CN112418529B - 基于lstm神经网络的户外广告在线倒塌预测方法 - Google Patents

基于lstm神经网络的户外广告在线倒塌预测方法 Download PDF

Info

Publication number
CN112418529B
CN112418529B CN202011330273.4A CN202011330273A CN112418529B CN 112418529 B CN112418529 B CN 112418529B CN 202011330273 A CN202011330273 A CN 202011330273A CN 112418529 B CN112418529 B CN 112418529B
Authority
CN
China
Prior art keywords
data
lstm
output
neural network
outdoor advertisement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011330273.4A
Other languages
English (en)
Other versions
CN112418529A (zh
Inventor
吴晨
杨敏
徐冰
朱晓霞
徐晶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Jushu Intelligent Technology Co ltd
Original Assignee
Jiangsu Jushu Intelligent Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Jushu Intelligent Technology Co ltd filed Critical Jiangsu Jushu Intelligent Technology Co ltd
Priority to CN202011330273.4A priority Critical patent/CN112418529B/zh
Publication of CN112418529A publication Critical patent/CN112418529A/zh
Application granted granted Critical
Publication of CN112418529B publication Critical patent/CN112418529B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/044Recurrent networks, e.g. Hopfield networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0241Advertisements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S50/00Market activities related to the operation of systems integrating technologies related to power network operation or related to communication or information technologies
    • Y04S50/14Marketing, i.e. market research and analysis, surveying, promotions, advertising, buyer profiling, customer management or rewards

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Strategic Management (AREA)
  • Data Mining & Analysis (AREA)
  • Economics (AREA)
  • Biophysics (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computational Linguistics (AREA)
  • Development Economics (AREA)
  • Health & Medical Sciences (AREA)
  • Finance (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Accounting & Taxation (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了一种基于LSTM神经网络的户外广告在线倒塌预测方法,包括以下步骤:S1,采集环境数据和振动数据;S2,对采集的数据进行归一化处理;S3,利用安装初期正常情况下的数据进行训练,通过LSTM神经网络将环境数据,映射户外广告环境与振动数据的非线性关系,将拟合结果与实际数据比较,学习户外广告在风力作用下的震动模式,本步骤中使用的LSTM神经网络结合了LSTM层和全连接层,其中,LSTM层用于提取序列数据特征,全连接层融合序列特征并改变输出数据的形状;S4,基于S3的训练结果对户外广告进行长期在线检测,判断户外广告的异常。本发明可全天候在线异常检测。

Description

基于LSTM神经网络的户外广告在线倒塌预测方法
技术领域
本发明涉及计算机技术、人工智能在故障检测领域的应用,具体涉及一种基于LSTM神经网络的户外广告在线倒塌预测方法。
背景技术
户外广告是在建筑物外表或街道、广场等室外公共场所设立的霓虹灯、户外广告、海报等。户外广告是面向所有的公众,所以比较难以选择具体目标对象,但是户外广告可以在固定的地点长时期地展示企业的形象及品牌,因而对于提高企业和品牌的知名度是很有效的。
由于户外广告所处位置均具有一定的高度,如果户外广告的安安装或在使用过程中出现问题,例如螺钉锈蚀、支架断裂等因素导致户外广告倒塌,这样容易引发行人的安全事故。然而,由于户外广告的结构和安装方式不尽相同,无法使用统一的模型来描述所有户外广告的振动情况。而对每个户外广告进行建模又是不切实际的。
目前已有的户外广告倒塌预测技术,通常通过采集传感器数据,使用确定的算法对户外广告状态进行预测,此方法无法适应不同环境中的户外广告,泛化能力较差,并且准确率较低,容易出现异常状态的误报或不报。还有一类技术采用机器视觉方法检测户外广告状态,此类方法仅能检测视觉上的异常状况,通常无法对户外广告倒塌进行准确预测,而且此方法受到环境中的干扰噪声也比较大,容易出现误报。
户外广告的安全可靠,影响着人民群众生命和财产的安全,因此户外广告的安全监测是一个亟需解决的重要问题。
发明内容
本发明提供一种基于LSTM神经网络的户外广告在线倒塌预测方法,本发明可全天候在线异常检测。
基于LSTM神经网络的户外广告在线倒塌预测方法,包括以下步骤:
S1,采集环境数据和振动数据;
S2,对采集的数据进行归一化处理;
S3,利用安装初期正常情况下的数据进行训练,通过LSTM神经网络将环境数据,映射户外广告环境与振动数据的非线性关系,将拟合结果与实际数据比较,学习户外广告在风力作用下的震动模式,本步骤中使用的LSTM神经网络结合了LSTM层和全连接层,其中,LSTM层用于提取序列数据特征,全连接层融合序列特征并改变输出数据的形状;
S4,基于S3的训练结果对户外广告进行长期在线检测,判断户外广告的异常。
进一步地,在S1中,通过安装在户外广告上的风速、风向、三轴加速度传感器采集数据,如果各传感器采样率不同,则去除采样率较高序列的部分数据使得所有数据序列均具有相同的采样率和采样时间。
进一步地,所述S3中的训练过程如下:
S31:构造训练和测试样本,将风速、风向传感器数据作为样本的输入,三轴加速度数据作为样本的输出数据,得到带标签的样本,并随机将样本数据按比例分为训练集和测试集;
S32:构造用于训练和检测的LSTM神经网络,网络结构至少包含2个LSTM层和2个全连接层,其中,最后一层全连接层作为输出层,LSTM神经网络的输出为预测的三轴加速度数据序列;
S33:使用训练集样本数据训练LSTM神经网络,通过损失函数表达预测的三轴加速度数据与实际测得的三轴加速度数据的误差,在训练集上重复进行多轮训练,直到LSTM神经网络在测试集上的误差不再降低或到达最大训练轮数时停止;
S34:确定网络阈值和检测策略,根据训练结束时的网络模型参数,计算训练集上各样本误差的统计特征,并确定异常检测策略,策略根据最近若干个样本的三轴加速度预测数据序列的误差进行判断,输出的检测结果为正常或异常,如果输出的检测结果为异常,则表示户外广告具有较高的倒塌风险。
进一步地,在S32中,第一个LSTM层的输入维度为2,输出维度为64;第二个LSTM层输入维度为64,输出维度为1,输入序列通过全部2层LSTM后得到长度为300的向量,然后输出到下一层。
进一步地,在S32中,每个LSTM层计算公式如下:
Y=LSTMforward(X)
其中Y为LSTM层输出序列;X为输入序列;LSTMforward为LSTM神经元函数,计算步骤如下:
it=σ(Wxixt+Whiht-1+Wctct-1+bi)
ft=σ(Wxfxt+Whfht-1+Wofct-1+bf)
ct=ftct-1+ittanh(Wxcxt+Whcht-1+bc)
ot=σ(Wxoxt+Whoht-1+Wcoct+bo)
yt=ht=υttanh(ct)
上面的公式中,it为输入门;σ为sigmoid函数;Wxi为输入门中输入的权重矩阵,xt为输入向量;Whi为输入门中细胞输出的权重矩阵,Wci为输入门中细胞状态的权重矩阵,bi为输入门的偏置向量;
ft为遗忘门,Wxf为遗忘门中输入的权重矩阵,Whf为遗忘门中细胞输出的权重矩阵,Wcf为遗忘门中细胞状态的权重矩阵,bf为遗忘门的偏置向量;
ct为细胞状态;tanh为双曲正切函数,Wxc为细胞状态中输入的权重矩阵,Whc为细胞状态中细胞输出的权重矩阵,bc为细胞状态的偏置向量;
ot为输出门,Wxo为输出门中输入的权重矩阵,Who为输出门中细胞输出的权重矩阵,Wco为输出门中细胞状态的权重矩阵,bo为输出门的偏置向量;
yt为输出向量;ht为细胞输出,t表示为时间序列。
进一步地,在S32中,第一个全连接层节点数为128;第二个全连接层作为输出层,节点数量为3,全连接层均采用激活函数计算,计算公式如下:
其中,Pt为全连接层神经元的输出,yt为神经网络上一层的输出向量,i为上一层输出向量的维度,Wt为权重,bt为偏置,σ为sigmoid函数。
进一步地,在S33中,损失函数采用所有输出数据的均方根误差,公式如下所示:
其中,Yij为样本输出数据第i轴加速度时间序列的第j个数据;Pij为网络预测的第i轴加速度时间序列的第j个数据;n为样本的序列长度,等于每个样本的采样数量。
进一步地,在S34中,根据训练结束时的网络参数,计算训练集样本的误差阈值δ,所述误差阈值δ为可覆盖90%以上的测试样本误差的最小值,计算公式如下:
其中nδ为测试集中网络误差小于阈值δ的样本数量,n为测试集样本总数。
进一步地,所述的在线检测阶段包括以下步骤:
S41:构造检测样本,通过传感器采集数据,并进行与S3相同的处理,得到新的检测样本;
S42:输出预测结果,将检测样本的输入数据通过所述LSTM网络,得到预测的三轴加速度数据序列,依据上述异常预测策略进行判断并输出预测结果;
S43:重复S42。
进一步地,在S42中,计算每个样本的网络误差,当连续多个样本的网络误差均超过误差阈值,或24小时内累计有多个样本的网络误差超过误差阈值,则输出户外广告状态为异常,否则输出状态为正常。
本发明的有益效果:本发明针对现有技术无法准确预测广告牌倒塌的缺点,利用传感器采集的风速、风向、广告牌振动加速度数据,使用LSTM神经网络挖掘了风力作用与广告牌振动在时间上的特征,通过异常的振动特征预测广告牌倒塌,大大提高了准确性和可靠性,可长时间在线检测广告牌的异常情况。
具体实施方式
基于LSTM神经网络的户外广告在线倒塌预测方法,包括以下步骤:
S1,采集环境数据和振动数据。优先通过安装在户外广告上的风速、风向、三轴加速度传感器采集数据,如果各传感器采样率不同,则去除采样率较高序列的部分数据使得所有数据序列均具有相同的采样率和采样时间。
S1中,在广告牌安装或检修后的一段时间内,通过安装在广告牌上的风速、风向、三轴加速度传感器采集数据。采样率均为10Hz。通过数据处理,构建样本。每个样本的采样时间为30s,共计需要采集3000个样本;样本输入包含300×5=1500个数据。
S2,对采集的数据进行归一化处理;将原始数据除以各传感器的最大输出值,即所有数据都在[0,1]范围内。在S2中,随机地选取2000个样本数据作为训练集,其余1000个样本作为测试集。
S3,利用安装初期正常情况下的数据进行训练,通过LSTM神经网络将环境数据,映射户外广告环境与振动数据的非线性关系,将拟合结果与实际数据比较,学习户外广告在风力作用下的震动模式,本步骤中使用的LSTM神经网络结合了LSTM层和全连接层,其中,LSTM层用于提取序列数据特征,全连接层融合序列特征并改变输出数据的形状。所述S3中的训练过程如下:
S31:构造训练和测试样本,将风速、风向传感器数据作为样本的输入,三轴加速度数据作为样本的输出数据,得到带标签的样本,并随机将样本数据按比例分为训练集和测试集;
S32:构造用于训练和检测的LSTM神经网络,网络结构至少包含2个LSTM层和2个全连接层,其中,最后一层全连接层作为输出层,LSTM神经网络的输出为预测的三轴加速度数据序列。其中:
在S32中,第一个LSTM层的输入维度为2,输出维度为64;第二个LSTM层输入维度为64,输出维度为1,输入序列通过全部2层LSTM后得到长度为300的向量,然后输出到下一层。
在S32中,每个LSTM层计算公式如下:
Y=LSTMforward(X)
其中Y为LSTM层输出序列;X为输入序列;LSTMforward为LSTM神经元函数,计算步骤如下:
it=σ(Wxixt+Whiht-1+Wcict-1+bi)
ft=σ(Wxfxt+Whfht-1+Wofct-1+bf)
ct=ftct-1+ittanh(Wxoxt+Whoht-1+bo)
ot=σ(Wxoxt+Whoht-1+Wcoct+bo)
yt=ht=ottanh(ct)
上面的公式中,it为输入门;σ为sigmoid函数;Wxi为输入门中输入的权重矩阵,xt为输入向量;Whi为输入门中细胞输出的权重矩阵,Wci为输入门中细胞状态的权重矩阵,bi为输入门的偏置向量;ft为遗忘门,Wxf为遗忘门中输入的权重矩阵,Whf为遗忘门中细胞输出的权重矩阵,Wcf为遗忘门中细胞状态的权重矩阵,bf为遗忘门的偏置向量;
ct为细胞状态;tanh为双曲正切函数,Wxc为细胞状态中输入的权重矩阵,Whc为细胞状态中细胞输出的权重矩阵,bc为细胞状态的偏置向量;
ot为输出门,Wxo为输出门中输入的权重矩阵,Who为输出门中细胞输出的权重矩阵,Wco为输出门中细胞状态的权重矩阵,bo为输出门的偏置向量;
yt为输出向量;ht为细胞输出,t表示为时间序列。
在S32中,第一个全连接层节点数为128;第二个全连接层作为输出层,节点数量为3,全连接层均采用激活函数计算,计算公式如下:
其中,Pt为全连接层神经元的输出,yt为神经网络上一层的输出向量,i为上一层输出向量的维度,Wt为权重,bt为偏置,σ为sigmoid函数。
S33:使用训练集样本数据训练LSTM神经网络,通过损失函数表达预测的三轴加速度数据与实际测得的三轴加速度数据的误差,在训练集上重复进行多轮训练,直到LSTM神经网络在测试集上的误差不再降低或到达最大训练轮数时停止。在S33中,损失函数采用所有输出数据的均方根误差,公式如下所示:
其中,Yij为样本输出数据第i轴加速度时间序列的第j个数据;Pij为网络预测的第i轴加速度时间序列的第j个数据;n为样本的序列长度,等于每个样本的采样数量。使用BP算法更新网络参数,每次迭代采用批量方式,学习率0.02。使用训练集重复训练,直到所述的LSTM网络在测试集上的误差不再降低或到达最大训练轮数Nepoch时结束网络训练。
S34:确定网络阈值和检测策略,根据训练结束时的网络模型参数,计算训练集上各样本误差的统计特征,并确定异常检测策略,策略根据最近若干个样本的三轴加速度预测数据序列的误差进行判断,输出的检测结果为正常或异常,如果输出的检测结果为异常,则表示户外广告具有较高的倒塌风险。
在S34中,根据训练结束时的网络参数,计算训练集样本的误差阈值δ,所述误差阈值δ为可覆盖90%以上的测试样本误差的最小值,计算公式如下:
其中nδ为测试集中网络误差小于阈值δ的样本数量,n为测试集样本总数。
S4,基于S3的训练结果对户外广告进行长期在线检测,判断户外广告的异常。所述的在线检测阶段包括以下步骤:
S41:构造检测样本,通过传感器采集数据,并进行与S3相同的处理,得到新的检测样本;
S42:输出预测结果,将检测样本的输入数据通过所述LSTM网络,得到预测的三轴加速度数据序列,依据上述异常预测策略进行判断并输出预测结果;
S43:重复S42。
在S42中,计算每个样本的网络误差,当连续多个样本的网络误差均超过误差阈值,或24小时内累计有多个样本的网络误差超过误差阈值,则输出户外广告状态为异常,否则输出状态为正常。
使用训练阶段相同的方法,实时采集传感器数据,处理检测样本,将样本通过上述训练完成的LSTM网络,得到网络输出,计算每个样本的网络误差。当连续3个样本的网络误差均超过上述步骤的误差阈值,或24小时内累计有10个样本的网络误差超过上述中的误差阈值,则输出广告牌状态为“异常”,否则输出状态为“正常”。
本发明通过构建卷积神经网络,利用安装初期的数据进行训练,构建用于训练和预测的LSTM网络模型;通过广告牌正常情况的数据训练模型,学习其振动特征;学习广告牌在风力作用下的震动模式,使用训练好的LSTM网络计算预测数据与实际数据的误差,然后对广告牌进行长期在线异常检测。本发明能够灵活适应各种结构的广告牌和各种安装环境、能够通过传感器数据生成用于训练测试和检测的样本、能够准确地实时检测广告牌异常情况,及时上报异常情况。

Claims (9)

1.基于LSTM神经网络的户外广告在线倒塌预测方法,其特征在于,包括以下步骤:
S1,采集环境数据和振动数据;
S2,对采集的数据进行归一化处理;
S3,利用安装初期正常情况下的数据进行训练,通过LSTM神经网络将环境数据,映射户外广告环境与振动数据的非线性关系,将拟合结果与实际数据比较,学习户外广告在风力作用下的震动模式,本步骤中使用的LSTM神经网络结合了LSTM层和全连接层,其中,LSTM层用于提取序列数据特征,全连接层融合序列特征并改变输出数据的形状;
S4,基于S3的训练结果对户外广告进行长期在线检测,判断户外广告的异常;
所述S3中的训练过程如下:
S31:构造训练和测试样本,将风速、风向传感器数据作为样本的输入,三轴加速度数据作为样本的输出数据,得到带标签的样本,并随机将样本数据按比例分为训练集和测试集;
S32:构造用于训练和检测的LSTM神经网络,网络结构至少包含2个LSTM层和2个全连接层,其中,最后一层全连接层作为输出层,LSTM神经网络的输出为预测的三轴加速度数据序列;
S33:使用训练集样本数据训练LSTM神经网络,通过损失函数表达预测的三轴加速度数据与实际测得的三轴加速度数据的误差,在训练集上重复进行多轮训练,直到LSTM神经网络在测试集上的误差不再降低或到达最大训练轮数时停止;
S34:确定网络阈值和检测策略,根据训练结束时的网络模型参数,计算训练集上各样本误差的统计特征,并确定异常检测策略,策略根据最近若干个样本的三轴加速度预测数据序列的误差进行判断,输出的检测结果为正常或异常,如果输出的检测结果为异常,则表示户外广告具有较高的倒塌风险。
2.根据权利要求1所述的基于LSTM神经网络的户外广告在线倒塌预测方法,其特征在于,在S1中,通过安装在户外广告上的风速、风向、三轴加速度传感器采集数据,如果各传感器采样率不同,则去除采样率较高序列的部分数据使得所有数据序列均具有相同的采样率和采样时间。
3.根据权利要求1所述的基于LSTM神经网络的户外广告在线倒塌预测方法,其特征在于,在S32中,第一个LSTM层的输入维度为2,输出维度为64;第二个LSTM层输入维度为64,输出维度为1,输入序列通过全部2层LSTM后得到长度为300的向量,然后输出到下一层。
4.根据权利要求3所述的基于LSTM神经网络的户外广告在线倒塌预测方法,其特征在于,在S32中,每个LSTM层计算公式如下:
Y=LSTMforward(X)
其中Y为LSTM层输出序列;X为输入序列;LSTMforward为LSTM神经元函数,计算步骤如下:
it=σ(Wxixt+Whiht-1+Wcict-1+bi)
ft=σ(Wxfxt+Whfht-1+Wcfct-1+bf)
ct=ftct-1+ittanh(Wxcxt+Whcht-1+bc)
ot=σ(Wxoxt+Whoht-1+Wcoct+bo)
yt=ht=ottanh(ct)
上面的公式中,it为输入门;σ为sigmoid函数;Wxi为输入门中输入的权重矩阵,xt为输入向量;Whi为输入门中细胞输出的权重矩阵,Wci为输入门中细胞状态的权重矩阵,bi为输入门的偏置向量;
ft为遗忘门,Wxf为遗忘门中输入的权重矩阵,Whf为遗忘门中细胞输出的权重矩阵,Wcf为遗忘门中细胞状态的权重矩阵,bf为遗忘门的偏置向量;
ct为细胞状态;tanh为双曲正切函数,Wxc为细胞状态中输入的权重矩阵,Whc为细胞状态中细胞输出的权重矩阵,bc为细胞状态的偏置向量;
ot为输出门,Wxo为输出门中输入的权重矩阵,Who为输出门中细胞输出的权重矩阵,Wco为输出门中细胞状态的权重矩阵,bo为输出门的偏置向量;
yt为输出向量;ht为细胞输出,t表示为时间序列。
5.根据权利要求1所述的基于LSTM神经网络的户外广告在线倒塌预测方法,其特征在于,在S32中,第一个全连接层节点数为128;第二个全连接层作为输出层,节点数量为3,全连接层均采用激活函数计算,计算公式如下:
其中,Pt为全连接层神经元的输出,yt为神经网络上一层的输出向量,i为上一层输出向量的维度,Wt为权重,bt为偏置,σ为sigmoid函数。
6.根据权利要求1所述的基于LSTM神经网络的户外广告在线倒塌预测方法,其特征在于,在S33中,损失函数采用所有输出数据的均方根误差,公式如下所示:
其中,Yij为样本输出数据第i轴加速度时间序列的第j个数据;Pij为网络预测的第i轴加速度时间序列的第j个数据;n为样本的序列长度,等于每个样本的采样数量。
7.根据权利要求1所述的基于LSTM神经网络的户外广告在线倒塌预测方法,其特征在于,在S34中,根据训练结束时的网络参数,计算训练集样本的误差阈值δ,所述误差阈值δ为可覆盖90%以上的测试样本误差的最小值,计算公式如下:
其中nδ为测试集中网络误差小于阈值δ的样本数量,n为测试集样本总数。
8.根据权利要求1所述的基于LSTM神经网络的户外广告在线倒塌预测方法,其特征在于,所述的在线检测阶段包括以下步骤:
S41:构造检测样本,通过传感器采集数据,并进行与S3相同的处理,得到新的检测样本;
S42:输出预测结果,将检测样本的输入数据通过所述LSTM神经网络,得到预测的三轴加速度数据序列,依据上述异常预测策略进行判断并输出预测结果;
S43:重复S42。
9.根据权利要求8所述的基于LSTM神经网络的户外广告在线倒塌预测方法,其特征在于,在S42中,计算每个样本的网络误差,当连续多个样本的网络误差均超过误差阈值,或24小时内累计有多个样本的网络误差超过误差阈值,则输出户外广告状态为异常,否则输出状态为正常。
CN202011330273.4A 2020-11-24 2020-11-24 基于lstm神经网络的户外广告在线倒塌预测方法 Active CN112418529B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011330273.4A CN112418529B (zh) 2020-11-24 2020-11-24 基于lstm神经网络的户外广告在线倒塌预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011330273.4A CN112418529B (zh) 2020-11-24 2020-11-24 基于lstm神经网络的户外广告在线倒塌预测方法

Publications (2)

Publication Number Publication Date
CN112418529A CN112418529A (zh) 2021-02-26
CN112418529B true CN112418529B (zh) 2024-02-27

Family

ID=74777571

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011330273.4A Active CN112418529B (zh) 2020-11-24 2020-11-24 基于lstm神经网络的户外广告在线倒塌预测方法

Country Status (1)

Country Link
CN (1) CN112418529B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114529779B (zh) * 2021-12-31 2023-04-07 扬州市恒泰人防设备有限公司 一种人防门锈蚀状态检测系统及方法
CN115390487A (zh) * 2022-08-11 2022-11-25 上海划创科技发展有限公司 广告牌智能监测系统及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109242147A (zh) * 2018-08-07 2019-01-18 重庆大学 基于Bp神经网络的信号融合风机状态预测方法
CN109447373A (zh) * 2018-11-16 2019-03-08 上海海事大学 基于python平台的LSTM神经网络来预测雾霾方法
CN110321361A (zh) * 2019-06-15 2019-10-11 河南大学 基于改进的lstm神经网络模型的试题推荐判定方法
CN110414666A (zh) * 2019-05-28 2019-11-05 河海大学 基于改进的lstm网络的泵站机组故障识别方法
CN110633750A (zh) * 2019-09-17 2019-12-31 中国石化销售有限公司华南分公司 一种基于lstm模型的电动阀门故障检测方法
CN110702418A (zh) * 2019-10-10 2020-01-17 山东超越数控电子股份有限公司 航空发动机故障预测方法
JP2020052740A (ja) * 2018-09-27 2020-04-02 株式会社東芝 異常検知装置、異常検知方法及びプログラム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11169514B2 (en) * 2018-08-27 2021-11-09 Nec Corporation Unsupervised anomaly detection, diagnosis, and correction in multivariate time series data

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109242147A (zh) * 2018-08-07 2019-01-18 重庆大学 基于Bp神经网络的信号融合风机状态预测方法
JP2020052740A (ja) * 2018-09-27 2020-04-02 株式会社東芝 異常検知装置、異常検知方法及びプログラム
CN109447373A (zh) * 2018-11-16 2019-03-08 上海海事大学 基于python平台的LSTM神经网络来预测雾霾方法
CN110414666A (zh) * 2019-05-28 2019-11-05 河海大学 基于改进的lstm网络的泵站机组故障识别方法
CN110321361A (zh) * 2019-06-15 2019-10-11 河南大学 基于改进的lstm神经网络模型的试题推荐判定方法
CN110633750A (zh) * 2019-09-17 2019-12-31 中国石化销售有限公司华南分公司 一种基于lstm模型的电动阀门故障检测方法
CN110702418A (zh) * 2019-10-10 2020-01-17 山东超越数控电子股份有限公司 航空发动机故障预测方法

Also Published As

Publication number Publication date
CN112418529A (zh) 2021-02-26

Similar Documents

Publication Publication Date Title
Cheng et al. A convolutional neural network based degradation indicator construction and health prognosis using bidirectional long short-term memory network for rolling bearings
CN112926273B (zh) 一种多元退化设备剩余寿命预测方法
CN108984893B (zh) 一种基于梯度提升方法的趋势预测方法
Lei et al. Mutual information based anomaly detection of monitoring data with attention mechanism and residual learning
CN111737909B (zh) 基于时空图卷积网络的结构健康监测数据异常识别方法
CN111274737A (zh) 一种机械设备剩余使用寿命预测方法及系统
CN110633750A (zh) 一种基于lstm模型的电动阀门故障检测方法
CN112418529B (zh) 基于lstm神经网络的户外广告在线倒塌预测方法
CN112200237B (zh) 一种结构健康监测系统时序监测数据异常诊断方法
CN111382542A (zh) 一种面向全寿命周期的公路机电设备寿命预测系统
CN106769032B (zh) 一种回转支承使用寿命的预测方法
CN108764601A (zh) 一种基于计算机视觉和深度学习技术的结构健康监测异常数据诊断方法
CN108022058B (zh) 一种风力机状态可靠性评估方法
CN112528365B (zh) 一种地下基础设施结构健康演化趋势预测方法
CN105574669B (zh) 时空联合数据聚类分析的输变电设备状态异常检测方法
CN112085621B (zh) 一种基于K-Means-HMM模型的分布式光伏电站故障预警算法
CN110737948A (zh) 一种基于深度fnn-lstm混合网络的航空发动机剩余寿命预测方法
CN111680454A (zh) 基于双重注意力机制的风机叶片结冰故障预测方法
CN112668526A (zh) 基于深度学习和压电主动传感的螺栓群松动定位监测方法
CN110706213A (zh) 基于应变响应累积分布函数差的桥梁集群结构损伤判别方法
CN115809405A (zh) 基于多特征融合的风机主轴齿轮箱温度异常检测方法
CN111325403A (zh) 一种公路隧道机电设备剩余寿命预测方法
Son et al. Deep learning-based anomaly detection to classify inaccurate data and damaged condition of a cable-stayed bridge
CN111079348B (zh) 一种缓变信号检测方法和装置
CN114444582A (zh) 基于卷积神经网络与贝叶斯网络的机械设备故障诊断方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant