CN112403478A - 一种用于甲醛降解的钒酸铋复合材料的制备方法 - Google Patents

一种用于甲醛降解的钒酸铋复合材料的制备方法 Download PDF

Info

Publication number
CN112403478A
CN112403478A CN202011349001.9A CN202011349001A CN112403478A CN 112403478 A CN112403478 A CN 112403478A CN 202011349001 A CN202011349001 A CN 202011349001A CN 112403478 A CN112403478 A CN 112403478A
Authority
CN
China
Prior art keywords
bivo
composite material
preparation
crystal
mixed solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011349001.9A
Other languages
English (en)
Inventor
庾翔
张建华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Hanguang Technology Co ltd
Original Assignee
Shenzhen Hanguang Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Hanguang Technology Co ltd filed Critical Shenzhen Hanguang Technology Co ltd
Priority to CN202011349001.9A priority Critical patent/CN112403478A/zh
Publication of CN112403478A publication Critical patent/CN112403478A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/847Vanadium, niobium or tantalum or polonium
    • B01J23/8472Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/007Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/04Oxides; Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/80Type of catalytic reaction
    • B01D2255/802Photocatalytic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Toxicology (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Biomedical Technology (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种用于甲醛降解的钒酸铋复合材料的制备方法,包括以下步骤:制备单斜BiVO4晶体、制备Cu2O/BiVO4复合材料和制备Cu2O/Co3O4/BiVO4复合材料。本发明提供的用于甲醛降解的钒酸铋复合材料的制备方法包括制备单斜BiVO4晶体步骤、制备Cu2O/BiVO4复合材料步骤和制备Cu2O/Co3O4/BiVO4复合材料,通过制备单斜BiVO4晶体步骤制备出单斜BiVO4晶体,单斜BiVO4晶体具有{010}晶面和{110}晶面,由于其两个晶面具有不同的电子分布情况,借助于牺牲剂的辅助作用以帮助Cu2O和Co3O4分布沉积于不同的晶面上,制得钒酸铋复合材料。

Description

一种用于甲醛降解的钒酸铋复合材料的制备方法
技术领域
本发明涉及光催化技术领域,具体涉及一种用于甲醛降解的钒酸铋复合材料的制备方法。
背景技术
从建筑和装饰材料中释放的甲醛(HCHO)是对人体健康有害的典型室内空气污染物。长期暴露于ppm级的HCHO污染物会刺激眼睛、鼻子和呼吸道,引发头痛和肺部疾病,甚至癌症。广泛使用的消除甲醛污染物的方法包括等离子体技术,物理吸附,生物吸附等,这些方法耗时耗力,吸附能力有限且效率低下。室温光催化氧化作为一种环保节能技术,可将甲醛完全分解为二氧化碳和水,是去除甲醛污染物的理想方法。
在过去的几十年间,二氧化钛(TiO2)是研究最多的光催化剂。但是使用太阳能的TiO2的应用受到其大带隙(3.2eV)和低量子效率的高度限制。宽带隙半导体光催化剂,只能吸收紫外或近紫外区域的光,仅占太阳能总量的5%。而约45%的太阳光处于可见光波长区域(Vis,400-800nm),50%处于近红外光(NIR,>800nm)。因此,目前研究的核心问题是如何提高光催化剂的光吸收。钒酸铋(BiVO4)是一种有前途的可见光驱动半导体光催化剂,具有生产成本低,毒性低,稳定性高和窄带隙(2.4eV),对可见光激发具有良好的响应。因此,利用钒酸铋(BiVO4)独有的特性开发出一种应用于室内甲醛降解的可见光催化产品,成为当下一大研究热点。
发明内容
有鉴于此,本发明提供了一种用于甲醛降解的钒酸铋复合材料,本发明还提供了一种用于甲醛降解的钒酸铋复合材料的制备方法,本发明还提供了该用于甲醛降解的钒酸铋复合材料在催化甲醛降解上的应用,以解决现有甲醛光催化剂存在的仅能利用高能量的紫外光进行光促催化降解,而不能利用可将光或者近红外光进行甲醛降解的问题。
第一方面,本发明提供了一种用于甲醛降解的钒酸铋复合材料,包括单斜BiVO4晶体、Cu2O纳米材料和Co3O4纳米材料,所述单斜BiVO4晶体包括{010}晶面和{110}晶面,所述Cu2O纳米材料沉积于所述{010}晶面,所述Co3O4纳米材料沉积于所述{110}晶面。
本发明用于甲醛降解的钒酸铋复合材料包括单斜BiVO4晶体、Cu2O纳米材料和Co3O4纳米材料,所述单斜BiVO4晶体包括{010}晶面和{110}晶面,所述Cu2O纳米材料沉积于所述{010}晶面,所述Co3O4纳米材料沉积于所述{110}晶面。单斜BiVO4晶体是一种有前途的可见光驱动半导体光催化剂,具有生产成本低,毒性低,稳定性高和窄带隙(2.4eV),对可见光激发具有良好的响应。借助于单斜BiVO4晶体不同的晶面以使Cu2O纳米材料和Co3O4纳米材料沉积于单斜BiVO4晶体的不同晶面上,提升光催化活性,并且Cu2O/Co3O4/BiVO4复合材料在可见光照射下展现出高效的甲醛降解效率,减少了电子空穴复合率,大大提升了光催化除甲醛的效率。
优选的,所述{010}晶面与{110}晶面的表面积之比为10%~90%。合适比例的{010}晶面和{110}晶面能够确保沉积的Cu2O纳米材料和Co3O4纳米材料比例合适,通过Cu2O纳米材料和Co3O4纳米材料配合提升复合材料的甲醛降解速率。
优选的,所述{010}晶面与{110}晶面的表面积之比为26%~75%。
优选的,所述所述{010}晶面与{110}晶面的表面积之比为64%。
第二方面,本发明还提供了一种用于甲醛降解的钒酸铋复合材料的制备方法,包括以下步骤:
制备单斜BiVO4晶体:提供NH4VO3与Bi(NO3)3·5H2O,将两者溶于硝酸溶液并使用氨水调节混合溶液pH至2~4后,向混合液中添加NaCl并剧烈搅拌、老化,再将老化后的混合液水热反应12~60h,水热反应温度为373~573K,水热反应后用去离子水洗涤反应物并干燥,最后将干燥后的反应物转移至673~873K条件下焙烧2~4h,制得单斜BiVO4晶体;
制备Cu2O/BiVO4复合材料:将制得的单斜BiVO4晶体分散于去离子水中得到BiVO4溶液,向BiVO4溶液中添加Cu(NO3)2·3H2O和第一牺牲剂并搅拌均匀,将混合液转移至300~500W灯下照射1~8h,将照射后的溶液过滤、洗涤和干燥,再将干燥后的反应物转移至333~373K下保持6~24h,制得Cu2O/BiVO4复合材料;
制备Cu2O/Co3O4/BiVO4复合材料:将制得的Cu2O/BiVO4复合材料分散于去离子水中得到Cu2O/BiVO4复合材料溶液,向Cu2O/BiVO4复合材料溶液中添加Co(NO3)3·6H2O和第二牺牲剂并搅拌均匀,将混合液转移至300~500W灯下照射1~8h,将照射后的溶液过滤、洗涤和干燥,再将干燥后的反应物转移至333~373K下保持6~24h,制得Cu2O/Co3O4/BiVO4复合材料,即钒酸铋复合材料。
本发明提供的用于甲醛降解的钒酸铋复合材料的制备方法包括制备单斜BiVO4晶体步骤、制备Cu2O/BiVO4复合材料步骤和制备Cu2O/Co3O4/BiVO4复合材料,通过制备单斜BiVO4晶体步骤制备出单斜BiVO4晶体,单斜BiVO4晶体具有{010}晶面和{110}晶面,由于其两个晶面具有不同的电子分布情况,借助于牺牲剂的辅助作用以帮助Cu2O和Co3O4分布沉积于不同的晶面上,制得钒酸铋复合材料。
优选的,在制备单斜BiVO4晶体步骤中,所述NH4VO3与Bi(NO3)3·5H2O的摩尔比为1:1,向混合液中添加NaCl后,NaCl的浓度为0.04~0.5mol/L。
优选的,在制备单斜BiVO4晶体步骤中,向混合液中添加NaCl并剧烈搅拌1~5h,所述老化时间为2~10h。
优选的,在制备Cu2O/BiVO4复合材料步骤中,所述第一牺牲剂为甲醇;
添加完甲醇后,混合液中Cu(NO3)2·3H2O的质量分数为5~10%,甲醇的质量分数为5~10%。
优选的,在制备Cu2O/Co3O4/BiVO4复合材料步骤中,所述第二牺牲剂为NaIO3
添加完NaIO3后,混合液中Co(NO3)3·6H2O的质量分数为5~10%,混合液中NaIO3的浓度为0.5mol/L。
优选的,在制备Cu2O/BiVO4复合材料步骤中,添加完甲醇后将混合液转移至超声条件下超声20~40min;
在制备Cu2O/Co3O4/BiVO4复合材料步骤中,添加完NaIO3后将混合液转移至超声条件下超声20~40min。
优选的,在制备Cu2O/BiVO4复合材料步骤中和制备Cu2O/Co3O4/BiVO4复合材料步骤中,所述300~500W灯为300~500W的氙灯。
第三方面,本发明还提供了一种如本发明第一方面所述的用于甲醛降解的钒酸铋复合材料在催化甲醛降解上的应用。
本发明用于甲醛降解的钒酸铋复合材料应用于光催化降解甲醛时具有催化降解效率高、催化稳定性好等优点。
本发明的优点将会在下面的说明书中部分阐明,一部分根据说明书是显而易见的,或者可以通过本发明实施例的实施而获知。
附图说明
为更清楚地阐述本发明的内容,下面结合附图与具体实施例来对其进行详细说明。
图1为本发明一实施方式提供的制备单斜BiVO4晶体的流程图;
图2为本发明一实施方式提供的制备Cu2O/BiVO4复合材料的流程图;
图3为本发明一实施方式提供的制备Cu2O/Co3O4/BiVO4复合材料的流程图;
图4为单斜BiVO4晶体的SEM表征图;
图5为单斜BiVO4晶体的光吸收和荧光发射光谱图;
图6为Cu2O/Co3O4/BiVO4复合材料的XPS以及荧光发射谱图;
图7为Cu2O/Co3O4/BiVO4复合材料的甲醛降解性能以及稳定性能测试结果。
具体实施方式
以下所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。
第一方面,本发明提供了一种用于甲醛降解的钒酸铋复合材料,包括单斜BiVO4晶体、Cu2O纳米材料和Co3O4纳米材料,所述单斜BiVO4晶体包括{010}晶面和{110}晶面,所述Cu2O纳米材料沉积于所述{010}晶面,所述Co3O4纳米材料沉积于所述{110}晶面。
优选的,所述{010}晶面与{110}晶面的表面积之比为10%~90%。合适比例的{010}晶面和{110}晶面能够确保沉积的Cu2O纳米材料和Co3O4纳米材料比例合适,通过Cu2O纳米材料和Co3O4纳米材料配合提升复合材料的甲醛降解速率。
优选的,所述{010}晶面与{110}晶面的表面积之比为26%~75%。
优选的,所述所述{010}晶面与{110}晶面的表面积之比为64%。
第二方面,本发明还提供了一种用于甲醛降解的钒酸铋复合材料的制备方法,包括以下步骤:
制备单斜BiVO4晶体:提供NH4VO3与Bi(NO3)3·5H2O,将两者溶于硝酸溶液并使用氨水调节混合溶液pH至2~4后,向混合液中添加NaCl并剧烈搅拌、老化,再将老化后的混合液水热反应12~60h,水热反应温度为373~573K,水热反应后用去离子水洗涤反应物并干燥,最后将干燥后的反应物转移至673~873K条件下焙烧2~4h,制得单斜BiVO4晶体;
制备Cu2O/BiVO4复合材料:将制得的单斜BiVO4晶体分散于去离子水中得到BiVO4溶液,向BiVO4溶液中添加Cu(NO3)2·3H2O和第一牺牲剂并搅拌均匀,将混合液转移至300~500W灯下照射1~8h,将照射后的溶液过滤、洗涤和干燥,再将干燥后的反应物转移至333~373K下保持6~24h,制得Cu2O/BiVO4复合材料;
制备Cu2O/Co3O4/BiVO4复合材料:将制得的Cu2O/BiVO4复合材料分散于去离子水中得到Cu2O/BiVO4复合材料溶液,向Cu2O/BiVO4复合材料溶液中添加Co(NO3)3·6H2O和第二牺牲剂并搅拌均匀,将混合液转移至300~500W灯下照射1~8h,将照射后的溶液过滤、洗涤和干燥,再将干燥后的反应物转移至333~373K下保持6~24h,制得Cu2O/Co3O4/BiVO4复合材料,即钒酸铋复合材料。
优选的,在制备单斜BiVO4晶体步骤中,所述NH4VO3与Bi(NO3)3·5H2O的摩尔比为1:1,向混合液中添加NaCl后,NaCl的浓度为0.04~0.5mol/L。
优选的,在制备单斜BiVO4晶体步骤中,向混合液中添加NaCl并剧烈搅拌1~5h,所述老化时间为2~10h。
优选的,在制备Cu2O/BiVO4复合材料步骤中,所述第一牺牲剂为甲醇;
添加完甲醇后,混合液中Cu(NO3)2·3H2O的质量分数为5~10%,甲醇的质量分数为5~10%。
优选的,在制备Cu2O/Co3O4/BiVO4复合材料步骤中,所述第二牺牲剂为NaIO3
添加完NaIO3后,混合液中Co(NO3)3·6H2O的质量分数为5~10%,混合液中NaIO3的浓度为0.5mol/L。
优选的,在制备Cu2O/BiVO4复合材料步骤中,添加完甲醇后将混合液转移至超声条件下超声20~40min;
在制备Cu2O/Co3O4/BiVO4复合材料步骤中,添加完NaIO3后将混合液转移至超声条件下超声20~40min。
优选的,在制备Cu2O/BiVO4复合材料步骤中和制备Cu2O/Co3O4/BiVO4复合材料步骤中,所述300~500W灯为300~500W的氙灯。
第三方面,本发明还提供了一种如本发明第一方面所述的用于甲醛降解的钒酸铋复合材料在催化甲醛降解上的应用。
以下通过具体的实施例详细阐述用于甲醛降解的钒酸铋复合材料的制备过程以及制得的用于甲醛降解的钒酸铋复合材料。
实施例1
制备单斜BiVO4晶体步骤:如图1所示,将0.015mol的NH4VO3与0.015mol的Bi(NO3)3·5H2O粉末充分溶解于2mol/L的硝酸溶液中,使用14.84mol/L的氨水溶液将上述溶液调节pH至2,充分搅拌2h,混合溶液逐渐变为橙色悬浊液。然后向混合液中添加NaCl以使NaCl的浓度为0.2mol/L,充分搅拌2h,老化3h。再将溶液转入特氟龙内衬不锈钢高压釜中,水热温度为573K,水热反应时间为24h。待溶液冷却后,将黄色粉末过滤,用去离子水洗涤5次,放入真空干燥箱中,温度调至353K,保持12h。最后将粉末放入马弗炉中在温度773K条件下焙烧2h。即得到包含{010}晶面和{110}晶面的单斜BiVO4晶体。
制备Cu2O/BiVO4复合材料步骤:如图2所示,将前述制备的单斜BiVO4晶体分散于去离子水中得到BiVO4溶液,向BiVO4溶液中添加Cu(NO3)2·3H2O和第一牺牲剂甲醇以使Cu(NO3)2·3H2O和甲醇的质量分数均为5%,搅拌均匀并转入水浴超声中超声分散30min,超声功率为280W。再将混合液转移至300W氙灯下照射2h,将照射后的溶液采用滤膜抽滤,刮下滤膜上的固体粉末用去离子水洗涤5次,放入真空干燥箱中,温度调至353K,保持12h,得到Cu2O/BiVO4复合材料。
制备Cu2O/Co3O4/BiVO4复合材料步骤:如图3所示,将前述制备的Cu2O/BiVO4复合材料分散于去离子水中得到Cu2O/BiVO4复合材料溶液,向Cu2O/BiVO4复合材料溶液中添加Co(NO3)3·6H2O和第二牺牲剂NaIO3以使Co(NO3)3·6H2O和NaIO3的质量分数均为5%,搅拌均匀并转入水浴超声中超声分散30min,超声功率为280W。再将混合液转移至300W氙灯下照射2h,将照射后的溶液采用滤膜抽滤,刮下滤膜上的固体粉末用去离子水洗涤5次,放入真空干燥箱中,温度调至353K,保持12h,得到Cu2O/Co3O4/BiVO4复合材料。
实施例2
实施例2与实施例1的不同之处在于:制备单斜BiVO4晶体步骤中,NaCl的浓度为0mol/L。
实施例3
实施例3与实施例1的不同之处在于:制备单斜BiVO4晶体步骤中,NaCl的浓度为0.04mol/L。
实施例4
实施例4与实施例1的不同之处在于:制备单斜BiVO4晶体步骤中,NaCl的浓度为0.1mol/L。
实施例5
实施例5与实施例1的不同之处在于:制备单斜BiVO4晶体步骤中,NaCl的浓度为0.5mol/L。
实施例6
实施例6与实施例1的不同之处在于:制备单斜BiVO4晶体步骤中,NaCl的浓度为2mol/L。
实施例7
实施例7与实施例1的不同之处在于:制备单斜BiVO4晶体步骤中,使用氨水调节混合溶液pH至4,水热反应的时间为12h,水热反应的温度为573K,最后将干燥后的反应物转移至873K条件下焙烧2h。在制备Cu2O/BiVO4复合材料步骤和制备Cu2O/Co3O4/BiVO4复合材料步骤中,将混合液转移至500W氙灯下照射8h。将照射后的溶液过滤、洗涤和干燥,再将干燥后的反应物转移至333K下保持24h。
实施例8
实施例8与实施例1的不同之处在于:制备单斜BiVO4晶体步骤中,使用氨水调节混合溶液pH至3,水热反应的时间为60h,水热反应的温度为373K,最后将干燥后的反应物转移至673K条件下焙烧4h。在制备Cu2O/BiVO4复合材料步骤和制备Cu2O/Co3O4/BiVO4复合材料步骤中,将混合液转移至400W氙灯下照射4h。将照射后的溶液过滤、洗涤和干燥,再将干燥后的反应物转移至373K下保持6h。
效果实施例:
取实施例1-6制备的BiVO4晶体进行SEM表征。如图4所示,为不同晶面比例的BiVO4晶体的表征结果。图4a-4f分别对应加入不同浓度NaCl(0、0.04、0.1、0.2、0.5、2.0mol/L)所制备的BiVO4晶体的SEM图(比例尺均为1.0μm),插入模型(右下角)的百分比例为{010}晶面/{110}晶面的百分比。如图4所示随着NaCl浓度的升高,所制备的BiVO4晶体{010}/{110}比例增加。当NaCl浓度为0.04时,{010}晶面/{110}晶面的百分比为26%;当NaCl浓度为0.1时,{010}晶面/{110}晶面的百分比为44%;当NaCl浓度为0.2时,{010}晶面/{110}晶面的百分比为64%;当NaCl浓度为0.5时,{010}晶面/{110}晶面的百分比为75%。但是当NaCl浓度过低或者过高,无法分辨出{010}以及{110}晶面。
如图5a(400nm处从上往下六条曲线分别对应:实施例3制备的BiVO4晶体(NaCl浓度为0.04M)、实施例4制备的BiVO4晶体(NaCl浓度为0.1M)、实施例1制备的BiVO4晶体(NaCl浓度为0.2M)、实施例2制备的BiVO4晶体(NaCl浓度为0M)、实施例5制备的BiVO4晶体(NaCl浓度为0.5M)、实施例6制备的BiVO4晶体(NaCl浓度为2M))所示,取实施例1-6制备的BiVO4晶体进行紫外-可见吸收光谱分析。分析结果显示,BiVO4晶体不仅对紫外光有吸收,对可见光范围的光谱也有吸收。
如图5b(600nm处从上往下六条曲线分别对应:实施例3制备的BiVO4晶体(NaCl浓度为0.04M)、实施例2制备的BiVO4晶体(NaCl浓度为0M)、实施例6制备的BiVO4晶体(NaCl浓度为2M)、实施例5制备的BiVO4晶体(NaCl浓度为0.5M)、实施例4制备的BiVO4晶体(NaCl浓度为0.1M)、实施例1制备的BiVO4晶体(NaCl浓度为0.2M))所示,对BiVO4晶体的荧光发射光谱进行分析。分析结果显示,实施例1制备的BiVO4晶体具有最低电子空穴复合率。通常认为,光致发光是通过半导体上的光生载流子的复合产生的,因此发光带的强度越高,意味着光生载流子复合的可能性越高,光催化性能也随之下降。
取实施例1制备的Cu2O/Co3O4/BiVO4复合材料进行XPS表征以及荧光光谱。如图6所示,从图6a中的Cu 2p光谱以及图6b中的CuL3VV俄歇光谱可知,Cu为+1价,即Cu2O。从图6c中的Co 2p光谱结果可知,Co存在形式为Co3O4。从图6d(600nm处从上往下三条曲线分别对应BiVO4晶体、Cu2O/BiVO4和Cu2O/Co3O4/BiVO4复合材料)的荧光光谱结果可知,相比于BiVO4晶体、Cu2O/BiVO4本身,Cu2O/Co3O4/BiVO4复合材料具有更低的电子空穴复合率。
取实施例1制备的Cu2O/Co3O4/BiVO4复合材料、实施例1制备的BiVO4晶体以及实施例1制备的Cu2O/BiVO4复合材料进行甲醛降解性能测试。具体步骤如下:称取0.05g样品放置于光催化反应釜(内径0.5cm,长度:10cm)内中测试甲醛降解效率,氧气含量为20vol%的O2/He混合气。O2/He混合气在50mL/min的总流速下平衡。HCHO标准气体不断从气瓶引入,最终调至混合气中含有50ppm(16.75μg/L)HCHO。反应器上装配气相色谱仪用于产物的在线分析,反应产物用色谱柱分离,用于分离未反应的HCHO,O2和产生的CO2。应用TCD检测器在线监测光催化产物气体。操作参数如下:检测器温度150℃,柱温110℃,载气He,流速50mL/min,分析样品的体积2mL。使用300W氙灯配有可见光滤光片(400~800nm)下照射2h。如图7a所示,实施例1制备的Cu2O/Co3O4/BiVO4复合材料的甲醛降解率达到了97%。相比于实施例制备的BiVO4晶体以及Cu2O/BiVO4复合材料,Cu2O/Co3O4/BiVO4复合材料甲醛降解率显著提升。
取实施例1制备的Cu2O/Co3O4/BiVO4复合材料持续进行5个循环周期的甲醛光催化降解实验,如图7b所示,Cu2O/Co3O4/BiVO4复合材料在5个循环期间都没有显着下降,甲醛降解率保持在95%以上。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (7)

1.一种用于甲醛降解的钒酸铋复合材料的制备方法,其特征在于,包括以下步骤:
制备单斜BiVO4晶体:提供NH4VO3与Bi(NO3)3·5H2O,将两者溶于硝酸溶液并使用氨水调节混合溶液pH至2~4后,向混合液中添加NaCl并剧烈搅拌、老化,再将老化后的混合液水热反应12~60h,水热反应温度为373~573K,水热反应后用去离子水洗涤反应物并干燥,最后将干燥后的反应物转移至673~873K条件下焙烧2~4h,制得单斜BiVO4晶体;
制备Cu2O/BiVO4复合材料:将制得的单斜BiVO4晶体分散于去离子水中得到BiVO4溶液,向BiVO4溶液中添加Cu(NO3)2·3H2O和第一牺牲剂并搅拌均匀,将混合液转移至300~500W灯下照射1~8h,将照射后的溶液过滤、洗涤和干燥,再将干燥后的反应物转移至333~373K下保持6~24h,制得Cu2O/BiVO4复合材料;
制备Cu2O/Co3O4/BiVO4复合材料:将制得的Cu2O/BiVO4复合材料分散于去离子水中得到Cu2O/BiVO4复合材料溶液,向Cu2O/BiVO4复合材料溶液中添加Co(NO3)3·6H2O和第二牺牲剂并搅拌均匀,将混合液转移至300~500W灯下照射1~8h,将照射后的溶液过滤、洗涤和干燥,再将干燥后的反应物转移至333~373K下保持6~24h,制得Cu2O/Co3O4/BiVO4复合材料,即钒酸铋复合材料。
2.如权利要求1所述的用于甲醛降解的钒酸铋复合材料的制备方法,其特征在于,在制备单斜BiVO4晶体步骤中,所述NH4VO3与Bi(NO3)3·5H2O的摩尔比为1:1,向混合液中添加NaCl后,NaCl的浓度为0.04~0.5mol/L。
3.如权利要求1所述的用于甲醛降解的钒酸铋复合材料的制备方法,其特征在于,在制备单斜BiVO4晶体步骤中,向混合液中添加NaCl并剧烈搅拌1~5h,所述老化时间为2~10h。
4.如权利要求1所述的用于甲醛降解的钒酸铋复合材料的制备方法,其特征在于,在制备Cu2O/BiVO4复合材料步骤中,所述第一牺牲剂为甲醇;
添加完甲醇后,混合液中Cu(NO3)2·3H2O的质量分数为5~10%,甲醇的质量分数为5~10%。
5.如权利要求1所述的用于甲醛降解的钒酸铋复合材料的制备方法,其特征在于,在制备Cu2O/Co3O4/BiVO4复合材料步骤中,所述第二牺牲剂为NaIO3
添加完NaIO3后,混合液中Co(NO3)3·6H2O的质量分数为5~10%,混合液中NaIO3的浓度为0.5mol/L。
6.如权利要求1所述的用于甲醛降解的钒酸铋复合材料的制备方法,其特征在于,在制备Cu2O/BiVO4复合材料步骤中,添加完甲醇后将混合液转移至超声条件下超声20~40min;
在制备Cu2O/Co3O4/BiVO4复合材料步骤中,添加完NaIO3后将混合液转移至超声条件下超声20~40min。
7.如权利要求1所述的用于甲醛降解的钒酸铋复合材料的制备方法,其特征在于,在制备Cu2O/BiVO4复合材料步骤中和制备Cu2O/Co3O4/BiVO4复合材料步骤中,所述300~500W灯为300~500W的氙灯。
CN202011349001.9A 2020-11-26 2020-11-26 一种用于甲醛降解的钒酸铋复合材料的制备方法 Pending CN112403478A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011349001.9A CN112403478A (zh) 2020-11-26 2020-11-26 一种用于甲醛降解的钒酸铋复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011349001.9A CN112403478A (zh) 2020-11-26 2020-11-26 一种用于甲醛降解的钒酸铋复合材料的制备方法

Publications (1)

Publication Number Publication Date
CN112403478A true CN112403478A (zh) 2021-02-26

Family

ID=74842558

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011349001.9A Pending CN112403478A (zh) 2020-11-26 2020-11-26 一种用于甲醛降解的钒酸铋复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN112403478A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114904529A (zh) * 2022-05-18 2022-08-16 南京大学 一种用于降解吡啶的光催化材料、改性光催化填料及其制备方法与应用
CN115947383A (zh) * 2022-12-28 2023-04-11 青岛科技大学 氧化钴负载钒酸铋纳米片压电催化剂及其制备方法和应用
CN116889886A (zh) * 2023-07-31 2023-10-17 辽宁大学 一种BiVO4/Cu2O/g-C3N4复合声催化剂及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011173102A (ja) * 2010-02-25 2011-09-08 Mitsubishi Chemicals Corp 光水分解反応用光触媒および光水分解反応用光触媒の製造方法
CN103623803A (zh) * 2012-08-30 2014-03-12 上海纳晶科技有限公司 一种可见光光催化剂及其制备方法
CN104014326A (zh) * 2014-06-25 2014-09-03 上海交通大学 一种钒酸铋纳米棒高效光催化剂及其制备方法
CN104826627A (zh) * 2015-04-30 2015-08-12 中国科学院海洋研究所 一种用于水处理的高性能光催化剂及其制备方法
CN109046315A (zh) * 2018-07-19 2018-12-21 昆山桑莱特新能源科技有限公司 一种24面体BiOV4凹面体微米晶的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011173102A (ja) * 2010-02-25 2011-09-08 Mitsubishi Chemicals Corp 光水分解反応用光触媒および光水分解反応用光触媒の製造方法
CN103623803A (zh) * 2012-08-30 2014-03-12 上海纳晶科技有限公司 一种可见光光催化剂及其制备方法
CN104014326A (zh) * 2014-06-25 2014-09-03 上海交通大学 一种钒酸铋纳米棒高效光催化剂及其制备方法
CN104826627A (zh) * 2015-04-30 2015-08-12 中国科学院海洋研究所 一种用于水处理的高性能光催化剂及其制备方法
CN109046315A (zh) * 2018-07-19 2018-12-21 昆山桑莱特新能源科技有限公司 一种24面体BiOV4凹面体微米晶的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XIANG YU ET AL.: ""Selective Deposition of Cobalt and Copper Oxides on BiVO4 Facets for Enhancement of CO2 Photocatalytic Reduction to Hydrocarbons"", 《CHEMCATCHEM》 *
温惠敏等: ""TiO2、BiVO4、Cu2O光催化降解低浓度甲醛"", 《环境工程学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114904529A (zh) * 2022-05-18 2022-08-16 南京大学 一种用于降解吡啶的光催化材料、改性光催化填料及其制备方法与应用
CN115947383A (zh) * 2022-12-28 2023-04-11 青岛科技大学 氧化钴负载钒酸铋纳米片压电催化剂及其制备方法和应用
CN116889886A (zh) * 2023-07-31 2023-10-17 辽宁大学 一种BiVO4/Cu2O/g-C3N4复合声催化剂及其制备方法和应用
CN116889886B (zh) * 2023-07-31 2024-05-07 辽宁大学 一种BiVO4/Cu2O/g-C3N4复合声催化剂及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN112403478A (zh) 一种用于甲醛降解的钒酸铋复合材料的制备方法
Jo et al. Hierarchical flower-like NiAl-layered double hydroxide microspheres encapsulated with black Cu-doped TiO2 nanoparticles: Highly efficient visible-light-driven composite photocatalysts for environmental remediation
Nikazar et al. Photocatalytic degradation of azo dye Acid Red 114 in water with TiO2 supported on clinoptilolite as a catalyst
Ohno et al. Photocatalytic activity of S-doped TiO2 photocatalyst under visible light
CN101678345B (zh) 氧化钛光催化剂及其制造方法
Amiri et al. Bi 2 WO 6/Ag 3 PO 4–Ag Z-scheme heterojunction as a new plasmonic visible-light-driven photocatalyst: performance evaluation and mechanism study
US7153808B2 (en) Ultraviolet and visible-light-sensitive titania-based photocatalyst
WO2011049085A1 (ja) 窒化炭素を含む光触媒及びその製造方法並びに該光触媒を用いた空気浄化方法
Min et al. Lanthanum and boron co-doped BiVO4 with enhanced visible light photocatalytic activity for degradation of methyl orange
US8652991B2 (en) Tungsten oxide photocatalyst and method for producing the same
CN102039118B (zh) 以硅藻土助滤剂为载体的负载型纳米TiO2光催化材料的制备方法
Fu et al. Fabrication of Ti 3+ self-doped TiO 2 (A) nanoparticle/TiO 2 (R) nanorod heterojunctions with enhanced visible-light-driven photocatalytic properties
KR101065804B1 (ko) 균일한 아나타제형 이산화티탄 나노입자의 제조방법
Mohamed et al. Nano Cu Metal Doped on TiO2–SiO2 nanoparticle catalysts in photocatalytic degradation of direct blue dye
Xu et al. A review in visible-light-driven BiVO 4 photocatalysts
Behnajady et al. Investigation of the effect of heat treatment process on characteristics and photocatalytic activity of TiO2-UV100 nanoparticles
CN105148972A (zh) 可见光条件下还原水中硝态氮的新型催化剂的制备方法及其应用
CN108355633A (zh) 一种可见光响应掺氮纳米二氧化钛光催化剂的制备方法
Ding et al. TiO2 nanopowder co-doped with iodine and boron to enhance visible-light photocatalytic activity
CN112403477A (zh) 一种用于甲醛降解的钒酸铋复合材料及其应用
Shi et al. Preparation of Ce‐doped TiO2 hollow fibers and their photocatalytic degradation properties for dye compound
CN105195145B (zh) 一种制备pn异质结复合光催化剂的方法
Sun et al. Enhanced photocatalytic activity of Bi 2 WO 6 for the degradation of TC by synergistic effects between amorphous Ti and Ni as hole–electron cocatalysts
CN110935441A (zh) 一种高效降解甲醛的钛基复合催化网及其制备方法
Li et al. Visible-light-active nitrogen-containing TiO2 photocatalysts prepared by spray pyrolysis

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210226