CN112414314A - 一种三光束激光干涉法发动机叶尖间隙测量方法及装置 - Google Patents

一种三光束激光干涉法发动机叶尖间隙测量方法及装置 Download PDF

Info

Publication number
CN112414314A
CN112414314A CN202011337432.3A CN202011337432A CN112414314A CN 112414314 A CN112414314 A CN 112414314A CN 202011337432 A CN202011337432 A CN 202011337432A CN 112414314 A CN112414314 A CN 112414314A
Authority
CN
China
Prior art keywords
measurement
wave plate
lambda
engine
beam splitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011337432.3A
Other languages
English (en)
Other versions
CN112414314B (zh
Inventor
梁志国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Changcheng Institute of Metrology and Measurement AVIC
Original Assignee
Beijing Changcheng Institute of Metrology and Measurement AVIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Changcheng Institute of Metrology and Measurement AVIC filed Critical Beijing Changcheng Institute of Metrology and Measurement AVIC
Priority to CN202011337432.3A priority Critical patent/CN112414314B/zh
Publication of CN112414314A publication Critical patent/CN112414314A/zh
Application granted granted Critical
Publication of CN112414314B publication Critical patent/CN112414314B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/14Measuring arrangements characterised by the use of optical techniques for measuring distance or clearance between spaced objects or spaced apertures

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

本发明公开的一种三光束激光干涉法发动机叶尖间隙测量方法,属于发动机测试和光电测量技术领域。本发明在激光干涉测量技术基础上,将高温高压环境下的涡轮风扇发动机的叶尖间隙内部尺寸测量转化为外部台阶尺寸测量,避免测量探头、传感器工作在高温高压的恶劣环境下工作;使用调频激光相位差进行台阶面的距离测量,抑制发动机旋转叶片的反射导致的激光功率不稳定因素。使用声光调制器实现光频调制,用示波器进行波形测量,以软件算法方式实现FM信号解调,最终通过三束等间距相互平行的光束执行测量,以差分方式的相位差测量原理实现涡轮风扇发动机的叶尖间隙高精度测量,能够抑制发动机的振动、测量光束与测量面的垂直度给测量带来的不利影响。

Description

一种三光束激光干涉法发动机叶尖间隙测量方法及装置
技术领域
本发明涉及一种三光束激光干涉法发动机叶尖间隙测量方法及装置,属于发动机测试和光电测量技术领域。
背景技术
涡轮风扇发动机是当今先进发动机的主流技术之一,具有推力大、效率高、能耗低、寿命长等众多特点,成为先进航空发动机的代表。其中,发动机叶片尖端与机匣之间的叶尖间隙控制是其关键技术之一。该间隙既不能过大,也不宜过小,通常会控制在0.3mm~3mm之间;过大则会使得发动机效率降低、推力下降,从而性能下降,而过小则容易导致异常碰摩,造成发动机故障或损毁。因而,叶尖间隙测量成为涡轮风扇发动机性能测试中的主流任务之一。
由于涡轮风扇发动机是一种大功率热机系统,其工作时,通常转速可达每分钟五六千转,甚至上万转;其自身温度非常高,采取了冷却散热措施后,其机匣温度依然可望达到摄氏七八百度以上。在此情况下,由于高温热效应、高压气流作用、离心力作用、柔性连接环节等因素的影响,工作状态下,其叶尖间隙将会与非工作状态时有所不同,并且,其工况条件恶劣,高温、高压气流、强噪声、振动等因素并存,又封闭在狭小的拥有高速转子的高压空间范围内,导致很多测量方法和手段不能使用,成为涡轮风扇发动机测试中的难点之一。
目前,人们主要尝试的测量方式有比较成熟的电容法和尚需完善的微波辐射法等,测量系统的量程范围约为0~6.25mm。电容法是通过叶尖间隙在发动机转动过程中的变化,导致电容极板间距的变化,从而产生电容变化,以此来推断叶尖间隙的变化,并通过数据处理方法推算出叶尖间隙的最小值。而微波辐射法则完全是采用电磁波行程测距方式,寻找出最小距离值作为叶尖间隙测量结果。两者共同的特点是都需要将电容探头或收发天线安装在涡轮风扇发动机的机匣上,承受高温等恶劣环境考验。并接受由于高温环境等造成的性能下降。
为了实现高温环境下的涡轮风扇发动机的叶尖间隙高精度测量,人们一直在寻找和探索新的方法,并试图解决该问题。
发明内容
针对高温高压环境下的涡轮风扇发动机的叶尖间隙高精度测量问题,本发明公开的一种三光束激光干涉法发动机叶尖间隙测量方法及装置的目的是:(1)避免测量探头、传感器等工作在高温高压的恶劣环境下工作;(2)使用调频激光相位差进行台阶面的距离测量,对于发动机旋转叶片的反射导致的激光功率不稳定因素,具有更良好的抑制作用;(3)对发动机的振动、测量光束与测量面的垂直度等给测量带来的影响具有良好的抑制作用。
本发明的目的是通过下述技术方案实现的。
本发明公开的一种三光束激光干涉法发动机叶尖间隙测量方法,在激光干涉测量技术基础上,将高温高压环境下的涡轮风扇发动机的叶尖间隙内部尺寸测量转化为外部台阶尺寸测量,避免测量探头、传感器工作在高温高压的恶劣环境下。
使用调频激光相位差进行台阶面的距离测量,抑制激光功率不稳定因素,所述激光功率不稳定因素为发动机旋转叶片的反射导致的激光功率不稳定因素。
使用声光调制器实现光频调制,用示波器进行波形测量,以软件算法方式实现FM信号解调,最终通过三束等间距相互平行的光束执行测量,以差分方式的相位差测量原理实现涡轮风扇发动机的叶尖间隙高精度测量,能够抑制测量不利影响,所述测量不利影响包括发动机的振动、测量光束与测量面的垂直度给测量带来的影响。
本发明公开的一种三光束激光干涉法发动机叶尖间隙测量装置,主要由激光器、第一λ/2波片、第二λ/2波片、第三λ/2波片、第四λ/2波片、第五λ/2波片、第六λ/2波片、第七λ/2波片、第八λ/2波片、第一λ/4波片、第二λ/4波片、第三λ/4波片、第四λ/4波片、第一偏振片、第二偏振片、第三偏振片、第一偏振分光镜、第二偏振分光镜、第三偏振分光镜、第四偏振分光镜、第五偏振分光镜、第六偏振分光镜、第七偏振分光镜、第八偏振分光镜、第九偏振分光镜、透镜、第一平面反射镜、第二平面反射镜、第三平面反射镜、第四平面反射镜、声光调制器、FM信号源、正弦信号源、第一光电探测器、第二光电探测器、第三光电探测器、第一滤波放大器、第二滤波放大器、第三滤波放大器、数字示波器、电子计算机、被测发动机机匣、被测发动机叶片、被测发动机机匣测量孔、被测发动机机匣测量孔封堵透明窗组成。
激光器产生的激光经过第一λ/2波片,到达第一偏振分光镜被一分为二。
第一偏振分光镜分光后的一路被反射后,经过第二λ/2波片,到达第三偏振分光镜继续被分光;一部分穿过第七λ/2波片、第九偏振分光镜,经过第一偏振片,到达第一光电探测器,与测量点B反射回来的测量光干涉;另外一部分穿过第三λ/2波片,到达第四偏振分光镜被继续分光;一束经过第八λ/2波片、第七偏振分光镜,穿过第二偏振片,到达第二光电探测器,与测量点A反射回来的测量光干涉;另一束经过第二平面反射镜、到达第五偏振分光镜,穿过第三偏振片,到达第三光电探测器,与测量点Q反射回来的测量光干涉。
第一偏振分光镜分光后的另外一路经过第二偏振分光镜、第一λ/4波片,到达声光调制器,正弦信号源产生所需的频率为Ω的正弦调制信号,对载波频率设为f0的FM信号源进行频率调制,产生已调FM信号控制声光调制器,对第一λ/4波片传输来的光频进行调制,产生频偏为f0的衍射激光,该激光经过透镜变为平行光,到达第一平面反射镜,经过第一平面反射镜反射后回到声光调制器,再次被声光调制器调制,经过第一λ/4波片,被第二偏振分光镜反射,穿过第五λ/2波片、到达第六偏振分光镜后被一分为二。
第六偏振分光镜分光后的一路穿过第七偏振分光镜、第三λ/4波片、被测发动机机匣测量孔、被测发动机机匣测量孔封堵透明窗,到达被测发动机叶片上的测量点A,在测量点A被反射后,返回,穿过被测发动机机匣测量孔封堵透明窗、被测发动机机匣测量孔、第三λ/4波片,到达第七偏振分光镜,经第七偏振分光镜反射,穿过第二偏振片,到达第二光电探测器,与第八λ/2波片传来的光产生干涉,干涉后的信号被第二光电探测器接收转换成电信号,该电信号经第二滤波放大器放大,到达数字示波器的通道a;
第六偏振分光镜分光后的另外一路经第四平面反射镜反射后,通过第六λ/2波片,到达第八偏振分光镜被一分为二。
第八偏振分光镜分光后的一路穿过第九偏振分光镜、第四λ/4波片,到达被测发动机机匣上的测量点B,在测量点B被反射后,返回,穿过第四λ/4波片,经第九偏振分光镜反射,穿过第一偏振片,到达第一光电探测器,与第七λ/2波片传来的光产生干涉,干涉后的信号被第一光电探测器接收转换成电信号,该电信号经第一滤波放大器放大,到达数字示波器的通道b。
第八偏振分光镜分光后的另一路经第三平面反射镜反射后,经过第四λ/2波片,穿过第五偏振分光镜、第二λ/4波片,到达被测发动机机匣上的测量点Q,在测量点Q被反射后,返回,穿过第二λ/4波片,经第五偏振分光镜反射,穿过第三偏振片,到达第三光电探测器,与第二平面反射镜传来的光产生干涉,干涉后的信号被第三光电探测器接收转换成电信号,该电信号经第三滤波放大器放大,到达数字示波器的通道q。
用数字示波器对通道a、b、q执行同步测量,分别获得其相应的测量序列{xai}、{xbi}、{xqi},i=1,2,…,n。将所述测量序列{xai}、{xbi}、{xqi}传入电子计算机。
电子计算机对{xai}、{xbi}、{xqi}分别进行调频信号解调,获得解调后的瞬时频率序列为{fai}、{fbi}、{fqi},i=1,2,…,N。对解调后的瞬时频率序列为{fai}、{fbi}、{fqi}进行数据处理,实现三光束激光干涉法发动机叶尖间隙测量。
本发明公开的一种三光束激光干涉法发动机叶尖间隙测量装置的工作方法为:
步骤一:参数初始化。
三光束激光干涉法发动机叶尖间隙测量装置安装使用之前,需要进行参数初始化工作。首先,令测量光照射到与其垂直的平面上,使得测量点A、B、Q在测量光束的同一垂直平面上。
执行测量,然后用电子计算机进行调频信号解调,获得解调后的瞬时频率序列为{fa0i}、{fb0i}、{fq0i},i=1,2,…,N。
对序列{fb0i},i=1,2,…,N。进行四参数正弦曲线拟合,获得相应的拟合正弦波形为:
Figure BDA0002797580750000041
对序列{fa0i}、{fq0i},i=1,2,…,N;分别进行三参数正弦曲线拟合,获得相应的拟合正弦波形分别为:
Figure BDA0002797580750000042
Figure BDA0002797580750000043
则得:
通道a超前通道b的相位差:
Figure BDA0002797580750000044
通道a超前通道q的相位差:
Figure BDA0002797580750000045
步骤二:实施测量。
在完成参数初始化,获得两个初始相位差
Figure BDA0002797580750000046
后,连接测量装置。
执行测量,然后用电子计算机进行调频信号解调,获得解调后的瞬时频率序列为{fai}、{fbi}、{fqi},i=1,2,…,N。
对序列{fbi},i=1,2,…,N。进行四参数正弦曲线拟合,获得拟合正弦波形为:
Figure BDA0002797580750000047
对序列{fai}、{fqi},i=1,2,…,N。分别进行三参数正弦曲线拟合,获得相应的拟合正弦波形分别为:
Figure BDA0002797580750000048
Figure BDA0002797580750000049
则得:
修正后的通道b超前通道a的相位差:
Figure BDA00027975807500000410
其对应的距离为:
Figure BDA00027975807500000411
其中,c为光速;w为被测发动机机匣厚度。
用通道a与b数据获得的叶尖间隙值db为:
Figure BDA00027975807500000412
修正后的通道q超前通道a的相位差:
Figure BDA00027975807500000413
其对应的距离为:
Figure BDA00027975807500000414
用通道a与q数据获得的叶尖间隙值dq为:
Figure BDA00027975807500000415
两者取平均,获得的涡轮风扇发动机叶尖间隙d为:
Figure BDA00027975807500000416
上述叶尖间隙测量时,若发动机处于高速旋转的工作状态时,测量点B与测量点Q处于稳定不变状态,故相应通道b和q的拟合正弦波形fb(t)与fq(t)一直处于稳定不变的正弦波形;而测量点A由于处于叶片上,其到机匣壁之间的距离d应该一直处于不断变化过程中,只有在位于叶尖附近近似平坦的部位,短时间内会近似不变,量值也最小,称为叶尖间隙;其它部分对应的测量值都要比叶尖间隙大。因而,在测量序列不同的波形段所获得的测量结果d是一个随时间呈周期变化的量值序列,其最小值才是叶尖间隙的测量结果。
在发动机旋转工作过程中,在不同的位姿状态下,由发动机叶尖间隙测量序列的不同波形段能够获得不同的测量结果d值,选取其最小者作为涡轮风扇发动机叶尖间隙测量结果。
有益效果:
1、本发明公开的一种三光束激光干涉法发动机叶尖间隙测量方法及装置,使用激光干涉台阶测量方法进行测量,将内部的叶尖间隙测量问题转化为外部的台阶测量问题,从而避免在发动机机匣内安装任何传感器或探头、天线等,主测量系统能够远离被测发动机机匣,仅以三束激光照射实施测量,从而能够解决高温高压下的测量难题。
2、本发明公开的一种三光束激光干涉法发动机叶尖间隙测量方法及装置,使用调频激光进行距离测量,对于发动机旋转叶片的反射导致的激光功率不稳定因素,具有更良好的抑制作用。
3、本发明公开的一种三光束激光干涉法发动机叶尖间隙测量方法及装置,使用声光调制器实现光频调制,用示波器进行波形测量,以软件算法方式实现FM信号解调,最终通过三束等间距相互平行的光束执行测量,以差分方式的相位差测量原理实现涡轮风扇发动机的叶尖间隙高精度测量,对于测量过程中发动机振动、测量光与被测面不垂直等带来的误差影响具有良好的抑制作用,可以获得高精度测量结果。
附图说明
图1为本发明公开的一种三光束激光干涉法发动机叶尖间隙测量装置的结构示意图。
其中:1—激光器、2—第一λ/2波片、11—第二λ/2波片、13—第三λ/2波片、17—第四λ/2波片、20—第五λ/2波片、25—第六λ/2波片、29—第七λ/2波片、35—第八λ/2波片、5—第一λ/4波片、19—第二λ/4波片、23—第三λ/4波片、28—第四λ/4波片、30—第一偏振片、36—第二偏振片、39—第三偏振片、3—第一偏振分光镜、4—第二偏振分光镜、12—第三偏振分光镜、14—第四偏振分光镜、18—第五偏振分光镜、21—第六偏振分光镜、22—第七偏振分光镜、26—第八偏振分光镜、27—第九偏振分光镜、9—透镜、10—第一平面反射镜、15—第二平面反射镜、16—第三平面反射镜、24—第四平面反射镜、6—声光调制器、7—FM信号源、8—正弦信号源、31—第一光电探测器、37—第二光电探测器、40—第三光电探测器、32—第一滤波放大器、38—第二滤波放大器、41—第三滤波放大器、33—数字示波器、34—电子计算机、42—被测发动机机匣、43—被测发动机叶片、44—被测发动机机匣测量孔、45—被测发动机机匣测量孔封堵透明窗。
具体实施方式
下面结合具体实施例和附图对本发明做进一步详细说明,但本发明并不局限于具体实施例。
如图1所示,本实施例公开的一种三光束激光干涉法发动机叶尖间隙测量方法,在激光干涉测量技术基础上,将高温高压环境下的涡轮风扇发动机的叶尖间隙内部尺寸测量转化为外部台阶尺寸测量,避免测量探头、传感器工作在高温高压的恶劣环境下。
使用调频激光相位差进行台阶面的距离测量,抑制激光功率不稳定因素,所述激光功率不稳定因素为发动机旋转叶片的反射导致的激光功率不稳定因素。
使用声光调制器实现光频调制,用示波器进行波形测量,以软件算法方式实现FM信号解调,最终通过三束等间距相互平行的光束执行测量,以差分方式的相位差测量原理实现涡轮风扇发动机的叶尖间隙高精度测量,能够抑制测量不利影响,所述测量不利影响包括发动机的振动、测量光束与测量面的垂直度给测量带来的影响。
本实施例公开的一种三光束激光干涉法发动机叶尖间隙测量装置,主要由激光器1、第一λ/2波片2、第二λ/2波片11、第三λ/2波片13、第四λ/2波片17、第五λ/2波片20、第六λ/2波片25、第七λ/2波片29、第八λ/2波片35、第一λ/4波片5、第二λ/4波片19、第三λ/4波片23、第四λ/4波片28、第一偏振片30、第二偏振片36、第三偏振片39、第一偏振分光镜3、第二偏振分光镜4、第三偏振分光镜12、第四偏振分光镜14、第五偏振分光镜18、第六偏振分光镜21、第七偏振分光镜22、第八偏振分光镜26、第九偏振分光镜27、透镜9、第一平面反射镜10、第二平面反射镜15、第三平面反射镜16、第四平面反射镜24、声光调制器6、FM信号源7、正弦信号源8、第一光电探测器31、第二光电探测器37、第三光电探测器40、第一滤波放大器32、第二滤波放大器38、第三滤波放大器41、数字示波器33、电子计算机34、被测发动机机匣42、被测发动机叶片43、被测发动机机匣测量孔44、被测发动机机匣测量孔封堵透明窗45组成。
激光器1产生的激光经过第一λ/2波片2,到达第一偏振分光镜3被一分为二。
第一偏振分光镜3分光后的一路被反射后,经过第二λ/2波片11,到达第三偏振分光镜12继续被分光;一部分穿过第七λ/2波片29、第九偏振分光镜27,经过第一偏振片30,到达第一光电探测器31,与测量点B反射回来的测量光干涉;另外一部分穿过第三λ/2波片13,到达第四偏振分光镜14被继续分光;一束经过第八λ/2波片35、第七偏振分光镜22,穿过第二偏振片36,到达第二光电探测器37,与测量点A反射回来的测量光干涉;另一束经过第二平面反射镜15、到达第五偏振分光镜18,穿过第三偏振片39,到达第三光电探测器40,与测量点Q反射回来的测量光干涉;
第一偏振分光镜3分光后的另外一路经过第二偏振分光镜4、第一λ/4波片5,到达声光调制器6,正弦信号源8产生所需的频率为Ω的正弦调制信号,对载波频率设为f0的FM信号源7进行频率调制,产生已调FM信号控制声光调制器6,对第一λ/4波片5传输来的光频进行调制,产生频偏为f0的衍射激光,该激光经过透镜9变为平行光,到达第一平面反射镜10,经过第一平面反射镜10反射后回到声光调制器6,再次被声光调制器6调制,经过第一λ/4波片5,被第二偏振分光镜4反射,穿过第五λ/2波片20、到达第六偏振分光镜21后被一分为二。
第六偏振分光镜21分光后的一路穿过第七偏振分光镜22、第三λ/4波片23、被测发动机机匣测量孔44、被测发动机机匣测量孔封堵透明窗45,到达被测发动机叶片43上的测量点A,在测量点A被反射后,返回,穿过被测发动机机匣测量孔封堵透明窗45、被测发动机机匣测量孔44、第三λ/4波片23,到达第七偏振分光镜22,经第七偏振分光镜22反射,穿过第二偏振片36,到达第二光电探测器37,与第八λ/2波片35传来的光产生干涉,干涉后的信号被第二光电探测器37接收转换成电信号,该电信号经第二滤波放大器38放大,到达数字示波器33的通道a;
第六偏振分光镜21分光后的另外一路经第四平面反射镜24反射后,经过第六λ/2波片25,到达第八偏振分光镜26被一分为二。
第八偏振分光镜26分光后的一路穿过第九偏振分光镜27、第四λ/4波片28,到达被测发动机机匣42上的测量点B,在测量点B被反射后,返回,穿过第四λ/4波片28,经第九偏振分光镜27反射,穿过第一偏振片30,到达第一光电探测器31,与第七λ/2波片29传来的光产生干涉,干涉后的信号被第一光电探测器31接收转换成电信号,该电信号经第一滤波放大器32放大,到达数字示波器33的通道b。
第八偏振分光镜26分光后的另一路经第三平面反射镜16反射后,经过第四λ/2波片17,穿过第五偏振分光镜18、第二λ/4波片19,到达被测发动机机匣42上的测量点Q,在测量点Q被反射后,返回,穿过第二λ/4波片19,经第五偏振分光镜18反射,穿过第三偏振片39,到达第三光电探测器40,与第二平面反射镜15传来的光产生干涉,干涉后的信号被第三光电探测器40接收转换成电信号,该电信号经第三滤波放大器41放大,到达数字示波器33的通道q。
用数字示波器33对通道a、b、q执行同步测量,分别获得其相应的测量序列{xai}、{xbi}、{xqi},i=1,2,…,n。将所述测量序列{xai}、{xbi}、{xqi}传入电子计算机34。
电子计算机34对{xai}、{xbi}、{xqi}分别进行调频信号解调,获得解调后的瞬时频率序列为{fai}、{fbi}、{fqi},i=1,2,…,N。对解调后的瞬时频率序列为{fai}、{fbi}、{fqi}进行数据处理,实现三光束激光干涉法发动机叶尖间隙测量。
本实施例公开的一种三光束激光干涉法发动机叶尖间隙测量装置的工作方法为:
步骤一:参数初始化。
三光束激光干涉法发动机叶尖间隙测量装置安装使用之前,需要进行参数初始化工作。首先,令测量光照射到与其垂直的平面上,使得测量点A、B、Q在测量光束的同一垂直平面上。
执行测量,然后用电子计算机34进行调频信号解调,获得解调后的瞬时频率序列为{fa0i}、{fb0i}、{fq0i},i=1,2,…,N。
对序列{fb0i},i=1,2,…,N。进行四参数正弦曲线拟合,获得相应的拟合正弦波形为:
Figure BDA0002797580750000081
对序列{fa0i}、{fq0i},i=1,2,…,N;分别进行三参数正弦曲线拟合,获得相应的拟合正弦波形分别为:
Figure BDA0002797580750000082
Figure BDA0002797580750000083
则得:
通道a超前通道b的相位差:
Figure BDA0002797580750000084
通道a超前通道q的相位差:
Figure BDA0002797580750000085
步骤二:实施测量。
在完成参数初始化,获得两个初始相位差
Figure BDA0002797580750000086
后,连接测量装置如图1所示。
执行测量,然后用电子计算机34进行调频信号解调,获得解调后的瞬时频率序列为{fai}、{fbi}、{fqi},i=1,2,…,N。
对序列{fbi},i=1,2,…,N。进行四参数正弦曲线拟合,获得拟合正弦波形为:
Figure BDA0002797580750000087
对序列{fai}、{fqi},i=1,2,…,N。分别进行三参数正弦曲线拟合,获得相应的拟合正弦波形分别为:
Figure BDA0002797580750000088
Figure BDA0002797580750000089
则得:
修正后的通道b超前通道a的相位差:
Figure BDA00027975807500000810
其对应的距离为:
Figure BDA00027975807500000811
其中,c为光速;w为被测发动机机匣厚度。
用通道a与b数据获得的叶尖间隙值db为:
Figure BDA00027975807500000812
修正后的通道q超前通道a的相位差:
Figure BDA0002797580750000091
其对应的距离为:
Figure BDA0002797580750000092
用通道a与q数据获得的叶尖间隙值dq为:
Figure BDA0002797580750000093
两者取平均,获得的涡轮风扇发动机叶尖间隙d为:
Figure BDA0002797580750000094
上述叶尖间隙测量时,若发动机处于高速旋转的工作状态时,测量点B与测量点Q处于稳定不变状态,故相应通道b和q的拟合正弦波形fb(t)与fq(t)一直处于稳定不变的正弦波形;而测量点A由于处于叶片上,其到机匣壁之间的距离d应该一直处于不断变化过程中,只有在位于叶尖附近近似平坦的部位,短时间内会近似不变,量值也最小,称为叶尖间隙;其它部分对应的测量值都要比叶尖间隙大。因而,在测量序列不同的波形段所获得的测量结果d是一个随时间呈周期变化的量值序列,其最小值才是叶尖间隙的测量结果。
在发动机旋转工作过程中,在不同的位姿状态下,由发动机叶尖间隙测量序列的不同波形段能够获得不同的测量结果d值,选取其最小者作为涡轮风扇发动机叶尖间隙测量结果。
以上所述的具体描述,对发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (4)

1.一种三光束激光干涉法发动机叶尖间隙测量方法,其特征在于:在激光干涉测量技术基础上,将高温高压环境下的涡轮风扇发动机的叶尖间隙内部尺寸测量转化为外部台阶尺寸测量,避免测量探头、传感器工作在高温高压的恶劣环境下;
使用调频激光相位差进行台阶面的距离测量,抑制激光功率不稳定因素,所述激光功率不稳定因素为发动机旋转叶片的反射导致的激光功率不稳定因素;
使用声光调制器实现光频调制,用示波器进行波形测量,以软件算法方式实现FM信号解调,最终通过三束等间距相互平行的光束执行测量,以差分方式的相位差测量原理实现涡轮风扇发动机的叶尖间隙高精度测量,能够抑制测量不利影响,所述测量不利影响包括发动机的振动、测量光束与测量面的垂直度给测量带来的影响。
2.如权利要求1所述的一种三光束激光干涉法发动机叶尖间隙测量装置,其特征在于:主要由激光器(1)、第一λ/2波片(2)、第二λ/2波片(11)、第三λ/2波片(13)、第四λ/2波片(17)、第五λ/2波片(20)、第六λ/2波片(25)、第七λ/2波片(29)、第八λ/2波片(35)、第一λ/4波片(5)、第二λ/4波片(19)、第三λ/4波片(23)、第四λ/4波片(28)、第一偏振片(30)、第二偏振片(36)、第三偏振片(39)、第一偏振分光镜(3)、第二偏振分光镜(4)、第三偏振分光镜(12)、第四偏振分光镜(14)、第五偏振分光镜(18)、第六偏振分光镜(21)、第七偏振分光镜(22)、第八偏振分光镜(26)、第九偏振分光镜(27)、透镜(9)、第一平面反射镜(10)、第二平面反射镜(15)、第三平面反射镜(16)、第四平面反射镜(24)、声光调制器(6)、FM信号源(7)、正弦信号源(8)、第一光电探测器(31)、第二光电探测器(37)、第三光电探测器(40)、第一滤波放大器(32)、第二滤波放大器(38)、第三滤波放大器(41)、数字示波器(33)、电子计算机(34)、被测发动机机匣(42)、被测发动机叶片(43)、被测发动机机匣测量孔(44)、被测发动机机匣测量孔封堵透明窗(45)组成;
激光器(1)产生的激光经过第一λ/2波片(2),到达第一偏振分光镜(3)被一分为二;
第一偏振分光镜(3)分光后的一路被反射后,经过第二λ/2波片(11),到达第三偏振分光镜(12)继续被分光;一部分穿过第七λ/2波片(29)、第九偏振分光镜(27),经过第一偏振片(30),到达第一光电探测器(31),与测量点B反射回来的测量光干涉;另外一部分穿过第三λ/2波片(13),到达第四偏振分光镜(14)被继续分光;一束经过第八λ/2波片(35)、第七偏振分光镜(22),穿过第二偏振片(36),到达第二光电探测器(37),与测量点A反射回来的测量光干涉;另一束经过第二平面反射镜(15)、到达第五偏振分光镜(18),穿过第三偏振片(39),到达第三光电探测器(40),与测量点Q反射回来的测量光干涉;
第一偏振分光镜(3)分光后的另外一路经过第二偏振分光镜(4)、第一λ/4波片(5),到达声光调制器(6),正弦信号源(8)产生所需的频率为Ω的正弦调制信号,对载波频率设为f0的FM信号源(7)进行频率调制,产生已调FM信号控制声光调制器(6),对第一λ/4波片(5)传输来的光频进行调制,产生频偏为f0的衍射激光,该激光经过透镜(9)变为平行光,到达第一平面反射镜(10),经过第一平面反射镜(10)反射后回到声光调制器(6),再次被声光调制器(6)调制,经过第一λ/4波片(5),被第二偏振分光镜(4)反射,穿过第五λ/2波片(20)、到达第六偏振分光镜(21)后被一分为二;
第六偏振分光镜(21)分光后的一路穿过第七偏振分光镜(22)、第三λ/4波片(23)、被测发动机机匣测量孔(44)、被测发动机机匣测量孔封堵透明窗(45),到达被测发动机叶片(43)上的测量点A,在测量点A被反射后,返回,穿过被测发动机机匣测量孔封堵透明窗(45)、被测发动机机匣测量孔(44)、第三λ/4波片(23),到达第七偏振分光镜(22),经第七偏振分光镜(22)反射,穿过第二偏振片(36),到达第二光电探测器(37),与第八λ/2波片(35)传来的光产生干涉,干涉后的信号被第二光电探测器(37)接收转换成电信号,该电信号经第二滤波放大器(38)放大,到达数字示波器(33)的通道a;
第六偏振分光镜(21)分光后的另外一路经第四平面反射镜(24)反射后,经过第六λ/2波片(25),到达第八偏振分光镜(26)被一分为二;
第八偏振分光镜(26)分光后的一路穿过第九偏振分光镜(27)、第四λ/4波片(28),到达被测发动机机匣(42)上的测量点B,在测量点B被反射后,返回,穿过第四λ/4波片(28),经第九偏振分光镜(27)反射,穿过第一偏振片(30),到达第一光电探测器(31),与第七λ/2波片(29)传来的光产生干涉,干涉后的信号被第一光电探测器(31)接收转换成电信号,该电信号经第一滤波放大器(32)放大,到达数字示波器(33)的通道b;
第八偏振分光镜(26)分光后的另一路经第三平面反射镜(16)反射后,经过第四λ/2波片(17),穿过第五偏振分光镜(18)、第二λ/4波片(19),到达被测发动机机匣(42)上的测量点Q,在测量点Q被反射后,返回,穿过第二λ/4波片(19),经第五偏振分光镜(18)反射,穿过第三偏振片(39),到达第三光电探测器(40),与第二平面反射镜(15)传来的光产生干涉,干涉后的信号被第三光电探测器(40)接收转换成电信号,该电信号经第三滤波放大器(41)放大,到达数字示波器(33)的通道q;
用数字示波器(33)对通道a、b、q执行同步测量,分别获得其相应的测量序列{xai}、{xbi}、{xqi},i=1,2,…,n;将所述测量序列{xai}、{xbi}、{xqi}传入电子计算机(34);
电子计算机(34)对{xai}、{xbi}、{xqi}分别进行调频信号解调,获得解调后的瞬时频率序列为{fai}、{fbi}、{fqi},i=1,2,…,N;对解调后的瞬时频率序列为{fai}、{fbi}、{fqi}进行数据处理,实现三光束激光干涉法发动机叶尖间隙测量。
3.如权利要求2所述的一种三光束激光干涉法发动机叶尖间隙测量装置,其特征在于:工作方法包括如下步骤,
步骤一:参数初始化;
三光束激光干涉法发动机叶尖间隙测量装置安装使用之前,需要进行参数初始化工作;首先,令测量光照射到与其垂直的平面上,使得测量点A、B、Q在测量光束的同一垂直平面上;
执行测量,然后用电子计算机(34)进行调频信号解调,获得解调后的瞬时频率序列为{fa0i}、{fb0i}、{fq0i},i=1,2,…,N;
对序列{fb0i},i=1,2,…,N;进行四参数正弦曲线拟合,获得相应的拟合正弦波形为:
Figure FDA0002797580740000031
对序列{fa0i}、{fq0i},i=1,2,…,N;分别进行三参数正弦曲线拟合,获得相应的拟合正弦波形分别为:
Figure FDA0002797580740000032
Figure FDA0002797580740000033
则得:
通道a超前通道b的相位差:
Figure FDA0002797580740000034
通道a超前通道q的相位差:
Figure FDA0002797580740000035
步骤二:实施测量;
在完成参数初始化,获得两个初始相位差
Figure FDA0002797580740000036
后,连接测量装置;
执行测量,然后用电子计算机(34)进行调频信号解调,获得解调后的瞬时频率序列为{fai}、{fbi}、{fqi},i=1,2,…,N;
对序列{fbi},i=1,2,…,N;进行四参数正弦曲线拟合,获得拟合正弦波形为:
Figure FDA0002797580740000037
对序列{fai}、{fqi},i=1,2,…,N;分别进行三参数正弦曲线拟合,获得相应的拟合正弦波形分别为:
Figure FDA0002797580740000038
Figure FDA0002797580740000039
则得:
修正后的通道b超前通道a的相位差:
Figure FDA00027975807400000310
其对应的距离为:
Figure FDA00027975807400000311
其中,c为光速;w为被测发动机机匣厚度;
用通道a与b数据获得的叶尖间隙值db为:
Figure FDA00027975807400000312
修正后的通道q超前通道a的相位差:
Figure FDA00027975807400000313
其对应的距离为:
Figure FDA00027975807400000314
用通道a与q数据获得的叶尖间隙值dq为:
Figure FDA0002797580740000041
两者取平均,获得的涡轮风扇发动机叶尖间隙d为:
Figure FDA0002797580740000042
4.如权利要求3所述的一种三光束激光干涉法发动机叶尖间隙测量装置,其特征在于:上述叶尖间隙测量时,若发动机处于高速旋转的工作状态时,测量点B与测量点Q处于稳定不变状态,故相应通道b和q的拟合正弦波形fb(t)与fq(t)一直处于稳定不变的正弦波形;而测量点A由于处于叶片上,其到机匣壁之间的距离d应该一直处于不断变化过程中,只有在位于叶尖附近近似平坦的部位,短时间内会近似不变,量值也最小,称为叶尖间隙;其它部分对应的测量值都要比叶尖间隙大;因而,在测量序列不同的波形段所获得的测量结果d是一个随时间呈周期变化的量值序列,其最小值才是叶尖间隙的测量结果;
在发动机旋转工作过程中,在不同的位姿状态下,由发动机叶尖间隙测量序列的不同波形段能够获得不同的测量结果d值,选取其最小者作为涡轮风扇发动机叶尖间隙测量结果。
CN202011337432.3A 2020-11-25 2020-11-25 一种三光束激光干涉法发动机叶尖间隙测量方法及装置 Active CN112414314B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011337432.3A CN112414314B (zh) 2020-11-25 2020-11-25 一种三光束激光干涉法发动机叶尖间隙测量方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011337432.3A CN112414314B (zh) 2020-11-25 2020-11-25 一种三光束激光干涉法发动机叶尖间隙测量方法及装置

Publications (2)

Publication Number Publication Date
CN112414314A true CN112414314A (zh) 2021-02-26
CN112414314B CN112414314B (zh) 2021-12-28

Family

ID=74843790

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011337432.3A Active CN112414314B (zh) 2020-11-25 2020-11-25 一种三光束激光干涉法发动机叶尖间隙测量方法及装置

Country Status (1)

Country Link
CN (1) CN112414314B (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02185602A (ja) * 1989-01-11 1990-07-20 Mitsubishi Heavy Ind Ltd 動翼先端すき間計測装置
US20100077830A1 (en) * 2008-09-30 2010-04-01 General Electric Company Electronic self-calibration for sensor clearance
CN104515475A (zh) * 2014-12-12 2015-04-15 天津大学 一种基于大频差双频激光相位测距的叶尖间隙测量系统
CN107192336A (zh) * 2017-05-26 2017-09-22 浙江大学 双波长超外差干涉大量程高精度实时位移测量系统与方法
CN107255451A (zh) * 2017-07-07 2017-10-17 浙江理工大学 角度补偿式激光外差干涉位移测量装置及方法
CN107806821A (zh) * 2017-10-31 2018-03-16 浙江理工大学 用集成四光电探测器的差分单频干涉信号处理装置及方法
CN108680114A (zh) * 2018-07-19 2018-10-19 天津大学 一种基于光谱共焦技术的叶尖间隙测量系统
CN109141213A (zh) * 2018-09-08 2019-01-04 天津大学 一种基于微波扫频的叶尖间隙测量方法
CN208383077U (zh) * 2018-07-19 2019-01-15 天津大学 一种基于光谱共焦技术的叶尖间隙测量系统
CN110081829A (zh) * 2019-05-31 2019-08-02 天津大学 基于菲索共光路结构的转静子轴向间隙在线测量系统
CN110887446A (zh) * 2019-11-27 2020-03-17 中国民航大学 采用激光多普勒频移的航空发动机叶尖间隙测量系统

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02185602A (ja) * 1989-01-11 1990-07-20 Mitsubishi Heavy Ind Ltd 動翼先端すき間計測装置
US20100077830A1 (en) * 2008-09-30 2010-04-01 General Electric Company Electronic self-calibration for sensor clearance
CN104515475A (zh) * 2014-12-12 2015-04-15 天津大学 一种基于大频差双频激光相位测距的叶尖间隙测量系统
CN107192336A (zh) * 2017-05-26 2017-09-22 浙江大学 双波长超外差干涉大量程高精度实时位移测量系统与方法
CN107255451A (zh) * 2017-07-07 2017-10-17 浙江理工大学 角度补偿式激光外差干涉位移测量装置及方法
CN107806821A (zh) * 2017-10-31 2018-03-16 浙江理工大学 用集成四光电探测器的差分单频干涉信号处理装置及方法
CN108680114A (zh) * 2018-07-19 2018-10-19 天津大学 一种基于光谱共焦技术的叶尖间隙测量系统
CN208383077U (zh) * 2018-07-19 2019-01-15 天津大学 一种基于光谱共焦技术的叶尖间隙测量系统
CN109141213A (zh) * 2018-09-08 2019-01-04 天津大学 一种基于微波扫频的叶尖间隙测量方法
CN110081829A (zh) * 2019-05-31 2019-08-02 天津大学 基于菲索共光路结构的转静子轴向间隙在线测量系统
CN110887446A (zh) * 2019-11-27 2020-03-17 中国民航大学 采用激光多普勒频移的航空发动机叶尖间隙测量系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
贾丙辉等: "双圈同轴式光纤传感器在叶尖间隙测量中的应用", 《激光与光电子学进展》 *

Also Published As

Publication number Publication date
CN112414314B (zh) 2021-12-28

Similar Documents

Publication Publication Date Title
CN112432602B (zh) 一种双光束激光干涉法发动机叶尖间隙测量方法及装置
CN110617854B (zh) 高阶相位调制瑞利botda温度/应变测量方法及装置
CN111474802B (zh) 一种同时产生压缩态光场以及纠缠态光场的装置
CN112629571B (zh) 电光调制激光干涉线位移及角位移测量装置和方法
CN112414314B (zh) 一种三光束激光干涉法发动机叶尖间隙测量方法及装置
CN108614224B (zh) 一种用于cpt磁力仪的气室工作温度自动标定系统及方法
US4948251A (en) Optical heterodyne measuring apparatus
CN114754689A (zh) 一种基于双电光外差调制的相位式距离测量装置及方法
CN109084884B (zh) 一种零差激光测振装置及其振动检测方法
Holm et al. A laser probing system for characterization of SAW propagation on LiNbO/sub 3/, LiTaO/sub 3/, and quartz
Ren et al. Correlation-changed-EMD algorithm for single frequency-sweep interferometry signal of high-speed rotating structure clearance measurement
Zhou et al. Effects of the Programmable Real-Time White Gaussian Noise Generated by FPGA on the Laser Linewidth Spectrum
CN114719769B (zh) 基于双波长扫频强度调制的转静子轴向间隙在线测量装置
CN113390467B (zh) 测振测温装置及其信号处理方法
CN114427956B (zh) 基于分数傅里叶变换的扫频激光本征线宽测量系统及方法
CN104133207B (zh) 可溯源超外差式精测尺混合激光器测距装置与方法
CN102183692B (zh) 可调谐ffp滤波器的相频特性测量方法及应用
JPH06265496A (ja) 試料の欠陥評価方法
CN112362173B (zh) 一种基于差频双梳的激光波长测量装置及方法
JP2735348B2 (ja) 熱膨張振動を用いた単一光源による試料評価方法
CN115307561A (zh) 基于扫频偏振调制的转静子轴向间隙在线测量装置及方法
CN117907996A (zh) 基于正交载波与apfft的fsi测距方法
JP2672758B2 (ja) 試料の熱弾性評価装置
Yang et al. High sweeping linearity and optical intensity control of broadband FMCW laser source generation for 4D imaging LiDAR
CN114370992A (zh) 一种新型微腔色散探测装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant