CN110633750A - 一种基于lstm模型的电动阀门故障检测方法 - Google Patents
一种基于lstm模型的电动阀门故障检测方法 Download PDFInfo
- Publication number
- CN110633750A CN110633750A CN201910875386.3A CN201910875386A CN110633750A CN 110633750 A CN110633750 A CN 110633750A CN 201910875386 A CN201910875386 A CN 201910875386A CN 110633750 A CN110633750 A CN 110633750A
- Authority
- CN
- China
- Prior art keywords
- fault
- fault detection
- data
- lstm
- electric valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 52
- 238000012549 training Methods 0.000 claims abstract description 18
- 238000003745 diagnosis Methods 0.000 claims abstract description 7
- 239000004973 liquid crystal related substance Substances 0.000 claims abstract description 4
- 238000012544 monitoring process Methods 0.000 claims abstract description 4
- 238000000034 method Methods 0.000 claims description 16
- 230000006870 function Effects 0.000 claims description 15
- 210000004027 cell Anatomy 0.000 claims description 12
- 238000010606 normalization Methods 0.000 claims description 9
- 238000012545 processing Methods 0.000 claims description 7
- 238000004364 calculation method Methods 0.000 claims description 6
- 239000011159 matrix material Substances 0.000 claims description 6
- 230000015654 memory Effects 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 4
- ORILYTVJVMAKLC-UHFFFAOYSA-N Adamantane Natural products C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 claims description 3
- 230000001133 acceleration Effects 0.000 claims description 3
- 230000004913 activation Effects 0.000 claims description 3
- 210000002569 neuron Anatomy 0.000 claims description 3
- 238000005457 optimization Methods 0.000 claims description 3
- 230000008901 benefit Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000004880 explosion Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000007787 long-term memory Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K37/00—Special means in or on valves or other cut-off apparatus for indicating or recording operation thereof, or for enabling an alarm to be given
- F16K37/0025—Electrical or magnetic means
- F16K37/0041—Electrical or magnetic means for measuring valve parameters
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/243—Classification techniques relating to the number of classes
- G06F18/2431—Multiple classes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Computational Linguistics (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Health & Medical Sciences (AREA)
- Software Systems (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Mechanical Engineering (AREA)
- Indication Of The Valve Opening Or Closing Status (AREA)
Abstract
Description
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910875386.3A CN110633750A (zh) | 2019-09-17 | 2019-09-17 | 一种基于lstm模型的电动阀门故障检测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910875386.3A CN110633750A (zh) | 2019-09-17 | 2019-09-17 | 一种基于lstm模型的电动阀门故障检测方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110633750A true CN110633750A (zh) | 2019-12-31 |
Family
ID=68970908
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910875386.3A Pending CN110633750A (zh) | 2019-09-17 | 2019-09-17 | 一种基于lstm模型的电动阀门故障检测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110633750A (zh) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111241748A (zh) * | 2020-01-13 | 2020-06-05 | 华北电力大学 | 基于长短期记忆模型循环神经网络的风力发电机故障诊断 |
CN111881971A (zh) * | 2020-07-24 | 2020-11-03 | 成都理工大学 | 一种基于深度学习lstm模型的输电线路故障类型识别方法 |
CN111929053A (zh) * | 2020-07-07 | 2020-11-13 | 中国矿业大学 | 基于da-rvfln的气动调节阀领域适应故障诊断方法 |
CN112306981A (zh) * | 2020-11-03 | 2021-02-02 | 广州科泽云天智能科技有限公司 | 一种面向高性能计算系统故障日志的故障预测方法 |
CN112418529A (zh) * | 2020-11-24 | 2021-02-26 | 江苏巨数智能科技有限公司 | 基于lstm神经网络的户外广告在线倒塌预测方法 |
CN112461537A (zh) * | 2020-10-16 | 2021-03-09 | 浙江工业大学 | 基于长短时神经网络与自动编码机的风电齿轮箱状态监测方法 |
CN112598040A (zh) * | 2020-12-16 | 2021-04-02 | 浙江方圆检测集团股份有限公司 | 一种基于深度学习的开关一致性实时检测方法 |
CN113431925A (zh) * | 2021-07-12 | 2021-09-24 | 南京工程学院 | 电液比例阀及其位置控制系统、控制方法与故障预测方法 |
CN113505926A (zh) * | 2021-07-14 | 2021-10-15 | 同济大学 | 一种基于阻抗预测模型自更新的燃料电池故障预测方法 |
CN113657628A (zh) * | 2021-08-20 | 2021-11-16 | 武汉霖汐科技有限公司 | 工业设备监控方法、系统、电子设备及存储介质 |
CN114597871A (zh) * | 2022-03-25 | 2022-06-07 | 厦门华夏国际电力发展有限公司 | 一种电动阀门站异常工况识别及控制方法及其系统 |
CN114692433A (zh) * | 2022-04-28 | 2022-07-01 | 中原环保股份有限公司 | 一种配电柜表面温度巡检的故障分析方法 |
CN115081591A (zh) * | 2022-06-10 | 2022-09-20 | 苏州大学 | 一种电动阀门故障概率预测方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107769972A (zh) * | 2017-10-25 | 2018-03-06 | 武汉大学 | 一种基于改进的lstm的电力通信网设备故障预测方法 |
CN109555566A (zh) * | 2018-12-20 | 2019-04-02 | 西安交通大学 | 一种基于lstm的汽轮机转子故障诊断方法 |
CN109738776A (zh) * | 2019-01-02 | 2019-05-10 | 华南理工大学 | 基于lstm的风机变流器开路故障识别方法 |
CN109931678A (zh) * | 2019-03-13 | 2019-06-25 | 中国计量大学 | 基于深度学习lstm的空调故障诊断方法 |
-
2019
- 2019-09-17 CN CN201910875386.3A patent/CN110633750A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107769972A (zh) * | 2017-10-25 | 2018-03-06 | 武汉大学 | 一种基于改进的lstm的电力通信网设备故障预测方法 |
CN109555566A (zh) * | 2018-12-20 | 2019-04-02 | 西安交通大学 | 一种基于lstm的汽轮机转子故障诊断方法 |
CN109738776A (zh) * | 2019-01-02 | 2019-05-10 | 华南理工大学 | 基于lstm的风机变流器开路故障识别方法 |
CN109931678A (zh) * | 2019-03-13 | 2019-06-25 | 中国计量大学 | 基于深度学习lstm的空调故障诊断方法 |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111241748A (zh) * | 2020-01-13 | 2020-06-05 | 华北电力大学 | 基于长短期记忆模型循环神经网络的风力发电机故障诊断 |
CN111929053A (zh) * | 2020-07-07 | 2020-11-13 | 中国矿业大学 | 基于da-rvfln的气动调节阀领域适应故障诊断方法 |
CN111881971A (zh) * | 2020-07-24 | 2020-11-03 | 成都理工大学 | 一种基于深度学习lstm模型的输电线路故障类型识别方法 |
CN112461537A (zh) * | 2020-10-16 | 2021-03-09 | 浙江工业大学 | 基于长短时神经网络与自动编码机的风电齿轮箱状态监测方法 |
CN112306981A (zh) * | 2020-11-03 | 2021-02-02 | 广州科泽云天智能科技有限公司 | 一种面向高性能计算系统故障日志的故障预测方法 |
CN112418529B (zh) * | 2020-11-24 | 2024-02-27 | 江苏巨数智能科技有限公司 | 基于lstm神经网络的户外广告在线倒塌预测方法 |
CN112418529A (zh) * | 2020-11-24 | 2021-02-26 | 江苏巨数智能科技有限公司 | 基于lstm神经网络的户外广告在线倒塌预测方法 |
CN112598040A (zh) * | 2020-12-16 | 2021-04-02 | 浙江方圆检测集团股份有限公司 | 一种基于深度学习的开关一致性实时检测方法 |
CN113431925A (zh) * | 2021-07-12 | 2021-09-24 | 南京工程学院 | 电液比例阀及其位置控制系统、控制方法与故障预测方法 |
CN113505926A (zh) * | 2021-07-14 | 2021-10-15 | 同济大学 | 一种基于阻抗预测模型自更新的燃料电池故障预测方法 |
CN113505926B (zh) * | 2021-07-14 | 2022-10-25 | 同济大学 | 一种基于阻抗预测模型自更新的燃料电池故障预测方法 |
CN113657628A (zh) * | 2021-08-20 | 2021-11-16 | 武汉霖汐科技有限公司 | 工业设备监控方法、系统、电子设备及存储介质 |
CN114597871A (zh) * | 2022-03-25 | 2022-06-07 | 厦门华夏国际电力发展有限公司 | 一种电动阀门站异常工况识别及控制方法及其系统 |
CN114597871B (zh) * | 2022-03-25 | 2023-11-21 | 厦门华夏国际电力发展有限公司 | 一种电动阀门柜异常工况识别及控制方法及其系统 |
CN114692433A (zh) * | 2022-04-28 | 2022-07-01 | 中原环保股份有限公司 | 一种配电柜表面温度巡检的故障分析方法 |
CN115081591A (zh) * | 2022-06-10 | 2022-09-20 | 苏州大学 | 一种电动阀门故障概率预测方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110633750A (zh) | 一种基于lstm模型的电动阀门故障检测方法 | |
Cheng et al. | A convolutional neural network based degradation indicator construction and health prognosis using bidirectional long short-term memory network for rolling bearings | |
Lei et al. | Mutual information based anomaly detection of monitoring data with attention mechanism and residual learning | |
CN111460728B (zh) | 一种工业设备剩余寿命预测方法、装置、存储介质及设备 | |
CN109308522B (zh) | 一种基于循环神经网络的gis故障预测方法 | |
She et al. | Wear indicator construction of rolling bearings based on multi-channel deep convolutional neural network with exponentially decaying learning rate | |
Yu et al. | A new deep model based on the stacked autoencoder with intensified iterative learning style for industrial fault detection | |
Ayodeji et al. | Causal augmented ConvNet: A temporal memory dilated convolution model for long-sequence time series prediction | |
CN108647643A (zh) | 一种基于深度学习的填料塔液泛状态在线辨识方法 | |
CN110757510B (zh) | 一种机器人剩余寿命预测方法及系统 | |
CN113869563A (zh) | 一种基于故障特征迁移的航空涡扇发动机剩余寿命预测方法 | |
CN114266278B (zh) | 一种基于双重注意力网络的设备剩余使用寿命预测方法 | |
CN112087443B (zh) | 工业传感网络信息物理攻击下的传感数据异常检测方法 | |
CN114444582A (zh) | 基于卷积神经网络与贝叶斯网络的机械设备故障诊断方法 | |
CN115994630B (zh) | 基于多尺度自注意力的设备剩余使用寿命预测方法及系统 | |
Xu et al. | Global attention mechanism based deep learning for remaining useful life prediction of aero-engine | |
CN112381213A (zh) | 一种基于双向长短期记忆网络的工业设备剩余寿命预测方法 | |
Lin et al. | Attention-based Gate Recurrent Unit for remaining useful life prediction in prognostics | |
CN112418529B (zh) | 基于lstm神经网络的户外广告在线倒塌预测方法 | |
CN114936520A (zh) | 基于改进mset的汽轮机故障预警分析方法 | |
Falcon et al. | Neural turing machines for the remaining useful life estimation problem | |
CN113984389A (zh) | 一种基于多感受野与改进胶囊图神经网络的滚动轴承故障诊断方法 | |
CN112560252B (zh) | 一种航空发动机剩余寿命预测方法 | |
CN111885084A (zh) | 一种入侵检测方法、装置及电子设备 | |
Zhang et al. | A flexible monitoring framework via dynamic-multilayer graph convolution network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20200909 Address after: 100027 Beijing, Chaoyangmen, North Street, No. 22, No. Applicant after: China Petroleum & Chemical Corp. Applicant after: South China branch of Sinopec Sales Co.,Ltd. Applicant after: YANGZHOU HENGCHUN ELECTRONIC Co.,Ltd. Address before: 510000 Room 1402, 81 Zhongshan 7th Road, Liwan District, Guangzhou City, Guangdong Province Applicant before: SOUTH CHINA BRANCH OF SINOPEC CHEMICAL COMMERCIAL HOLDING Co.,Ltd. Applicant before: YANGZHOU HENGCHUN ELECTRONIC Co.,Ltd. |
|
TA01 | Transfer of patent application right | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20191231 |
|
RJ01 | Rejection of invention patent application after publication |