、氢化物制氢材料及系统得到广泛发展,尤其是硼氢化物储氢密度大,成为研究热点。硼氢化物水解具有条件温和、速率可控等优点,是安全可靠的便携式氢源。大量文献报道了Pt基、Ni基,Co基,Fe 基,Ru基等催化剂的制备和催化性能,并开发了连续制氢系统,完全可以为微瓦级、千瓦级燃料电池提供纯净氢气。但基于硼氢化物水解产氢的制氢系统也面临一些问题。1)催化剂的毒化;硼氢化物水解产生副产物偏硼酸盐,其沉积在催化剂表面,导致催化剂无法进一步接触硼氢化物而降低了催化性能。2)硼氢化物的溶解度问题。硼氢化物的储氢密度高,但是其在水中的溶解度并不大,如硼氢化钠的浓度控制在20wt%以下,因此实际应用的硼氢化钠溶液的实际在3wt%的储氢值;这也限制了硼氢化物制氢系统的推广和应用。3)硼氢化物的水解产物偏硼酸盐水溶性低,易阻塞管道。
显然,硼氢化物制氢系统面临着催化剂寿命、储氢密度低以及副产物的毒化和阻塞问题,限制了其商业化应用。目前有部分文献报道了固态硼氢化物水解产氢的制氢系统;通过硼氢化物与催化剂混合,控制水的加入速率和加入量,控制硼氢化物水解速率和产氢量。也有文献设计了铝基制氢材料与固态硼氢化物混合,协同水解制氢。该类制氢系统具有储氢密度大、水的速率可控等优势,但难以实现连续制氢。
发明内容
本发明目的在于提供一种连续制氢系统及固体燃料,克服现有制备技术的缺陷,实现硅合金与固态硼氢化物连续水解产氢。为实现上述发明目的,本发明的技术方案是:
一种连续制氢系统;包括固态硼氢化物储罐、水储罐、固液分离桶、固液分离膜、液泵、固液反应器、阀门、储水罐和不锈钢管;其特征在于:储水罐连接液泵、输水管、固液反应器、阀门和固态硼氢化物储罐液体进料管;固态硼氢化物储罐内部设有固液分离桶,固液分离桶为空心柱体,表面均匀分布微孔;固态硼氢化物储罐顶部设有加料口、盖体和液体进料管,固态硼氢化物储罐底部设有液体输出管,液体输出管与硼氢化物储罐壁之间设有固液分离膜;液体输出管连接液泵、阀门和2-5个固液反应器;固液反应器内部设有固液分离桶,顶部设有盖体,盖体一侧连接气液分离膜、输气管、气阀和气罐;固液反应器侧面上部连接固液分离膜和液体输入管,液体输入管连接液泵;固液反应器侧面底部连接固液分离膜和液体输出管,液体输出管连接阀门和固态硼氢化物储罐;
一种固体燃料包括硼氢化物和硅合金;硼氢化物为硼氢化钠、硼氢化钾和硼氢化锂的一种;硅合金为硅、高还原性金属和高催化活性金属的三元及以上合金,硅占合金中的75-90wt%,高还原性金属占合金中的5-15wt%,高催化活性金属占合金中的5-20wt%;高还原性金属为锂、钾、钠和钙的一种;高催化活性金属为镍、钴、铁、钨的一种或两种;
所述的一种连续制氢系统使用方法,硼氢化物放入固态硼氢化物储罐固液分离桶、水放入储水罐、硅合金放入固液反应器固液分离桶,为了便于提高硅的水解产氢速率,碱也可以提前放在固液反应器固液分离桶内,碱为氢氧化钠、氢氧化钾、氢氧化钙的一种;启动液泵、开启阀门,将水通过输水管进入2-5个固液反应器;然后液体沿固液分离膜和液体输出管,进入其它固液反应器或通过液体进料管进入固态硼氢化物储罐;
所述的一种连续制氢系统使用方法,水通过液泵、输水管进入固液反应器,再输入到固态硼氢化物储罐,再重新进入固液反应器,实现反复循环;
所述的一种连续制氢系统使用方法,固液反应器可以串联使用,也可以并联使用;
所述的一种连续制氢系统使用方法,固态硼氢化物可在线加入固态硼氢化物储罐;
所述的一种连续制氢系统使用方法,固液反应器可在线更换硅合金;
所述的一种连续制氢系统使用方法,其特征在于:水可以在线加入水罐中。
本专利涉及一种连续制氢系统及固体燃料;连续制氢系统设计了水罐、固液反应器和固态硼氢化物储罐;通过泵、阀门及不锈钢管,实现水进入固液反应器反应,产生碱溶液,然后将碱溶液进入硼氢化物储罐;再携带硼氢化物水溶液进入固液反应器,硅合金催化硼氢化物水解产生氢气,产生的固态偏硼酸盐留在固液反应器分离桶内,而液态碱溶液再进入固态硼氢化物储罐,实现硼氢化物持续进入固液反应器中和硅合金水解产氢;为了防止固态物质输出到不锈钢管,本专利设计了固液分离桶及固液分离膜双层保护,确保固态物质留在固液反应器和固态硼氢化物储罐中;另外设计固液分离桶有利于在线更换硅合金。本专利设计硅、高还原性金属和高催化活性金属的三元及以上合金;高还原性金属与水反应产生碱溶液,碱溶液可以持续与硅反应产生氢气,也可以进入固态硼氢化物储罐,稳定携带硼氢化物溶液进入固液反应器;高催化活性金属可以催化硼氢化物持续水解产氢;产生的固态偏硼酸盐可留在固液反应器固液分离桶中,而剩余的溶液又可回到固态硼氢化物储罐,携带硼氢化物溶液。与其它制氢材料和系统相比,本发明专利具有如下优点:
1)本发明设计的制氢系统与制氢材料与水反应产生氢气,工艺简单、操作方便,有利于连续化生产氢气。
2)本发明设计固态反应器放置硅合金、固态硼氢化物储罐放置硼氢化物,水储存在水罐中,通过液泵将水输入固态反应器中,产生碱溶液;再通过碱溶液进入固态硼氢化物储罐,携带硼氢化物溶液进入固液反应器中,通过硅合金催化硼氢化物水解;固态废物留在固液反应器中,而液体碱液再循环到固态硼氢化物储罐中,循环反复实现连续制取氢气。通过更换固液反应器硅合金和在线加固态硼氢化物、水,实现连续制氢。
3)本发明液态碱溶液循环反复溶解、携带硼氢化物,实现了碱溶液中饱和硼氢化物溶液进入固液反应器,极大地提高了氢气产量。
4)本专利控制固态硼氢化物、硅合金和水在线加入量,极大提高了制氢系统的储氢密度。
5)本专利设计固液分离桶和固液分离膜,双层保护,使副产物固态偏硼酸盐保留在固液反应器中的固液分离桶内;减少偏硼酸盐阻塞管道的危害;通过在线更换硅合金,减少固态偏硼酸盐毒害催化剂的影响。
6)本发明设计的制氢系统与制氢材料循环反复使用,完全可以为燃料电池提供便携式氢源。
附图说明:
图1为一种连续制氢系统的装置结构示意图。
图中,
1、固液反应器;2、固液分离膜;3、固态硼氢化物储罐;4、固液分离桶;5、加料口;6、盖体;7、水罐;8、液泵;9、气液分离膜;10、气罐;11、阀门。
具体实施方式
为能进一步了解本发明的发明内容、特点及功效,兹举以下实施例详细说明如下:
实施例1
一种连续制氢系统;包括固态硼氢化物储罐、水储罐、固液分离桶、固液分离膜、液泵、固液反应器、阀门、储水罐和不锈钢管;储水罐连接液泵、输水管、固液反应器、阀门和固态硼氢化物储罐液体进料管;固态硼氢化物储罐内部设有固液分离桶,固液分离桶为空心柱体,表面均匀分布微孔;固态硼氢化物储罐顶部设有加料口、盖体和液体进料管,固态硼氢化物储罐底部设有液体输出管,液体输出管与硼氢化物储罐壁之间设有固液分离膜;液体输出管连接液泵、阀门和2-5个固液反应器;固液反应器内部设有固液分离桶,顶部设有盖体,盖体一侧连接气液分离膜、输气管、气阀和气罐;固液反应器侧面上部连接固液分离膜和液体输入管,液体输入管连接液泵;固液反应器侧面底部连接固液分离膜和液体输出管,液体输出管连接阀门和固态硼氢化物储罐。
一种连续制氢系统使用方法;硼氢化物放入固态硼氢化物储罐固液分离桶、水放入储水罐、硅合金放入固液反应器分离桶;启动液泵、开启阀门,将水通过输水管进入所有的固液反应器;然后液体沿固液分离膜和液体输出管,然后通过液体进料管进入固态硼氢化物储罐;再重新进入固液反应器,实现反复循环;固态硼氢化物在线加入固态硼氢化物储罐;固液反应器在线更换硅合金;水在线加入水罐中。
一种固体燃料的成分设计:
硅合金(硅合金成分设计:硅,78wt%;锂,15wt%;镍,7wt%)100g;NaBH4,50g;
结果显示:制氢系统稳定地输出氢气,具有很好的稳定性。
实施例2
一种连续制氢系统,如实施例1。
一种连续制氢系统使用方法;硼氢化物放入固态硼氢化物储罐固液分离桶、水放入储水罐、硅合金放入固液反应器分离桶;启动液泵、开启阀门,将水通过输水管进入其中一个固液反应器;然后液体沿固液分离膜和液体输出管,依次进入其它固液反应器,然后通过液体进料管进入固态硼氢化物储罐;再重新依次进入固液反应器,实现反复循环;固态硼氢化物可在线加入固态硼氢化物储罐;固液反应器可在线更换硅合金;水可以在线加入水罐中。
一种固体燃料的成分设计:
硅合金(硅合金成分设计:硅,82%;钠,11%;镍,7%)100g;NaBH4,50g;
结果显示:制氢系统稳定地输出氢气,具有很好的稳定性。
实施例3
一种连续制氢系统,如实施例1。一种连续制氢系统使用方法,如实施例2.
一种固体燃料的成分设计:
硅合金(硅合金成分设计:硅,80wt%;钾,10wt%;镍,6wt%;铁,4wt%)100g;KBH4,50 g;
硅合金(硅合金成分设计:硅,85wt%;钙,10wt%;钯,2wt%;钨,3wt%)100g;LiBH4,50 g;
结果显示:制氢系统稳定地输出氢气,具有很好的稳定性。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (6)

1.一种连续制氢系统;包括固态硼氢化物储罐、固液分离桶、固液分离膜、液泵、固液反应器、阀门、储水罐和不锈钢管;其特征在于:储水罐连接液泵、输水管、固液反应器、阀门和固态硼氢化物储罐液体进料管;固态硼氢化物储罐内部设有固液分离桶,固液分离桶为空心柱体,表面均匀分布微孔;固态硼氢化物储罐顶部设有加料口、盖体和液体进料管,固态硼氢化物储罐底部设有液体输出管,液体输出管与硼氢化物储罐壁之间设有固液分离膜;液体输出管连接液泵、阀门和2-5个固液反应器;固液反应器内部设有固液分离桶,顶部设有盖体,盖体一侧连接气液分离膜、输气管、气阀和气罐;固液反应器侧面上部连接固液分离膜和液体输入管,液体输入管连接液泵;固液反应器侧面底部连接固液分离膜和液体输出管,液体输出管连接阀门和固态硼氢化物储罐。
2.根据权利要求1所述的一种连续制氢系统使用方法,其特征在于:硼氢化物放入固态硼氢化物储罐固液分离桶、水放入储水罐、硅合金放入固液反应器分离桶;启动液泵、开启阀门;通过液泵、阀门及不锈钢管,实现水进入固液反应器反应,产生碱溶液,然后将碱溶液输入硼氢化物储罐;再携带硼氢化物水溶液进入固液反应器,硅合金催化硼氢化物水解产生氢气,产生的固态偏硼酸盐留在固液反应器分离桶内,而液态碱溶液再进入固态硼氢化物储罐,实现硼氢化物持续进入固液反应器中和硅合金水解产氢。
3.根据权利要求2所述的一种连续制氢系统使用方法,其特征在于:固液反应器可以串联使用,也可以并联使用。
4.根据权利要求2所述的一种连续制氢系统使用方法,其特征在于:固态硼氢化物可在线加入固态硼氢化物储罐。
5.根据权利要求2所述的一种连续制氢系统使用方法,其特征在于:固液反应器可在线更换硅合金。
6.根据权利要求2所述的一种连续制氢系统使用方法,其特征在于:水可以在线加入水罐中。
CN202011410144.6A 2020-12-02 2020-12-02 一种连续制氢系统及固体燃料 Expired - Fee Related CN112429702B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011410144.6A CN112429702B (zh) 2020-12-02 2020-12-02 一种连续制氢系统及固体燃料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011410144.6A CN112429702B (zh) 2020-12-02 2020-12-02 一种连续制氢系统及固体燃料

Publications (2)

Publication Number Publication Date
CN112429702A CN112429702A (zh) 2021-03-02
CN112429702B true CN112429702B (zh) 2022-05-17

Family

ID=74691767

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011410144.6A Expired - Fee Related CN112429702B (zh) 2020-12-02 2020-12-02 一种连续制氢系统及固体燃料

Country Status (1)

Country Link
CN (1) CN112429702B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023030975A (ja) * 2021-08-24 2023-03-08 三菱重工業株式会社 水素製造システム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0224204D0 (en) * 2002-10-17 2002-11-27 Univ Loughborough Hydrogen fuel cell systems
CN1245329C (zh) * 2003-06-10 2006-03-15 中国科学院大连化学物理研究所 含氢无机化合物水溶液制氢催化剂及制氢方法
US7803349B1 (en) * 2005-06-08 2010-09-28 University Of Central Florida Research Foundation, Inc. Method and apparatus for hydrogen production from water
CN101112969A (zh) * 2007-06-22 2008-01-30 浙江大学 可控胶囊式硼氢化钠氢发生剂
CN201777878U (zh) * 2010-02-01 2011-03-30 常州南京大学高新技术研究院 一种微型化学制氢器
RU2014102610A (ru) * 2011-06-28 2015-08-10 Интеллиджент Энерджи Лимитед Генератор газообразного водорода

Also Published As

Publication number Publication date
CN112429702A (zh) 2021-03-02

Similar Documents

Publication Publication Date Title
Xu et al. The future of hydrogen energy: Bio-hydrogen production technology
Zhang et al. Progress and prospects of hydrogen production: Opportunities and challenges
Rambhujun et al. Renewable hydrogen for the chemical industry
Okolie et al. Futuristic applications of hydrogen in energy, biorefining, aerospace, pharmaceuticals and metallurgy
Bahari et al. Clean hydrogen generation and storage strategies via CO 2 utilization into chemicals and fuels: A review
Kojima et al. Development of 10 kW-scale hydrogen generator using chemical hydride
CN214990264U (zh) 一种新型液氨裂解发电系统
WO2011035555A1 (zh) 利用含碳有机质的综合方法及装置
Elgarahy et al. Hydrogen production from wastewater, storage, economy, governance and applications: a review
Eom et al. Thermochemical production of sodium borohydride from sodium metaborate in a scaled-up reactor
CN101003905A (zh) 一种燃料电池膜反应器及利用该反应器制备过氧化氢的方法
CN112429702B (zh) 一种连续制氢系统及固体燃料
Monteiro et al. Hydrogen supply chain: Current status and prospects
Wu et al. Recent developments in the production of hydrogen: Efficiency comparison of different techniques, economic dimensions, challenges and environmental impacts
CN1245329C (zh) 含氢无机化合物水溶液制氢催化剂及制氢方法
Filiz et al. Boron-based hydrogen storage materials towards Power-to-X technology on the path to carbon neutrality
TWI405717B (zh) 以海水摻合硼氫化合物產製氫氣的方法
CN201154897Y (zh) 一种简易型便携式氢气发生器
Gotovsky et al. Formate cycle: The third way in green energy
CN100998943A (zh) 一种硼氢化物水解制氢气的催化剂及其制备方法
CN106744682A (zh) 一种基于硼氢化物和生物乙醇的醇解/水解制氢方法
CN111874865B (zh) 一种无金属参与的催化产氢的方法
Alibeyli et al. Single stage production and hydrolysis of sodium borohydride
Sandoval-González et al. Hydrogen production: technical challenges and future trends
Kochański et al. The technical and economical perspectives for the production and storage of hydrogen in Poland

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220517