CN112389685A - 基于u形电磁螺线管的微型自主电磁对接装置及控制方法 - Google Patents

基于u形电磁螺线管的微型自主电磁对接装置及控制方法 Download PDF

Info

Publication number
CN112389685A
CN112389685A CN202011326208.4A CN202011326208A CN112389685A CN 112389685 A CN112389685 A CN 112389685A CN 202011326208 A CN202011326208 A CN 202011326208A CN 112389685 A CN112389685 A CN 112389685A
Authority
CN
China
Prior art keywords
solenoid
electromagnetic
preset
shaped
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011326208.4A
Other languages
English (en)
Other versions
CN112389685B (zh
Inventor
张元文
朱昊魁
杨乐平
朱彦伟
黄涣
蔡伟伟
甄明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National University of Defense Technology
Original Assignee
National University of Defense Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University of Defense Technology filed Critical National University of Defense Technology
Priority to CN202011326208.4A priority Critical patent/CN112389685B/zh
Publication of CN112389685A publication Critical patent/CN112389685A/zh
Application granted granted Critical
Publication of CN112389685B publication Critical patent/CN112389685B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/64Systems for coupling or separating cosmonautic vehicles or parts thereof, e.g. docking arrangements
    • B64G1/646Docking or rendezvous systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/10Artificial satellites; Systems of such satellites; Interplanetary vehicles

Abstract

本申请涉及一种基于U形电磁螺线管的微型自主电磁对接装置和控制方法。所述装置包括由第一端直螺线管、第二端直螺线管、底部直螺线管构成的U形电磁螺线管,底部直螺线管的两端通过两个铁芯倒角分别连接第一端直螺线管和第二端直螺线管,U形电磁螺线管的两个端面位于装置的对接面上。第一端直螺线管和第二端直螺线管的线圈厚度和铁芯半径,根据预设的微纳航天器参数和预设磁力需求上限确定;微纳航天器参数包括,质量上限、尺寸上限和功率上限。底部直螺线管的长度根据预设的微纳航天器参数和预设磁场作用距离下限确定。上述装置满足微纳航天器应用约束条件,充分利用螺线管两端磁力增大对接装置磁力,还能避免漏磁对航天器电子环境的干扰。

Description

基于U形电磁螺线管的微型自主电磁对接装置及控制方法
技术领域
本申请涉及微纳航天器对接技术领域,特别是涉及一种基于U形电磁螺线管的微型自主电磁对接装置及控制方法。
背景技术
随着MEMS、航天器、在轨操控等技术以及商业航天迅猛发展,微纳航天器在轨应用前景广阔;此外,基于微纳航天器在轨组装形成超大型航天机构正成为航天发展新模式,在2020年中国航天大会上被列为宇航领域十大科学问题和技术难题之一。然而,限于质量、体积、功耗及星上处理能力等限制,微纳航天器之间组装、微纳航天器与母航天器对接等都需考虑微纳航天器的相关约束。
航天器电磁对接技术具有不消耗推进剂、无羽流污染、连续/可逆/同步控制等能力,近十余年来已经建立了相关动力学模型、构建了部分测试装置、开展了初步地面试验。然而,目前的电磁对接装置基本采用直螺线管阵列模式,仅利用直螺线管一端的磁场,并且螺线管周围存在的漏磁会对航天器上的电子设备产生一定干扰。
发明内容
基于此,有必要针对上述技术问题,提供一种能够充分利用螺线管磁场、适应微纳航天器应用环境限制的一种基于U形电磁螺线管的微型自主电磁对接装置及控制方法。
一种基于U形电磁螺线管的微型自主电磁对接装置,包括一个以上的U形电磁螺线管。U形电磁螺线管包括第一端直螺线管、第二端直螺线管、底部直螺线管,底部直螺线管的两端通过两个铁芯倒角分别连接第一端直螺线管和第二端直螺线管,U形电磁螺线管的两个端面位于微型自主电磁对接装置的对接面上。
第一端直螺线管和第二端直螺线管的线圈厚度和铁芯半径是根据预设的微纳航天器参数和预设磁力需求上限确定;微纳航天器参数包括,质量上限、尺寸上限和功率上限。
底部直螺线管的长度根据预设的微纳航天器参数和预设磁场作用距离下限确定。
其中一个实施例中,第一端直螺线管和第二端直螺线管的结构相同,两个铁芯倒角的结构相同。
其中一个实施例中,U形电磁螺线管的数量为3个,U形电磁螺线管的设置方向相同,U形电磁螺线管构成等腰三角形,等腰三角形的底边的2个U形电磁螺线管的底部直螺线管的中轴位于同一条直线上,等腰三角形的底边长大于U形电磁螺线管的宽度的两倍,等腰三角形的高满足:
Figure BDA0002794348780000021
其中,h为等腰三角形的高,2l1为U形电磁螺线管的宽度,l2为等腰三角形的底边长。
一种基于U形电磁螺线管的微型自主电磁对接控制方法,第一装置为上述任意一个实施例提供的基于U形电磁螺线管的微型自主电磁对接装置,第二装置为上述任意个实施例提供的基于U形电磁螺线管的微型自主电磁对接装置,所述方法包括:
根据预设的磁极排列方式对第一装置的U形电磁螺线管上电。
反转该磁极排列方式的磁极得到反转磁极排列方式,根据反转磁极排列方式对第二装置的U形电磁螺线管上电。
其中一个实施例中,预设的磁极排列方式为:第一装置的U形电磁螺线管的第一端直螺线管的磁极为N级。
其中一个实施例中,反转磁极排列方式的磁极得到反转磁极排列方式,根据反转磁极排列方式对第二装置的U形电磁螺线管上电,以使第一装置的对接面与第二装置的对接面连接的步骤之后,还包括:
获取第一装置和第二装置之间的对接距离。
当对接距离大于第一预设值时,将第一装置和第二装置的电磁磁矩值设置为预设的加速阶段电磁磁矩值。
当对接距离小于第一预设值且大于第二预设值时,将第一装置和第二装置的电磁磁矩值设置为0。
当对接距离小于第二预设值时,反转第二装置的磁极,将第一装置和第二装置的电磁磁矩值设置为预设的减速阶段电磁磁矩值。
一种基于U形电磁螺线管的微型自主电磁对接控制设备,第一装置为上述任意一个实施例提供的基于U形电磁螺线管的微型自主电磁对接装置,第二装置为上述任意个实施例提供的基于U形电磁螺线管的微型自主电磁对接装置,所述设备包括:
第一装置上电模块,用于根据预设的磁极排列方式对第一装置的U形电磁螺线管上电。
第二装置上电模块,用于反转磁极排列方式的磁极得到反转磁极排列方式,根据反转磁极排列方式对第二装置的U形电磁螺线管上电,以使第一装置的对接面与第二装置的对接面连接。
其中一个实施例中,还包括分段磁矩控制模块,用于获取第一装置和第二装置之间的对接距离。当对接距离大于第一预设值时,将第一装置和第二装置的电磁磁矩值设置为预设的加速阶段电磁磁矩值。当对接距离小于第一预设值且大于第二预设值时,将第一装置和第二装置的电磁磁矩值设置为0。当对接距离小于第二预设值时,反转第二装置的磁极,将第一装置和第二装置的电磁磁矩值设置为预设的减速阶段电磁磁矩值。
一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现以下步骤:
根据预设的磁极排列方式对第一装置的U形电磁螺线管上电。
反转该磁极排列方式的磁极得到反转磁极排列方式,根据反转磁极排列方式对第二装置的U形电磁螺线管上电。
一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现以下步骤:
根据预设的磁极排列方式对第一装置的U形电磁螺线管上电。
反转该磁极排列方式的磁极得到反转磁极排列方式,根据反转磁极排列方式对第二装置的U形电磁螺线管上电。
上述基于U形电磁螺线管的微型自主电磁对接装置、控制方法、设备、计算机设备和存储介质,其U形电磁螺线管包括第一端直螺线管、第二端直螺线管、底部直螺线管,底部直螺线管的两端通过两个铁芯倒角分别连接第一端直螺线管和第二端直螺线管,U形电磁螺线管的两个端面位于微型自主电磁对接装置的对接面上。根据预设的微纳航天器参数和预设磁力需求上限确定第一端直螺线管和第二端直螺线管的线圈厚度和铁芯半径,根据预设的微纳航天器参数和预设磁场作用距离下限确定底部直螺线管的长度。基于上述U形电磁螺线管的设计方式,本申请基于微纳航天器对质量、尺寸和磁力大小的约束设计对接装置,能够充分利用螺线管两端的磁力,并且在电流相同的情况下增大对接装置的磁力,增大对接装置的初始作用距离;还能将磁场约束于螺线管内部及进行对接的航天器之间,避免漏磁对航天器电子环境的干扰。
附图说明
图1为一个实施例中U形电磁螺线管的结构示意图;
图2为一个实施例中基于U形电磁螺线管的微型自主电磁对接装置的结构示意图;
图3为一个实施例中基于U形电磁螺线管的微型自主电磁对接装置的电磁力幅值仿真结果图;
图4为另一个实施例中基于U形电磁螺线管的微型自主电磁对接装置的磁极排列方式示意图;
图5为二维平面两条形磁铁相互作用的自对准、半自对准及排斥区域分布示意图;
图6为一个实施例中对进行对接的两个微纳航天器建立的坐标系示意图;
图7为一个实施例中采用的分段常值磁矩控制策略示意图;
图8为一个实施例中在分段常值磁矩控制策略下的电磁力变化示意图;
图9为一个实施例中在分段常值磁矩控制策略下的两个微纳航天器的相对位置/速度变化示意图;
图10为一个实施例中计算机设备的内部结构图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在一个实施例中提供了一种基于U形电磁螺线管的微型自主电磁对接装置,包括如图1所示的U形电磁螺线管。U形电磁螺线管包括第一端直螺线管、第二端直螺线管、底部直螺线管。
第一端直螺线管包括铁芯1011和线圈1012,第二端直螺线管包括铁芯1021和线圈1022,底部直螺线管包括铁芯1031和线圈1032。底部直螺线管的两端通过铁芯倒角1041和铁芯倒角1042分别连接第一端直螺线管和第二端直螺线管。U形电磁螺线管的两个端面位于微型自主电磁对接装置的对接面105上。
其中,第一端直螺线管和第二端直螺线管的线圈厚度和铁芯半径是根据预设的微纳航天器参数和预设磁力需求上限确定。微纳航天器参数包括,质量上限、尺寸上限和功率上限。底部直螺线管的长度根据预设的微纳航天器参数和预设磁场作用距离下限确定。
具体地,根据微纳航天器质量、体积、功耗约束要求,可以确定对基于U形电磁螺线管的微型自主电磁对接装置的设计要求,从而确定对U形螺线管的质量和尺寸的上限要求。另一方面,由直螺线管电磁场性能分析可知,第一端直螺线管和第二端直螺线管的铁芯半径及线圈厚度越大,产生的电磁力数值越大,两者对作用力增加的正相关曲率不一样,对质量增加的影响也不一样。而底部直螺线管起承接磁通传递及总磁场加强的作用,其线圈厚度一定程度上受第一端直螺线管和第二端直螺线管的物理参数影响。并且底部直螺线管的长度影响第一端直螺线管和第二端直螺线管的间距,从而影响该U形螺线管的作用距离,第一端直螺线管和第二端直螺线管的间距与U形螺线管的磁场作用距离成正比。具体来说,U形螺线管两端间距增大有助于磁场向远处延伸,但磁场本身幅值有限,随着U形螺线管两端间距增大,磁场延伸能力的增加趋势逐步减缓,以致最终收敛。铁芯倒角的作用是方便加工且避免连接处断裂,同时也可以调节第一端直螺线管和第二端直螺线管的间距。
从上面的分析可以知道,在微纳航天器对质量、尺寸和功率限制的条件下,要提供满足对接需求的电磁对接装置,需要对U形螺线管的质量和尺寸进行对应的优化设计。本实施例中对为U形螺线管的质量限制为5/3,尺寸限制为10cm×10cm×6cm,功率限制为线圈通电电流不大于5A。对微型自主电磁对接装置的电磁力要求为同样距离下电磁力数值追求最大,且具备一定电磁力矩作用能力。为简化装置结构,U形螺线管的第一端直螺线管和第二端直螺线管的物理参数一致,两个铁芯倒角的物理参数一致。分别进行每段电磁螺线管质量计算:
Figure BDA0002794348780000061
其中,M为螺线管质量,L为螺线管铁芯长度,ρ1为螺线管铁芯密度,r2为铁芯半径,ρ2为导线密度,r2为螺线管外径。基于微纳航天器的质量/体积/功耗约束以及对接作用力需求,优化设计结果为:第一端直螺线管和第二端直螺线管的线圈厚度为13mm、长度为100mm,底部直螺线管的线圈厚度为1mm,三个直螺线管的铁芯半径均为10mm,第一端直螺线管和第二端直螺线的间距为90mm,铁芯倒角长度为1mm,基于此可计算底部直螺线管长度。进一步,计算质量为:线圈质量为1.091+0.03=1.121kg,铁芯质量为0.513kg,U形螺线管质量为1.634kg。基于此设计参数,基于Maxwell有限元软件分析可得U形螺线管对接的磁场强度分布。
上述实施例提供的基于U形电磁螺线管的微型自主电磁对接装置,使用U形电磁螺线管的磁场约束于螺线管内部,因此本实施例提供的微型自主电磁对接装置在分别安装于两个微纳航天器上用于对接时,发出磁场的两端都用于产生对接磁力,避免了直螺线管有一端未用于对接而使磁场发散(并多数情况下发散的磁场指向对接装置所在的微纳航天器),影响微纳航天器电子器件工作的情况;此外,U形电磁螺线管使用相同的电流可以比直螺线管提供更强的磁力,因此在螺线管一端磁场强度相同的情况下,其作用距离更远,能够使电磁对接系统具有更强的初始容错能力;最后,U形螺线管使用两端进行对接,使对接装置能够通过控制电流方向改变端头的磁极性,而可以实现对两个微纳航天器的对接方向控制。
其中一个实施例中,U形电磁螺线管的数量为2个以上,通过增加对接端的数量可以增加对接面的稳定性,加大对接磁力,提供更多的微纳航天器姿态调整可能性。
其中一个实施例中,U形电磁螺线管的数量为3个,U形电磁螺线管的设置方向相同,U形电磁螺线管构成等腰三角形,等腰三角形的底边的2个U形电磁螺线管的底部直螺线管的中轴位于同一条直线上,等腰三角形的底边长大于U形电磁螺线管的宽度的两倍,等腰三角形的高满足:
Figure BDA0002794348780000071
其中,h为等腰三角形的高,2l1为U形电磁螺线管的宽度,l2为等腰三角形的底边长。
具体地,如图2所示,U形电磁螺线管的宽度2l1定义为第一端直螺线管的中轴和第二端直螺线管的中轴之间的距离,3个U形电磁螺线管的底部直螺线管的中心点构成等腰三角形以上一个实施例中的U形电磁螺线管尺寸为例进行说明。
根据三角形底边两个U形电磁螺线管的宽度约束可得:
Figure BDA0002794348780000072
设U形电磁螺线管A1的第二端直螺线管(磁极标注为S)坐标为(l1,h,0),U形电磁螺线管A2的第一端直螺线管(磁极标注为N)坐标为(l22-l1,0,0),则根据避免磁路在相邻U型螺线管间互串的约束条件可得,则U形电磁螺线管A1和U形电磁螺线管A2的间距需要满足:
Figure BDA0002794348780000073
即可知等腰三角形的高:
Figure BDA0002794348780000081
基于前述实施例中数据2l1=90mm,可得设定具体参数值为
l2=200(mm),h=100(mm)
基于前述实施例中U型螺线管物理参数(尺寸、质量、匝数为500),设定线圈电流为5A,使用本实施例提供的两个微型自主电磁对接装置正对,步长取5cm,基于AnsoftMaxwell有限元软件计算50cm~0cm范围内的轴向电磁力(仿真结果如图3所示)与磁场强度分布。可以看到,对接装置的电磁力幅值得到数量级的提升。
本实施例提供的一种基于U形电磁螺线管的微型自主电磁对接装置,由3组U型螺线管构成,具有对接偏差自主修正能力,具有自稳定性,且稳定能力大于直螺线管的2倍以上。
其中一个实施例中,提供了一种基于U形电磁螺线管的微型自主电磁对接控制方法,第一装置为上述任意一个实施例提供的基于U形电磁螺线管的微型自主电磁对接装置,第二装置为上述任意一个实施例提供的基于U形电磁螺线管的微型自主电磁对接装置,所述方法包括:
根据预设的磁极排列方式对第一装置U形电磁螺线管上电。
反转该磁极排列方式的磁极得到反转磁极排列方式,根据反转磁极排列方式对第二装置的U形电磁螺线管上电。
具体地,采用上述上电方式,将第一装置和第二装置分别安装在需要对接的两个微纳航天器上,通过磁极相反的上电方式,可以确保第一装置和第二装置以镜像对称的方式对接,利于控制微纳航天器的对接方向。
其中一个实施例中,第一装置中U形电磁螺线管的数量为3个,分别为A1、A2和A3,第二装置中U形电磁螺线管的数量为3个,分别为B1、B2和B3。预设的磁极排列方式为:第一装置的3个U形电磁螺线管的第一端直螺线管的磁极均为N级。
具体地,根据不同的磁极组合方式,第一装置和第二装置的磁极排列方式有4种,如图4所示。综合考虑电磁力幅值及其衰减速率因素,上电模式1可以确保第一装置中每组U型螺线管流出来的磁力线尽量到达第二装置,避免微型自主电磁对接装置内部的各个U形电磁螺线管间形成闭合回路,提高磁力的利用效率。当然,如果考虑控制能力的多元性以及磁力矩控制需求等其他因素,上电模式2至4也是可行选项。
其中一个实施例中,反转磁极排列方式的磁极得到反转磁极排列方式,根据反转磁极排列方式对第二装置的3个U形电磁螺线管分别上电,以使第一装置的对接面与第二装置的对接面连接的步骤之后,还包括:
获取第一装置和第二装置之间的对接距离。
当对接距离大于第一预设值时,将第一装置和第二装置的电磁磁矩值设置为预设的加速阶段电磁磁矩值。
当对接距离小于第一预设值且大于第二预设值时,将第一装置和第二装置的电磁磁矩值设置为0。
当对接距离小于第二预设值时,反转第二装置的磁极,将第一装置和第二装置的电磁磁矩值设置为预设的减速阶段电磁磁矩值。
具体地,电磁场作用具有自对准/自对接特性,体现为满足一定初始相对位置与姿态条件下,两磁偶极子姿态最终指向一致且与其质心连线平行(自对准特性),各磁偶极子所受合力指向另一磁偶极子质心(自对接特性)。以二维平面两条形磁铁相互作用为例,给定初始姿态指向平行条件,存在自对准、半自对准及排斥等3个区域,如图5所示。对一般指向的电磁偶极子作用而言,基于自对准/自对接特性的纯速度控制尤为关键:只要两个微纳航天器间相对运动状态满足自对准/自对接空间约束即可自主完成对接,星载控制系统仅需调节两微纳航天器间相对速度即可进一步实现自主柔性对接,可大大减轻星载计算及控制系统负担,这对于有限计算资源的微纳航天器是必要的,而且具有显著控制鲁棒性。
基于电磁场作用的自对准/自对接特性,针对微纳航天器V-bar对接任务,设计分段常值磁矩控制方法。
首先建立动力学模型。选取两微纳航天器质心“CM”建立Hill坐标系oCM-xCMyCMzCM、A和B微纳航天器体坐标系oA-xAbyAbzAb和oB-xBbyBbzBb、地惯系oE-xIyIzI以及地固系oE-xEyEzE,如图6所示。基于oCM-xCMyCMzCM系推导建立电磁对接两微纳航天器间相对位置动力学模型为:
Figure BDA0002794348780000101
式中,(xAB,yAB,zAB)、
Figure BDA0002794348780000102
分别为A与B两微纳航天器间相对位置/速度/加速度矢量在oCM-xCMyCMzCM系的投影分量,nCM为“CM”轨道运动角速度,(mA,mB)为微纳航天器质量,(FBxCM,FByCM,FBzCM)为微纳航天器所受电磁力在oCM-xCMyCMzCM系的投影分量,(fAdx,fAdy,fAdz)和(fBdx,fBdy,fBdz)为微纳航天器所受其余干扰力等效加速度在oCM-xCMyCMzCM系的投影分量。
随后对动力学模型进行简化。不考虑其他干扰力作用,设定A和B微纳航天器沿V-bar方向对接(轨道速度方向,即oCMyCM向)且对接端口始终正对,且满足初始条件:
Figure BDA0002794348780000103
则,动力学模型式可简化为
Figure BDA0002794348780000104
第三步进行电磁力模型计算。给定A和B微纳航天器电磁磁矩(μAB)以及A与B之间相对位置矢量rBA(由B微纳航天器指向A微纳航天器),则B微纳航天器所受电磁力计算为(FAB=-FBA):
Figure BDA0002794348780000105
考虑两对接端口始终正对,则μA与μB方向一致,可得
Figure BDA0002794348780000106
最后,根据上述分析设计分段常值磁矩控制方法。综合考虑电磁力作用的强非线性(具体表现为远距离电磁操控能力不足、近距离电磁力对相对距离变化高度敏感)、电磁控制消耗电能的优化需求、在轨对接任务测控弧段的有限性、电磁对接的自对准/自对接特性、电磁排斥的发散特性、地磁力矩干扰影响等,设计分段常值磁矩控制策略如图7所示,对应的电磁力变化及相对位置/速度变化如图8和图9所示。图7中,阶段1即对接距离大于第一预设值时,采用电磁吸引模式,考虑该阶段两微纳航天器相距较远,取加速阶段电磁磁矩值为μA=μB=μmax以缩短阶段1耗时以满足测控弧段需求及降低地磁干扰力矩的累积作用;阶段2,即对接距离小于第一预设值且大于第二预设值时,将第一装置和第二装置的电磁磁矩值设置为0。此外阶段4也为匀速前行阶段(见图9),不施加电磁控制;阶段3,即当对接距离小于第二预设值时,为电磁排斥减速阶段,考虑该阶段两微纳航天器已相距较近及电磁排斥的发散特性,设定减速阶段电磁磁矩值为μA=μmin且μB=-μmin以较少累积横向相对位置/速度偏差。此外,图9中vBAmax为过程匀速运动速度,为优化变量,决定了阶段1的电磁作用时间;vBAsoftdocking为按需设定的柔性对接速度,决定了阶段3的电磁作用时间。
本实施例提供一种基于U形电磁螺线管的微型自主电磁对接控制方法,基于电磁自对准/自对接特性实现,鲁棒性强、操控简单,可用于实现自主柔性对接。
其中一个实施例中,提供了一种基于U形电磁螺线管的微型自主电磁对接控制设备,第一装置为上述任意一个实施例提供的基于U形电磁螺线管的微型自主电磁对接装置,第二装置为上述任意个实施例提供的基于U形电磁螺线管的微型自主电磁对接装置,所述设备包括:
第一装置上电模块,用于根据预设的磁极排列方式对第一装置的U形电磁螺线管上电。
第二装置上电模块,用于反转磁极排列方式的磁极得到反转磁极排列方式,根据反转磁极排列方式对第二装置的U形电磁螺线管上电,以使第一装置的对接面与第二装置的对接面连接。
其中一个实施例中,还包括分段磁矩控制模块,用于获取第一装置和第二装置之间的对接距离。当对接距离大于第一预设值时,将第一装置和第二装置的电磁磁矩值设置为预设的加速阶段电磁磁矩值。当对接距离小于第一预设值且大于第二预设值时,将第一装置和第二装置的电磁磁矩值设置为0。当对接距离小于第二预设值时,反转第二装置的磁极,将第一装置和第二装置的电磁磁矩值设置为预设的减速阶段电磁磁矩值。
关于控制方法和控制设备的具体限定可以参见上文中对于一种基于U形电磁螺线管的微型自主电磁对接装置的限定,在此不再赘述。上述一种基于U形电磁螺线管的微型自主电磁对接控制设备中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
在一个实施例中,提供了一种计算机设备,该计算机设备可以是终端,其内部结构图可以如图10所示。该计算机设备包括通过系统总线连接的处理器、存储器、网络接口、显示屏和输入装置。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统和计算机程序。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该计算机设备的网络接口用于与外部的终端通过网络连接通信。该计算机程序被处理器执行时以实现一种基于U形电磁螺线管的微型自主电磁对接控制方法。该计算机设备的显示屏可以是液晶显示屏或者电子墨水显示屏,该计算机设备的输入装置可以是显示屏上覆盖的触摸层,也可以是计算机设备外壳上设置的按键、轨迹球或触控板,还可以是外接的键盘、触控板或鼠标等。
本领域技术人员可以理解,图10中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
在一个实施例中,提供了一种计算机设备,包括存储器和处理器,该存储器存储有计算机程序,该处理器执行计算机程序时实现以下步骤:
根据预设的磁极排列方式对第一装置的U形电磁螺线管上电。
反转该磁极排列方式的磁极得到反转磁极排列方式,根据反转磁极排列方式对第二装置的U形电磁螺线管上电。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:获取第一装置和第二装置之间的对接距离。当对接距离大于第一预设值时,将第一装置和第二装置的电磁磁矩值设置为预设的加速阶段电磁磁矩值。当对接距离小于第一预设值且大于第二预设值时,将第一装置和第二装置的电磁磁矩值设置为0。当对接距离小于第二预设值时,反转第二装置的磁极,将第一装置和第二装置的电磁磁矩值设置为预设的减速阶段电磁磁矩值。
在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现以下步骤:
根据预设的磁极排列方式对第一装置的U形电磁螺线管上电。
反转该磁极排列方式的磁极得到反转磁极排列方式,根据反转磁极排列方式对第二装置的U形电磁螺线管上电。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:获取第一装置和第二装置之间的对接距离。当对接距离大于第一预设值时,将第一装置和第二装置的电磁磁矩值设置为预设的加速阶段电磁磁矩值。当对接距离小于第一预设值且大于第二预设值时,将第一装置和第二装置的电磁磁矩值设置为0。当对接距离小于第二预设值时,反转第二装置的磁极,将第一装置和第二装置的电磁磁矩值设置为预设的减速阶段电磁磁矩值。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (10)

1.一种基于U形电磁螺线管的微型自主电磁对接装置,其特征在于,所述微型自主电磁对接装置包括一个以上的U形电磁螺线管;
所述U形电磁螺线管包括第一端直螺线管、第二端直螺线管、底部直螺线管,所述底部直螺线管的两端通过两个铁芯倒角分别连接所述第一端直螺线管和所述第二端直螺线管,所述U形电磁螺线管的两个端面位于所述微型自主电磁对接装置的对接面上;
所述第一端直螺线管和所述第二端直螺线管的线圈厚度和铁芯半径是根据预设的微纳航天器参数和预设磁力需求上限确定;所述微纳航天器参数包括,质量上限、尺寸上限和功率上限;
所述底部直螺线管的长度根据所述预设的微纳航天器参数和预设磁场作用距离下限确定。
2.根据权利要求1所述的微型自主电磁对接装置,其特征在于,所述第一端直螺线管和所述第二端直螺线管的结构相同,所述两个铁芯倒角的结构相同。
3.根据权利要求2所述的微型自主电磁对接装置,其特征在于,所述U形电磁螺线管的数量为3个,所述U形电磁螺线管的设置方向相同,所述U形电磁螺线管构成等腰三角形,所述等腰三角形的底边的2个所述U形电磁螺线管的所述底部直螺线管的中轴位于同一条直线上,所述等腰三角形的底边长大于所述U形电磁螺线管的宽度的两倍,所述等腰三角形的高满足:
Figure FDA0002794348770000011
其中,h为所述等腰三角形的高,2l1为所述U形电磁螺线管的宽度,l2为所述等腰三角形的底边长。
4.一种基于U形电磁螺线管的微型自主电磁对接控制方法,其特征在于,第一装置为权利要求1至3任一项所述的基于U形电磁螺线管的微型自主电磁对接装置,第二装置为权利要求1至3任一项所述的基于U形电磁螺线管的微型自主电磁对接装置,所述方法包括:
根据预设的磁极排列方式对所述第一装置的U形电磁螺线管上电;
反转所述磁极排列方式的磁极得到反转磁极排列方式,根据所述反转磁极排列方式对所述第二装置的U形电磁螺线管上电,以使所述第一装置的对接面与所述第二装置的对接面连接。
5.根据权利要求4所述的方法,其特征在于,所述预设的磁极排列方式为:所述第一装置的所述U形电磁螺线管的所述第一端直螺线管的磁极为N级。
6.根据权利要求4或5所述的方法,其特征在于,反转所述磁极排列方式的磁极得到反转磁极排列方式,根据所述反转磁极排列方式对所述第二装置的3个所述U形电磁螺线管分别上电的步骤之后,还包括:
获取所述第一装置和所述第二装置之间的对接距离;
当所述对接距离大于第一预设值时,将所述第一装置和所述第二装置的电磁磁矩值设置为预设的加速阶段电磁磁矩值;
当所述对接距离小于所述第一预设值且大于第二预设值时,将所述第一装置和所述第二装置的电磁磁矩值设置为0;
当所述对接距离小于所述第二预设值时,反转所述第二装置的磁极,将所述第一装置和所述第二装置的电磁磁矩值设置为预设的减速阶段电磁磁矩值。
7.一种基于U形电磁螺线管的微型自主电磁对接控制设备,其特征在于,第一装置为权利要求1至3任一项所述的基于U形电磁螺线管的微型自主电磁对接装置,第二装置为权利要求1至3任一项所述的基于U形电磁螺线管的微型自主电磁对接装置,所述设备包括:
第一装置上电模块,用于根据预设的磁极排列方式对所述第一装置的所述U形电磁螺线管上电;
第二装置上电模块,用于反转所述磁极排列方式的磁极得到反转磁极排列方式,根据所述反转磁极排列方式对所述第二装置的所述U形电磁螺线管上电。
8.根据权利要求7所述的设备,其特征在于还包括分段磁矩控制模块,用于:
获取所述第一装置和所述第二装置之间的对接距离;
当所述对接距离大于第一预设值时,将所述第一装置和所述第二装置的电磁磁矩值设置为预设的加速阶段电磁磁矩值;
当所述对接距离小于所述第一预设值且大于第二预设值时,将所述第一装置和所述第二装置的电磁磁矩值设置为0;
当所述对接距离小于所述第二预设值时,反转所述第二装置的磁极,将所述第一装置和所述第二装置的电磁磁矩值设置为预设的减速阶段电磁磁矩值。
9.一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求4至6中任一项所述方法的步骤。
10.一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求4至6中任一项所述方法的步骤。
CN202011326208.4A 2020-11-24 2020-11-24 基于u形电磁螺线管的微型自主电磁对接装置及控制方法 Active CN112389685B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011326208.4A CN112389685B (zh) 2020-11-24 2020-11-24 基于u形电磁螺线管的微型自主电磁对接装置及控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011326208.4A CN112389685B (zh) 2020-11-24 2020-11-24 基于u形电磁螺线管的微型自主电磁对接装置及控制方法

Publications (2)

Publication Number Publication Date
CN112389685A true CN112389685A (zh) 2021-02-23
CN112389685B CN112389685B (zh) 2022-02-22

Family

ID=74607009

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011326208.4A Active CN112389685B (zh) 2020-11-24 2020-11-24 基于u形电磁螺线管的微型自主电磁对接装置及控制方法

Country Status (1)

Country Link
CN (1) CN112389685B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113757297A (zh) * 2021-09-09 2021-12-07 重庆交通大学 基于u形线圈的磁流变减振器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002046698A (ja) * 2000-08-01 2002-02-12 Natl Space Development Agency Of Japan 構造部材の連結機構
CN103407586A (zh) * 2013-08-30 2013-11-27 中国人民解放军国防科学技术大学 电磁对接系统
AU2013202063A1 (en) * 2013-03-13 2014-10-02 Guang-Ming Weng Ring, Ultra-low-speed, Large-capacity Generator
CN104590592A (zh) * 2015-01-13 2015-05-06 中北大学 一种新型空间电磁对接机构
CA3010679A1 (en) * 2015-05-08 2017-07-20 Thales Alenia Space Italia S.P.A. Con Unico Socio Non-explosive release mechanism based on electromagnetic induction melting
CN108363840A (zh) * 2018-01-23 2018-08-03 中国人民解放军战略支援部队航天工程大学 一种基于电磁力的集群航天器磁矩最优分配方法
CN109250156A (zh) * 2018-07-24 2019-01-22 西北工业大学 一种空间非合作目标电磁涡流消旋抓捕装置及方法
CN109728804A (zh) * 2019-01-24 2019-05-07 努比亚技术有限公司 电磁按键及具有该电磁按键的电子装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002046698A (ja) * 2000-08-01 2002-02-12 Natl Space Development Agency Of Japan 構造部材の連結機構
AU2013202063A1 (en) * 2013-03-13 2014-10-02 Guang-Ming Weng Ring, Ultra-low-speed, Large-capacity Generator
CN103407586A (zh) * 2013-08-30 2013-11-27 中国人民解放军国防科学技术大学 电磁对接系统
CN104590592A (zh) * 2015-01-13 2015-05-06 中北大学 一种新型空间电磁对接机构
CA3010679A1 (en) * 2015-05-08 2017-07-20 Thales Alenia Space Italia S.P.A. Con Unico Socio Non-explosive release mechanism based on electromagnetic induction melting
CN108363840A (zh) * 2018-01-23 2018-08-03 中国人民解放军战略支援部队航天工程大学 一种基于电磁力的集群航天器磁矩最优分配方法
CN109250156A (zh) * 2018-07-24 2019-01-22 西北工业大学 一种空间非合作目标电磁涡流消旋抓捕装置及方法
CN109728804A (zh) * 2019-01-24 2019-05-07 努比亚技术有限公司 电磁按键及具有该电磁按键的电子装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113757297A (zh) * 2021-09-09 2021-12-07 重庆交通大学 基于u形线圈的磁流变减振器
CN113757297B (zh) * 2021-09-09 2023-06-06 重庆交通大学 基于u形线圈的磁流变减振器

Also Published As

Publication number Publication date
CN112389685B (zh) 2022-02-22

Similar Documents

Publication Publication Date Title
CN112389685B (zh) 基于u形电磁螺线管的微型自主电磁对接装置及控制方法
Hu Variable structure maneuvering control with time-varying sliding surface and active vibration damping of flexible spacecraft with input saturation
CN103407586B (zh) 电磁对接系统
Yoon et al. Piezoceramic actuated aperture antennae
JP7199317B2 (ja) 軌道遷移のために宇宙機飛行経路を追跡するシステム及び方法
Yan et al. Event-triggered sliding mode tracking control of autonomous surface vehicles
Liu et al. Synthesizing uniform amplitude sparse dipole arrays with shaped patterns by joint optimization of element positions, rotations and phases
Wen et al. De-spinning of tethered space target via partially invariable deployment with tension control
Huang et al. Output feedback robust H∞ control for spacecraft rendezvous system subject to input saturation: A gain scheduled approach
Xu et al. Composite adaptive attitude control for combined spacecraft with inertia uncertainties
Yoshimura Optimal formation reconfiguration of satellites under attitude constraints using only thrusters
CN110174842A (zh) 空间太阳能发电卫星在轨组装的分布式振动控制器设计方法
Amrr et al. Robust attitude control of rigid spacecraft based on event-triggered approach with anti-unwinding
CN108427429A (zh) 一种考虑动态指向约束的航天器视轴机动控制方法
Lawrence et al. Solar sailing trajectory control for Sub-L1 stationkeeping
Kang et al. Saturated attitude control of multi-spacecraft systems on SO (3) subject to mixed attitude constraints with arbitrary initial attitude
Wang et al. Vibration control of space solar power station in complex environments using giant magnetostrictive actuator
CN106005483A (zh) 一种模块化手机星的主动姿态控制方法
Lee et al. Optimal steering laws for variable speed control moment gyros
Halder et al. Steering for beacon pursuit under limited sensing
CN108363840A (zh) 一种基于电磁力的集群航天器磁矩最优分配方法
Jan et al. Active control for initial attitude acquisition using magnetic torquers
Stefanescu et al. Weighting matrices determination using pole placement for tracking maneuvers
Yang Attitude control in spacecraft orbit-raising using a reduced quaternion model
Gong et al. Design of foldable PCBSat enabling three-axis attitude control

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant