CN112422214B - 一种适用于航空信道的通信效果演示验证系统 - Google Patents

一种适用于航空信道的通信效果演示验证系统 Download PDF

Info

Publication number
CN112422214B
CN112422214B CN202011181419.3A CN202011181419A CN112422214B CN 112422214 B CN112422214 B CN 112422214B CN 202011181419 A CN202011181419 A CN 202011181419A CN 112422214 B CN112422214 B CN 112422214B
Authority
CN
China
Prior art keywords
communication
flight
parameters
simulation
scene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011181419.3A
Other languages
English (en)
Other versions
CN112422214A (zh
Inventor
水宜水
卢毅
张敏贞
张暖峰
吴侹
郑澍鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 7 Research Institute
Original Assignee
CETC 7 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 7 Research Institute filed Critical CETC 7 Research Institute
Priority to CN202011181419.3A priority Critical patent/CN112422214B/zh
Publication of CN112422214A publication Critical patent/CN112422214A/zh
Application granted granted Critical
Publication of CN112422214B publication Critical patent/CN112422214B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/391Modelling the propagation channel
    • H04B17/3912Simulation models, e.g. distribution of spectral power density or received signal strength indicator [RSSI] for a given geographic region
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/15Correlation function computation including computation of convolution operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Computational Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Databases & Information Systems (AREA)
  • Algebra (AREA)
  • Computing Systems (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • Traffic Control Systems (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明提供一种适用于航空信道的通信效果演示验证系统,所述的系统包括通信仿真综合管理单元、通信仿真计算单元、场景参数数据库单元;所述的通信仿真综合管理单元,用于对通信频段、发射功率、带宽几种通信参数进行配置加载,结合生成的飞行位置、海拔、速度、姿态几种飞行参数,传输至通信仿真计算单元;所述的通信仿真计算单元,用于调用场景参数数据库单元中的场景数据,并结合接收到的通信参数、飞行参数进行场景重构,接着由通信仿真计算单元进行信道建模与通信能力计算,最后将计算结果传输至通信仿真综合管理单元进行图形化的结果显示。本发明能为高空通信设备的研制过程提供了有效的验证手段,弥补了高空实测试验机会少、成本高的缺点。

Description

一种适用于航空信道的通信效果演示验证系统
技术领域
本发明涉及空基通信技术领域,更具体地,涉及一种适用于航空信道的通信效果演示验证系统。
背景技术
软件模拟和推演系统具有功能强大,替代实物测试,使用费用低等优点,已经被大规模的使用。随着空基通信系统的发展,模拟空基通信系统通信信道的性能,验证实际空中通信效果显得至关重要。而实际的空中验证十分繁琐,飞行费用高昂,单次飞行难以获得多状态数据。因此,研究空基平台的空对空、空对地信道模拟平台就显得至关重要。
空中平台覆盖大,空对地通信时受飞行端天线辐射方向图影响以及地面各种地形因素有较大影响,空对空通信时受到地表不同介质反射以及飞行端天线辐射方向图影响较大。于此同时,空中平台移动范围大,不同地域的信道状况受到环境因素影响多,需要结合实际的全球地图来进行实景模拟。所以,空基通信亟需一套系统来进行模拟多重复杂因素影响下的空基通信的综合效果,模拟各种环境下的通信状况,进行虚拟试飞以及虚拟测试和推演。
现有技术之一,如中国专利公开号CN102142913A,公开日:2011.08.03,公开了一种航空信道模拟器及模拟方法,属于航空信道建模领域,其具体包括信道模拟单元和人机交互模块;所述信道模拟单元用于在从其一个端口接收到航空数据后对该数据通过射线追踪法进行仿真得到航空信道的仿真结果,再利用仿真结果对传统航空信道进行建模得到统计信道模型;用于在其另一端口接收到发射信号之后,通过射线追踪法得到实时的接收信号,从而得到信道的实时响应数据;以及用于通过所述统计信道模型从所述发射信号得到传统航空信道的统计响应曲线;人机交互模块用于显示所述统计响应曲线以及信道的实时响应数据。本发明实现了高效、准确、快速、低成本的航空信道建模。
以上公开航空信道模拟器及模拟方法,其未考虑地形因素,也未考虑平台电磁辐射特性,还未考虑动态的航空状况模拟。
现有技术之二,中国专利公开日:CN110390178A,公开日:2019.10.29,公开了一种用于航空通信信道模型仿真的训练系统,该系统包括人机界面模块、数据采集模块、GIS模块、信道模型管理模块、信道数据库管理模块、模型参数计算模块、系统性能仿真模块和网络接口模块;所述信道模型管理模块根据用户输入参数自动选择信道数据库管理模块中建立好的信道模型,并在模型参数计算模块和系统性能仿真模块的配合下完成仿真与计算,并将结果通过数据采集模块输出至人机界面模块;从传输信道入手,采用经验统计和数学建模的方法,综合分析、量化参数,并以此为依据,研发了一套航空通信信道模型仿真系统。
然而现有技术之二公开的用于航空通信信道模型仿真的训练系统,其GIS模块较为简单,未考虑全球地形状况以及飞机的全球飞行模拟状况。该训练系统没考虑平台电磁辐射特性对信道的影响,无法模拟不同机型和天线以及天线位置对信道影响;也无法模拟飞机动态飞行而导致的信道动态变化状况。
发明内容
本发明为克服当前高空通信飞行测试试验机会少、成本高,且测试场景有限,无法对各种高空动态通信场景下的通信效果进行有效验证的问题,提供了一种适用于航空信道的通信效果演示验证系统,其能为高空通信设备的研制过程提供了有效的验证手段,弥补了高空实测试验机会少、成本高的缺点。
为解决上述技术问题,本发明的技术方案如下:一种适用于航空信道的通信效果演示验证系统,所述的系统包括通信仿真综合管理单元、通信仿真计算单元、场景参数数据库单元;
所述的通信仿真综合管理单元,用于对通信频段、发射功率、带宽几种通信参数进行配置加载,结合生成的飞行位置、海拔、速度、姿态几种飞行参数,传输至通信仿真计算单元;
所述的通信仿真计算单元,用于调用场景参数数据库单元中的场景数据,并结合接收到的通信参数、飞行参数进行场景重构,接着由通信仿真计算单元进行信道建模与通信能力计算,最后将计算结果传输至通信仿真综合管理单元进行图形化的结果显示。
优选地,所述的通信仿真综合管理单元包括参数配置与平台管理模块、飞行模拟模块、通信效果显示模块;
其中,所述的参数配置与平台管理模块,用于对通信频段、发射功率、宽带几种通信参数配置与加载,系统的启停控制、参数管理、数据记录与回放;
所述的飞行模拟模块,用于获取飞行位置、海拔、速度、姿态几种飞行参数;
所述的通信效果显示模块,用于对信道状况、通信性能、通信效果、场景参数的图形化显示,并结合地图软件,可对通信覆盖范围进行界面展示。
进一步地,所述的通信仿真计算单元包括信道模型构建模块、通信能力计算模块;
所述的信道模型构建模块,根据通信参数、飞行参数,结合调用场景参数数据库单元中的场景数据,对信道场景进行实时重构,并对信道模型进行分析计算,得出信道状况结果;
所述的通信能力计算模块,用于对端到端通信、空地通信覆盖能力进行分析计算。
再进一步地,所述的场景参数数据库单元,用于场景数据进行存储、更新与维护;其中所述的场景数据包括天线方向图、地形、地表特性数据。
再进一步地,对信道场景进行实时重构,具体如下:通过引入天线方向图、地形、地表数据作为场景参数输入,结合飞机飞行过程中下传的各种飞行参数,通过坐标变换运算得出当前飞行姿态下对应通信方向上的天线增益,代入至信号接收功率的计算中;融合地面端的影响因素,选取当前仿真所用到的地面区域,调取该区域内的地形、地表数据,代入至后续信道模型的计算中。
再进一步地,所述的信道模型的分析计算如下:采用视距模型方法,按照高度由低到高分别采用ITU-2001、ITU-528及自由空间传播模型,在飞行过程中,通过计算实时得出传输波束方向上所经历的高度区间边界,确定边界后,在不同区间内运用相应的传输模型,最后通过对各段模型下的传输损耗进行叠加,得到最终的传输损耗。
再进一步地,所述的飞行模拟模块通过定时器设置,定时获取飞行位置、海拔、速度、姿态几种飞行参数,并将飞行参数传输至通信仿真单元进行计算。
再进一步地,所述的天线方向图的构建如下:
S1:建立飞机模型,用于仿真天线辐射特性;
S2:分别仿真螺旋桨位于不同角度时天线的方向图,通过插值法获得天线关于频率fn,螺旋桨旋转角度ωm的增益
Figure GDA0002816126510000041
其中Gf表示频率为f时天线的增益,其中,
Figure GDA0002816126510000042
表示天线增益的方向,ωm表示螺旋桨的角度。
再进一步地,所述的差值法包括拉格朗日插值法,具体地,所述的拉格朗日插值法的基函数表达式如下:
Figure GDA0002816126510000043
则插值后获得的增益表达式如下:
Figure GDA0002816126510000044
再进一步地,所述的通信仿真综合管理单元运行于PC终端上,所述的通信仿真计算单元运行于工作站上,所述的场景参数数据库单元搭载在服务器上。
与现有技术相比,本发明技术方案的有益效果是:
本发明针对航空信道环境下的空空/空地通信场景,综合考虑飞行参数、通信参数、场景数据进行场景重构,对航空信道进行了完整链路的大尺度信道建模,利用飞行模拟平台产生实时的飞行参数,模拟通信终端所处的动态场景。并对空空/空地端到端通信效果及空地通信覆盖能力进行实时演示验证,亦可根据预设航线对飞行过程的通信效果进行事后分析处理,为通信设备研制提供了逼真度较高的仿真验证平台。
附图说明
图1为本实施例所述的适用航空信道的通信演示验证系统。
图2为本实施例所述的验证系统的架构图。
图3为本实施例所述的验证系统的工作流程。
图4为本实施例中X两点间方位角与距离示意图。
图5为本实施例所述的飞行模拟模块的实现框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,仅用于示例性说明,不能理解为对本专利的限制。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面结合附图和实施例对本发明的技术方案做进一步的说明。
实施例1
如图1所示,一种适用于航空信道的通信效果演示验证系统,所述的系统包括通信仿真综合管理单元、通信仿真计算单元、场景参数数据库单元;
所述的通信仿真综合管理单元,用于对通信频段、发射功率、带宽几种通信参数进行配置加载,结合生成的飞行位置、海拔、速度、姿态几种飞行参数,传输至通信仿真计算单元;
所述的通信仿真计算单元,用于调用场景参数数据库单元中的场景数据,并结合接收到的通信参数、飞行参数进行场景重构,接着由通信仿真计算单元进行信道建模与通信能力计算,最后将计算结果传输至通信仿真综合管理单元进行图形化的结果显示。
在一个具体的实施例中,所述的通信仿真综合管理单元包括参数配置与平台管理模块、飞行模拟模块、通信效果显示模块;
其中,所述的参数配置与平台管理模块,用于对通信频段、发射功率、宽带几种通信参数配置与加载,验证系统的启停控制、参数管理、数据记录与回放;
所述的飞行模拟模块,用于获取飞行位置、海拔、速度、姿态几种飞行参数;本实施例所述的飞行模拟模块基于X-Plane飞行模拟软件进行二次开发,可以实现全球任意机场起飞,多机同时飞行,机型可扩展,用于高逼真度的飞行参数生成并获取飞行参数。
所述的通信效果显示模块,用于对信道状况、通信性能、通信效果、场景参数的图形化显示,并结合地图软件,可对通信覆盖范围进行界面展示。
在一个具体的实施例中,所述的通信仿真计算单元包括信道模型构建模块、通信能力计算模块;
所述的信道模型构建模块,根据通信参数、飞行参数,结合调用场景参数数据库单元中的场景数据,对信道场景进行实时重构,并对信道模型进行分析计算,得出信道状况结果;
所述的通信能力计算模块,用于对端到端通信、空地通信覆盖能力进行分析计算。
在一个具体的实施例中,所述的场景参数数据库单元,用于场景数据进行存储、更新与维护;其中所述的场景数据包括天线方向图、地形、地表特性数据。
如图2所示,为验证系统的架构图,整个验证系统的软件环境分别运行于PC终端、工作站及服务器上,其中所述的通信仿真综合管理单元运行于PC终端上,所述的通信仿真计算单元运行于工作站上,所述的场景参数数据库单元搭载在服务器上。
本实施例所述的验证系统的工作流程如图3所示。
在一个具体的实施例中,综合考虑飞机端、空地传输信道、地面端三方面的影响因素进行通信场景重构,采用不同高度区间分段建模的方式进行信道模型构建。
对信道场景进行实时重构,具体如下:通过引入天线方向图、地形、地表数据作为场景参数输入,结合飞机飞行过程中下传的各种飞行参数,通过坐标变换运算得出当前飞行姿态下对应通信方向上的天线增益,代入至信号接收功率的计算中;融合地面端的影响因素,选取当前仿真所用到的地面区域,调取该区域内的地形、地表数据,代入至后续信道模型的计算中。
具体的,所述的场景重构中,涉及到的天线增益及地形数据调用计算方法如下:
a)天线增益
设定发射端经纬度、海拔高度分别为λT
Figure GDA0002816126510000061
hT,接收端经纬度、海拔高度分别为λR
Figure GDA0002816126510000062
hR,发射端所处平台的俯仰角、滚转角、航向角分别为θT、φT、ψT,接收端所处平台的俯仰角、滚转角、航向角分别为θR、φR、ψR,地球长轴半径为Re,短轴半径为Rp,地球椭球第一偏心率为e。
则发射端沿卯酉圈的主曲率半径为下式:
Figure GDA0002816126510000063
接收端沿卯酉圈的主曲率半径为下式:
Figure GDA0002816126510000064
将收发端两点由LLA坐标系向ECEF坐标系转换,可得在LLA坐标系下发射端与接收端的坐标如下:
Figure GDA0002816126510000065
Figure GDA0002816126510000071
Figure GDA0002816126510000072
Figure GDA0002816126510000073
Figure GDA0002816126510000074
Figure GDA0002816126510000075
然后将发射端的ECEF坐标向接收端对应的导航坐标系转换,通过转换矩阵
Figure GDA0002816126510000076
即可得到如下:
Figure GDA0002816126510000077
接着将该坐标由导航坐标系向接收端对应的载体坐标系转换,通过转换矩阵
Figure GDA0002816126510000078
即可得到如下:
Figure GDA0002816126510000079
将接收端的ECEF坐标向发射端对应的导航坐标系转换,通过转换矩阵
Figure GDA00028161265100000710
即可得到如下:
Figure GDA00028161265100000711
接着将该坐标由导航坐标系向发射端对应的载体坐标系转换,通过转换矩阵
Figure GDA00028161265100000712
即可得到如下:
Figure GDA00028161265100000713
设发射端指向接收端的向量为
Figure GDA00028161265100000714
接收端指向发射端的向量为
Figure GDA00028161265100000715
Figure GDA00028161265100000716
在发射端载体坐标系下的坐标与接收端在发射端载体坐标系下的坐标相等,即有:
Figure GDA0002816126510000081
Figure GDA0002816126510000082
在接收端载体坐标系下的坐标与发射端在接收端载体坐标系下的坐标相等,即有:
Figure GDA0002816126510000083
之后,由
Figure GDA0002816126510000084
在发射端载体坐标系下的坐标值,进而通过该坐标得出球坐标下的天顶角与方向角,即可通过查表得出该方向上的发射天线增益;由
Figure GDA0002816126510000085
在接收端载体坐标系下的坐标值,进而通过该坐标得出球坐标下的天顶角与方向角,即可通过查表得出该方向上的接收天线增益。
b)地形数据调用
设定两点的经度分别为λA、λB,纬度分别为
Figure GDA0002816126510000086
首先计算两点在地球表面形成的方位角(以正北方向为零点,顺时针旋转为正)与两点间最短距离。
如图4所示,A、B点为地表上任意两点,C点为北极点,O点为地球球心,ψ为由A点指向B点的方位角,LAB为A到B的最短距离,∠a为OB与OC的夹角,∠b为OA与OC的夹角,∠c为OA与OB的夹角,记A-OC-B为面OAC与面OBC的二面角,
由三面角余弦公式,可得:
cosc=cosacosb+sinasinbcos(A-OC-B)
代入A、B两点的经纬度信息,可得下式:
Figure GDA0002816126510000087
进一步可得
Figure GDA0002816126510000088
再由正弦定理,有下式:
Figure GDA0002816126510000089
式中,∠A代表∠CAB(即所求方位角ψ),∠B代表∠CBA,∠C代表∠BCA(即A、B两点经度差),故可得:
Figure GDA0002816126510000091
Figure GDA0002816126510000092
上述方法求得的方位角是将地球视为球体进行计算的,而地球本身是一个非标准的椭球,但理论证明在两者距离不大时求得的方位角误差很小,可满足实际需要。
然后,对两点间距离LAB进行计算。设地球扁率为f,地球长轴半径为a,记
Figure GDA0002816126510000093
λs=(λAB)/2,由以下代数式:
S=sin2(G)cos2s)+cos2(F)sin2s)
C=cos2(G)cos2s)+sin2(F)sin2s)
Figure GDA0002816126510000094
D=2ωa
H1=(3R-1)/(2C),H2=(3R+1)/(2S)
最终可得两点间距离如下:
LAB=D[1+fH1sin2(F)cos2(G)-fH2cos2(F)sin2(G)]
接着在A、B两点最短距离连线上间距均匀地取一定数量的点,地形剖面信息建立的含义即获取所有在A、B两点最短距离连线上等间距点的地形信息(包含A、B两点),为此,必须先求得各等间距点的经纬度信息。
设A、B两点最短距离连线上任一等间距点为P,P点距A点距离为d,地球椭球第二偏心率为e2,地球平均半径为Re,地球长轴半径为a,根据以下代数式:
Figure GDA0002816126510000095
γ=dB2/(aC)
Figure GDA0002816126510000096
由此可得P点的经度如下:
λP=λA+(1/A)arctan(Atanγsinψ/q)
记W=A(λPA)/2,x=cosψ,
Figure GDA0002816126510000097
z=sinψ(x-y)
,D=0.5arcsinz,则可得P点的纬度如下:
Figure GDA0002816126510000098
至此,已求得A、B两点最短距离连线上等间距点的经纬度信息,再根据事先载入的地形数据信息,以经纬度作为索引,通过双线性插值方法即可得出各个点所对应的地形信息,最终完成地形数据的调用。
在信道模型计算方面,所述的信道模型的分析计算如下:采用视距模型方法,按照高度由低到高分别采用ITU-2001、ITU-528及自由空间传播模型,在飞行过程中,通过计算实时得出传输波束方向上所经历的高度区间边界,确定边界后,在不同区间内运用相应的传输模型,最后通过对各段模型下的传输损耗进行叠加,得到最终的传输损耗。
在一个具体的实施例中,如图4所示,飞行模拟模块基于X-Plane飞行模拟软件进行二次开发,通过插件的形式动态加载到飞行模拟软件中,实现全球任意机场起飞、多机同时飞行、机型扩展等,还可以实时获取飞行位置、海拔、速度、姿态等飞行参数传输至通信仿真计算单元进行计算,并将计算结果实时回传到飞行模拟模块中。在模拟飞行前先预先绑定需要获取的飞行参数,在飞行过程中定时获取获取飞行位置、海拔、速度、姿态等飞行参数传输至通信仿真单元进行计算。定时器的周期选择需要综合考虑飞行模拟软件的性能以及通信仿真计算的耗时。
在一个具体的实施例中,所述的通信效果显示模块,用于信道状况、通信性能、通信效果、场景参数的图形化显示,并结合地图软件,可对通信覆盖范围进行直观的界面展示。
其中,通信覆盖范围功能采用B/S架构实现。前端基于百度地图JavaScript API技术所开发,主要采用JavaScript脚本语言实现;后台程序采用C++语言实现http代理服务、与通信仿真计算单元交互以及通信覆盖范围计算。
信噪比、路损、误码率曲线变化模块是通过获取通信仿真计算单元计算结果,实时展示当前信道状况、通信性能,对通信效果达到非常直观的界面展示。用户可以通过修改飞行参数、信道参数、天线参数等手段,实时获取当前信噪比、路损、误码率等情况来优化通信网络。本实施例通过场景参数、天线方向图等实时显示出当前场景的相关输入情况,为用户优化通信网络提供依据。
在一个具体的实施例中,天线方向图的数据构建具体如下:
针对飞机端通信设备,充分考虑飞机机体对机载天线方向图的影响,对装载于飞机上的天线进行电磁特性仿真,得到机载天线方向图。受飞机螺旋桨影响,天线的辐射特性随螺旋桨转动发生周期性变化,不同频率时螺旋桨对天线的辐射特性产生不同的影响,因此需要建立一个与工作频率,螺旋桨旋转角度相关的方向图数据库,用于表征天线的辐射特性。
所述的天线方向图数据库的构建如下:
S1:建立飞机模型,用于仿真天线辐射特性;
S2:分别仿真螺旋桨位于不同角度时天线的方向图,通过插值法获得天线关于频率fn,螺旋桨旋转角度ωm的增益
Figure GDA0002816126510000111
其中Gf表示频率为f时天线的增益,其中,
Figure GDA0002816126510000112
表示天线增益的方向,ωm表示螺旋桨的角度。
在一个具体的实施例中,所述的差值法包括拉格朗日插值法,具体地,所述的拉格朗日插值法的基函数表达式如下:
Figure GDA0002816126510000113
则插值后获得的增益表达式如下:
Figure GDA0002816126510000114
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (10)

1.一种适用于航空信道的通信效果演示验证系统,其特征在于:所述的系统包括通信仿真综合管理单元、通信仿真计算单元、场景参数数据库单元;
所述的通信仿真综合管理单元,用于对通信频段、发射功率、带宽几种通信参数进行配置加载,结合生成的飞行位置、海拔、速度、姿态几种飞行参数,传输至通信仿真计算单元;
所述的通信仿真计算单元,用于调用场景参数数据库单元中的场景数据,并结合接收到的通信参数、飞行参数进行场景重构,接着由通信仿真计算单元进行信道建模与通信能力计算,最后将计算结果传输至通信仿真综合管理单元进行图形化的结果显示;
具体的,所述的场景重构中,涉及到的天线增益及地形数据调用计算方法如下:
a)天线增益
设定发射端经纬度、海拔高度分别为λT
Figure FDA0003810444550000011
hT,接收端经纬度、海拔高度分别为λR
Figure FDA0003810444550000012
hR,发射端所处平台的俯仰角、滚转角、航向角分别为θT、φT、ψT,接收端所处平台的俯仰角、滚转角、航向角分别为θR、φR、ψR,地球长轴半径为Re,短轴半径为Rp,地球椭球第一偏心率为e;
则发射端沿卯酉圈的主曲率半径为下式:
Figure FDA0003810444550000013
接收端沿卯酉圈的主曲率半径为下式:
Figure FDA0003810444550000014
将收发端两点由LLA坐标系向ECEF坐标系转换,可得在LLA坐标系下发射端与接收端的坐标如下:
Figure FDA0003810444550000015
Figure FDA0003810444550000016
Figure FDA0003810444550000017
Figure FDA0003810444550000018
Figure FDA0003810444550000021
Figure FDA0003810444550000022
然后将发射端的ECEF坐标向接收端对应的导航坐标系转换,通过转换矩阵
Figure FDA0003810444550000023
即可得到如下:
Figure FDA0003810444550000024
接着将该坐标由导航坐标系向接收端对应的载体坐标系转换,通过转换矩阵
Figure FDA0003810444550000025
即可得到如下:
Figure FDA0003810444550000026
将接收端的ECEF坐标向发射端对应的导航坐标系转换,通过转换矩阵
Figure FDA0003810444550000027
即可得到如下:
Figure FDA0003810444550000028
接着将该坐标由导航坐标系向发射端对应的载体坐标系转换,通过转换矩阵
Figure FDA0003810444550000029
即可得到如下:
Figure FDA00038104445500000210
设发射端指向接收端的向量为
Figure FDA00038104445500000211
接收端指向发射端的向量为
Figure FDA00038104445500000212
Figure FDA00038104445500000213
在发射端载体坐标系下的坐标与接收端在发射端载体坐标系下的坐标相等,即有:
Figure FDA00038104445500000214
Figure FDA00038104445500000215
在接收端载体坐标系下的坐标与发射端在接收端载体坐标系下的坐标相等,即有:
Figure FDA0003810444550000031
之后,由
Figure FDA0003810444550000032
在发射端载体坐标系下的坐标值,进而通过该坐标得出球坐标下的天顶角与方向角,即可通过查表得出该方向上的发射天线增益;由
Figure FDA0003810444550000033
在接收端载体坐标系下的坐标值,进而通过该坐标得出球坐标下的天顶角与方向角,即可通过查表得出该方向上的接收天线增益。
2.根据权利要求1所述的适用于航空信道的通信效果演示验证系统,其特征在于:所述的通信仿真综合管理单元包括参数配置与平台管理模块、飞行模拟模块、通信效果显示模块;
其中,所述的参数配置与平台管理模块,用于对通信频段、发射功率、宽带几种通信参数配置与加载,系统的启停控制、参数管理、数据记录与回放;
所述的飞行模拟模块,用于获取飞行位置、海拔、速度、姿态几种飞行参数;
所述的通信效果显示模块,用于对信道状况、通信性能、通信效果、场景参数的图形化显示,并结合地图软件,可对通信覆盖范围进行界面展示。
3.根据权利要求2所述的适用于航空信道的通信效果演示验证系统,其特征在于:所述的通信仿真计算单元包括信道模型构建模块、通信能力计算模块;
所述的信道模型构建模块,根据通信参数、飞行参数,结合调用场景参数数据库单元中的场景数据,对信道场景进行实时重构,并对信道模型进行分析计算,得出信道状况结果;
所述的通信能力计算模块,用于对端到端通信、空地通信覆盖能力进行分析计算。
4.根据权利要求3所述的适用于航空信道的通信效果演示验证系统,其特征在于:所述的场景参数数据库单元,用于场景数据进行存储、更新与维护;其中所述的场景数据包括天线方向图、地形、地表特性数据。
5.根据权利要求4所述的适用于航空信道的通信效果演示验证系统,其特征在于:对信道场景进行实时重构,具体如下:
通过引入天线方向图、地形、地表数据作为场景参数输入,结合飞机飞行过程中下传的各种飞行参数,通过坐标变换运算得出当前飞行姿态下对应通信方向上的天线增益,代入至信号接收功率的计算中;融合地面端的影响因素,选取当前仿真所用到的地面区域,调取该区域内的地形、地表数据,代入至后续信道模型的计算中。
6.根据权利要求5所述的适用于航空信道的通信效果演示验证系统,其特征在于:所述的信道模型的分析计算如下:
采用视距模型方法,按照高度由低到高分别采用ITU-2001、ITU-528及自由空间传播模型,在飞行过程中,通过计算实时得出传输波束方向上所经历的高度区间边界,确定边界后,在不同区间内运用相应的传输模型,最后通过对各段模型下的传输损耗进行叠加,得到最终的传输损耗。
7.根据权利要求6所述的适用于航空信道的通信效果演示验证系统,其特征在于:所述的飞行模拟模块通过定时器设置,定时获取飞行位置、海拔、速度、姿态几种飞行参数,并将飞行参数传输至通信仿真单元进行计算。
8.根据权利要求7所述的适用于航空信道的通信效果演示验证系统,其特征在于:所述的天线方向图的构建如下:
S1:建立飞机模型,用于仿真天线辐射特性;
S2:分别仿真螺旋桨位于不同角度时天线的方向图,通过插值法获得天线关于频率fn,螺旋桨旋转角度ωm的增益
Figure FDA0003810444550000041
其中Gf表示频率为f时天线的增益,其中,θ,
Figure FDA0003810444550000042
表示天线增益的方向,ωm表示螺旋桨的角度。
9.根据权利要求8所述的适用于航空信道的通信效果演示验证系统,其特征在于:所述的插值法包括拉格朗日插值法,具体地,所述的拉格朗日插值法的基函数表达式如下:
Figure FDA0003810444550000043
则插值后获得的增益表达式如下:
Figure FDA0003810444550000044
10.根据权利要求1~9任一项所述的适用于航空信道的通信效果演示验证系统,其特征在于:所述的通信仿真综合管理单元运行于PC终端上,所述的通信仿真计算单元运行于工作站上,所述的场景参数数据库单元搭载在服务器上。
CN202011181419.3A 2020-10-29 2020-10-29 一种适用于航空信道的通信效果演示验证系统 Active CN112422214B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011181419.3A CN112422214B (zh) 2020-10-29 2020-10-29 一种适用于航空信道的通信效果演示验证系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011181419.3A CN112422214B (zh) 2020-10-29 2020-10-29 一种适用于航空信道的通信效果演示验证系统

Publications (2)

Publication Number Publication Date
CN112422214A CN112422214A (zh) 2021-02-26
CN112422214B true CN112422214B (zh) 2022-11-11

Family

ID=74841533

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011181419.3A Active CN112422214B (zh) 2020-10-29 2020-10-29 一种适用于航空信道的通信效果演示验证系统

Country Status (1)

Country Link
CN (1) CN112422214B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113533866A (zh) * 2021-07-09 2021-10-22 西安博瑞集信电子科技有限公司 天线测试与指向演示系统、天线测试方法及天线指向演示方法
CN114221720B (zh) * 2021-10-22 2023-07-04 中国电子科技集团公司第七研究所 一种基于飞行模拟平台的非平稳信道模拟方法及其系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101882263B (zh) * 2010-06-13 2012-09-05 中国人民解放军国防科学技术大学 基于算法综合集成的演示与验证一体化系统
CN106411587A (zh) * 2016-09-26 2017-02-15 中国空间技术研究院 一种适用于卫星通信网络效能评估的仿真架构
CN106533532A (zh) * 2016-10-12 2017-03-22 宁波市鄞州意诺工业设计有限公司 移动平台vsat宽带卫星通信仿真系统
CN108011679B (zh) * 2017-12-07 2020-11-03 北京润科通用技术有限公司 一种信道模拟的仿真配置方法及系统
GB2570470B (en) * 2018-01-26 2022-08-31 Bae Systems Plc Flight simulation
CN110390178B (zh) * 2019-08-05 2022-09-13 中国人民解放军空军工程大学航空机务士官学校 一种用于航空通信信道模型仿真的训练系统

Also Published As

Publication number Publication date
CN112422214A (zh) 2021-02-26

Similar Documents

Publication Publication Date Title
CN106845032B (zh) 多模导航三维动态可视化仿真平台的构建方法
US7224311B2 (en) System and method for visualization of attitude and attitude/position dependent data
CN112070894B (zh) 真实环境导航多径实时仿真方法、装置、介质及电子设备
CN107733515B (zh) 一种在轨复杂环境下卫星通信链路分析方法
CN112422214B (zh) 一种适用于航空信道的通信效果演示验证系统
CN106546245B (zh) 基于ads-b数据的飞机轨迹推断和平滑方法
CN110765620A (zh) 飞行器视景仿真方法、系统、服务器及存储介质
CN104880961A (zh) 一种多无人机分布式协同的硬件在回路实时仿真实验系统
CN110909108A (zh) 一种视距通信下的无线电磁覆盖区计算方法
CN111683388B (zh) 一种近场辐射衰减测试方法及三维显示系统
CN112885153A (zh) 一种基于多网融合的通用航空安全监控系统
US11300679B2 (en) Radar site positioning apparatus for optimal weather radar network and method thereof
CN114221720B (zh) 一种基于飞行模拟平台的非平稳信道模拟方法及其系统
Kato et al. Location awareness system for drones flying beyond visual line of sight exploiting the 400 MHz frequency band
US20170366647A1 (en) Virtual weather generation
CN107966719B (zh) 一种基于信号解码和概率筛选的单星定位增强系统及方法
CN109918858A (zh) 一种cst仿真天线数据可视化方法
CN112037330A (zh) 基于AirSim的无人机运行场景仿真方法
CN115021800B (zh) 使用无人机查找Ka频段卫星终端的方法、装置和电子设备
CN208399997U (zh) 一种无人机航迹规划及动态威胁规避仿真设备
CN117648830B (zh) Vor导航仿真方法、装置、系统、电子设备及存储介质
CN117648831B (zh) 信标导航仿真场景构建方法、装置、设备及导航仿真系统
CN117688779A (zh) 仿真场景构建方法、装置、导航仿真系统、设备及介质
CN106788672A (zh) 一种提高卫星系统间干扰仿真步长精度的方法
CN116090166A (zh) 基于星群的地表异常预警方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant