CN112386713B - 一种光刺激响应的装载全氟己烷的空心介孔有机硅球的应用 - Google Patents

一种光刺激响应的装载全氟己烷的空心介孔有机硅球的应用 Download PDF

Info

Publication number
CN112386713B
CN112386713B CN202010160155.7A CN202010160155A CN112386713B CN 112386713 B CN112386713 B CN 112386713B CN 202010160155 A CN202010160155 A CN 202010160155A CN 112386713 B CN112386713 B CN 112386713B
Authority
CN
China
Prior art keywords
perfluorohexane
organic silicon
hollow mesoporous
loaded
mesoporous organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010160155.7A
Other languages
English (en)
Other versions
CN112386713A (zh
Inventor
周欣
丘茂松
陈世桢
王瑞芳
娄昕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Precision Measurement Science and Technology Innovation of CAS
Original Assignee
Institute of Precision Measurement Science and Technology Innovation of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Precision Measurement Science and Technology Innovation of CAS filed Critical Institute of Precision Measurement Science and Technology Innovation of CAS
Priority to CN202010160155.7A priority Critical patent/CN112386713B/zh
Publication of CN112386713A publication Critical patent/CN112386713A/zh
Application granted granted Critical
Publication of CN112386713B publication Critical patent/CN112386713B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • A61K49/1821Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
    • A61K49/1824Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
    • A61K49/1827Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
    • A61K49/183Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an inorganic material or being composed of an inorganic material entrapping the MRI-active nucleus, e.g. silica core doped with a MRI-active nucleus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本发明公开了一种光刺激响应的装载全氟己烷的空心介孔有机硅球的应用,该空心介孔有机硅球能够通过实体瘤的高通透性和滞留效应被动靶向肿瘤,装载的全氟己烷能够保证129Xe MRI信号强度,附着在有机硅球表面的CuS纳米颗粒拥有光热转换性能,近红外光刺激可诱导全氟己烷发生相变,实现对肿瘤细胞探测,同时还可以实现智能型响应的129Xe MRI信号从“ON”到“OFF”的转变,避免假阳性信号的出现。

Description

一种光刺激响应的装载全氟己烷的空心介孔有机硅球的应用
技术领域
本发明属于核磁共振成像技术领域,具体涉及一种光刺激响应的装载全氟己烷的空心介孔有机硅球的应用。
背景技术
肿瘤的早期诊断对其疗效至关重要,采用合适的诊断方法对肿瘤的早期诊断又至关重要。核磁共振成像(Magnetic Resonance Imaging,MRI)由于空间分辨率高,非侵入性而广泛用于临床诊断,但是由于其灵敏度比较低,临床上通常需要借助磁共振造影剂来增强对比效果。目前临床广泛使用的造影剂是顺磁性金属Gd的配合物,它能改变水的纵向弛豫时间T1来实现对比增强,同时也因其生理毒性较强,不适用于肝,肾功能不全患者。
传统的MRI观测对象是水的质子,具有很强的背景信号干扰,如果能开发出新型的异核MRI造影剂,无疑能够提高病灶部位成像效果,如129Xe、19F核磁共振造影剂。化学交换饱和转移(Chemical Exchange Saturation Transfer,CEST)技术能够进一步提高磁共振的灵敏度,结合CEST技术开发生物相容性好、高灵敏度且无背景信号干扰的磁共振造影剂对于肿瘤的早期诊断具有重要的意义。
129Xe分子无毒无害,在人体内无背景信号干扰,经超极化装置超极化后具有极高的灵敏度,目前报道的129Xe造影剂最低检测限可达到皮摩尔,充分说明其用于肿瘤检测的潜力。常规129Xe造影剂主要基于穴藩,葫芦脲等实现,通过化学修饰实现肿瘤组织的靶向性,通过识别前后的信号差异实现对生物靶标的探测。然而这些129Xe造影剂中,智能响应型的129Xe造影剂目前报道较少,且制备比较复杂,价格昂贵。因此发展一些易于制备,生物兼容性好,智能响应型的超极化129Xe MRI造影剂具有很实际的意义。
发明内容
为了解决上述现有技术存在的问题,本发明提供了一种光刺激响应的装载全氟己烷的空心介孔有机硅球的应用,该空心介孔有机硅球能够通过实体瘤的高通透性和滞留效应被动靶向肿瘤,装载的全氟己烷能够保证129Xe MRI信号强度,附着在有机硅球表面的CuS纳米颗粒拥有光热转换性能,近红外光刺激可诱导全氟己烷发生相变,实现对肿瘤细胞探测,同时还可以实现智能型响应的129Xe MRI信号从“ON”到“OFF”的转变,避免假阳性信号的出现。
实现本发明上述目的所采用的技术方案为:
一种光刺激响应的装载全氟己烷的空心介孔有机硅球在核磁共振检测方面中的应用。
进一步,所述的装载全氟己烷的空心介孔有机硅球作为129Xe MRI造影剂。
与现有技术相比,本发明的优点与有益效果在于:
1、该中空介孔有机硅球修饰有CuS纳米颗粒并装载了全氟己烷,将其用于129XeHyper CEST,不仅具备高灵敏度和无背景信号干扰的优点,同时能够实现光刺激响应的129Xe CEST分子探针的构建,而且该中空介孔有机硅球还能作为造影剂,用于对肺癌细胞进行129Xe MRI成像,应用于肺癌肿瘤的早期MRI诊断。
2、该中空介孔有机硅球的中空结构能够确保全氟己烷的有效装载,稳固的外壳可防止全氟己烷的外泄,同时可保证壳层内外129Xe交换速率较缓慢,适合129Xe CEST信号的探测。
3、该中空介孔有机硅球修饰有CuS纳米颗粒,CuS纳米颗粒具有良好的光热性能,在近红外光照射下,体系温度升高,能够使全氟己烷发生相变,全氟己烷全部挥发,使得129Xe CEST信号从“ON”到“OFF”的转变,实现光刺激响应的智能开关型129Xe MRI造影剂的构建。
4、该中空介孔有机硅球生物兼容性非常好,适合用于体内磁共振成像,具有很好的应用前景。
附图说明
图1为实施例1制备的装载全氟己烷的空心介孔有机硅球的TEM图。
图2为实施例1制备的装载全氟己烷的空心介孔有机硅球和全氟己烷的19F NMR图谱。
图3为实施例1制备的装载全氟己烷的空心介孔有机硅球的129Xe Hyper CEST图谱。
图4为实施例1制备的装载全氟己烷的空心介孔有机硅球对A549肺癌细胞在激光照射前后的129Xe CEST响应图谱。
图5为实施例1制备的装载全氟己烷的空心介孔有机硅球对正常肺纤维细胞WI-38在激光照射前后的129Xe CEST响应图谱。
图6为实施例1制备的装载全氟己烷的空心介孔有机硅球对A549肺癌细胞在激光照射前后的129Xe MRI图。
图7为实施例1制备的装载全氟己烷的空心介孔有机硅球对正常肺纤维细胞WI-38在激光照射前后的129Xe MRI图。
具体实施方式
下面结合具体实施例对本发明进行详细说明。
实施例1
1、中空介孔有机氧化硅球的制备:
将200g 10wt%的十六烷基三甲基氯化铵的水溶液与0.8g三乙醇胺于95℃油浴中搅拌均匀,随后滴加1mL正硅酸四乙酯,反应1h后,将0.5mL正硅酸四乙酯与1mL 1,4-双(三乙氧基甲硅烷基)丙烷四硫化物的混合物加入上述反应后的溶液中,继续反应4h后,将所得的混合物在3000rpm条件下离心5min,将所得的固体物用乙醇洗涤3次,得到中间产物;将中间产物分散于100mL无水乙醇与10mL浓盐酸的混合溶液中,加热至78℃反应12h,重复该操作3次以完全除去CTAC,得到介孔有机氧化硅包被的MSNs(MSN@MON),将乙醇洗涤MSN@MON多次,将所得的固体物分散于20mL水中,加入8mL氨水,在95℃下反应3h,得到中空介孔有机氧化硅球(HMON);
2、巯基化空心有机硅球的制备:
将15mg步骤1制备的HMON分散于40mL乙醇中,加入0.15mL(3-巯基丙基)三甲氧基硅烷与0.2mL 25wt%氨水,室温下搅拌过夜,将所得的混合物在3000rpm下离心5min,将所得的固体物用乙醇洗涤3次,得到巯基修饰的HMON,即巯基化空心有机硅球(HMON-SH);
3、CuS水溶液的制备:
将2mL 0.05mM硫化钠水溶液加入至100mL 1mM氯化铜与0.68mM柠檬酸钠的混合水溶液中,在室温下搅拌5min,之后将混合溶液加热至80℃并反应15min,得到深绿色的CuS水溶液后,立即将CuS水溶液转移到冰浴中备用;
4、CuS修饰的巯基化空心有机硅球的制备:
将30mg步骤2制备的HMON-SH与60mL步骤3制备的CuS水溶液混合搅拌40min后,将所得的混合物在3000rpm下离心5min,将所得的固体物用乙醇洗涤3次,得到CuS修饰的巯基化空心有机硅球(HMON@CuS);
5、PEG修饰的HMON@CuS纳米硅球的制备:
将步骤4制备的HMON@CuS分散于100mL乙醇中,加入25mg PEG2000-SH溶解于上述分散液中,在75℃下回流24h,将所得的混合液在3000rpm下离心5min,将所得的固体物用乙醇洗涤3次,将所得的固体物用超纯水分散,冷冻干燥,得到PEG修饰的HMON@CuS纳米硅球(HMON@CuS-PEG,简写HMCP);
6、装载全氟己烷的空心介孔有机硅球的制备:
将10mg步骤5制备的HMCP置于25ml双颈烧瓶中,盖上塞子,抽真空2min,注射器注入100ul全氟己烷,冰浴下超声2min,得到装载全氟己烷的空心介孔有机硅球(PFH@HMCP),将PFH@HMCP分散于10mL PBS缓冲液中备用。
将本实施例制备的装载全氟己烷的空心介孔有机硅球用透射电子显微镜进行扫描,所得的TEM图如图1所示,由图1可知,所制得的HMCP-PFH分散性好,粒径均一,存在明显的中空结构。
将本实施例制备的装载全氟己烷的空心介孔有机硅球进行19F NMR测试,所得的19F NMR图谱如图2所示,由图2可知,所制得的HMCP-PFH的19F NMR图谱与全氟己烷的19F NMR图谱相同,说明成功装载上了全氟己烷。
将本实施例制备的装载全氟己烷的空心介孔有机硅球进行129Xe Hyper CEST测试,所得的129Xe Hyper CEST图谱如图3所示,从图3可以看到,在80ppm处观测到明显的129XeHyper CEST信号。
试验一、本发明的装载全氟己烷的空心介孔有机硅球对肺癌细胞的129Xe CEST试验
试验方法:
1、称取10mg的实施例1合成的装载全氟己烷的空心介孔有机硅球分散于10mL MEM培养液(含体积分数10%小牛血清白蛋白)中,超声10min,获得混合液A;
2、将肺癌细胞A549和正常肺纤维细胞WI-38分别接种到两个250mL培养瓶中,向两个培养瓶中分别加入MEM培养液(含体积分数10%小牛胚胎血清、体积分数1%盘尼西林-链霉素),将两个培养瓶分别放入二氧化碳的培养箱中,在37℃下培养48h,然后小心移除液体,向两个培养瓶中分别加入混合液A,共同孵育4h,小心移除液体,用无菌PBS小心洗涤细胞3次,以完全除掉残余的空心介孔有机硅球;接着向两培养瓶中加入胰蛋白酶消化1分钟,用MEM培养液小心吹打,在1500rpm下离心3min,去除上清液,分别向肺癌细胞A549和正常肺纤维细胞WI-38中加入2mL无菌PBS,吹打均匀分散于两个10mm核磁样品管中,置于冰块中待用;
3、打开超极化129Xe的极化装置,加热30min至125℃,打开激光器,连接好核磁样品管,放入核磁谱仪中,将样品温度控制在25℃,调谐,匀场,通入超极化129Xe气体,进行信号采集,饱和照射功率6.5μT,照射时间5s,各核磁样品管中的液体采完一次129Xe CEST谱数据之后,用808nm激光照射30min之后再次采集129Xe CEST谱数据,129Xe CEST谱的采集化学位移范围58-220ppm,58-110ppm每隔2ppm采集一个点,110-190ppm每隔5ppm采集一个点,190-194ppm每隔0.5ppm采集一个点,194-200ppm每隔2ppm采集一个点,200-220ppm每隔5ppm采集一个点。
试验结果:
肺癌细胞A549与实施例1的装载全氟己烷的空心介孔有机硅球共同孵育后,在808nm激光照射前后,其129Xe CEST谱如图4所示,从图4可以看出,肺癌细胞A549明显的129XeCEST信号,激光照射后129Xe CEST信号基本消失;正常肺纤维细胞WI-38与实施例1的装载全氟己烷的空心介孔有机硅球共同孵育后,在808nm激光照射前后,其129Xe CEST谱如图5所示,从图5可以看出,正常肺纤维细胞WI-38基本没有信号,激光照射后129Xe CEST信号进一步减弱,由此可以说明,实施例1的装载全氟己烷的空心介孔有机硅球能够被肿瘤细胞较多的摄取,并且能够实现光刺激响应129Xe CEST信号转变。
试验二、本发明的装载全氟己烷的空心介孔有机硅球对肺癌细胞的129Xe MRI试验
试验方法:
1、称取10mg的实施例1合成的装载全氟己烷的空心介孔有机硅球分散于10mL MEM培养液(含体积分数10%小牛血清白蛋白)中,超声10min,获得混合液A;
2、将肺癌细胞A549和正常肺纤维细胞WI-38分别接种到两个250mL培养瓶中,向两个培养瓶中分别加入MEM培养液(含体积分数10%小牛胚胎血清、体积分数1%盘尼西林-链霉素),将两个培养瓶分别放入二氧化碳的培养箱中,在37℃下培养48h,然后小心移除液体,向两个培养瓶钟分别加入混合液A,共同孵育4h,小心移除液体,用无菌PBS小心洗涤细胞3次,以完全除掉残余的空心介孔有机硅球;接着向两培养瓶中加入胰蛋白酶消化1分钟,用MEM培养液小心吹打,在1500rpm下离心3min,去除上清液,分别向肺癌细胞A549和正常肺纤维细胞WI-38中加入2mL无菌PBS,吹打均匀分散于两个10mm核磁样品管中,置于冰块中待用;
3、打开超极化129Xe的极化装置,加热30min至125℃,打开激光器,连接好核磁样品管,放入核磁谱仪中,将样品温度控制在25℃,调谐,匀场,通入超极化129Xe气体,进行信号采集,饱和照射功率6.5μT,照射时间5s,各核磁样品管中的样品采完一次129Xe MRI成像之后,用808nm激光照射30min之后再次采集129Xe MRI成像,成像的化学位移80ppm和273ppm;
实验结果:
肺癌细胞A549与实施例1的装载全氟己烷的空心介孔有机硅球共同孵育后,在808nm激光照射前后,其129Xe MRI如图6所示,从图6中可以看出,肿瘤A549细胞有明显的129Xe CEST信号,图像较亮,激光照射后129Xe CEST信号基本消失,图像变暗;正常肺纤维细胞WI-38与实施例1的装载全氟己烷的空心介孔有机硅球共同孵育后,在808nm激光照射前后,其129Xe CEST谱如图7所示,从图7可以看出,正常肺纤维细胞WI-38基本没有信号,图像较暗,激光照射后129Xe CEST信号变化不大,由此说明,实施例1的装载全氟己烷的空心介孔有机硅球能够被肿瘤细胞较多的摄取,并且能够实现光刺激响应129Xe CEST信号转变。

Claims (1)

1.一种光刺激响应的装载全氟己烷的空心介孔有机硅球在制备129Xe磁共振造影剂中的应用,所述的光刺激响应的装载全氟己烷的空心介孔有机硅球以全氟己烷作为内核,中空介孔硅球为外壳,中空介孔硅球外壳上修饰有硫化铜和聚乙二醇。
CN202010160155.7A 2020-02-26 2020-02-26 一种光刺激响应的装载全氟己烷的空心介孔有机硅球的应用 Active CN112386713B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010160155.7A CN112386713B (zh) 2020-02-26 2020-02-26 一种光刺激响应的装载全氟己烷的空心介孔有机硅球的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010160155.7A CN112386713B (zh) 2020-02-26 2020-02-26 一种光刺激响应的装载全氟己烷的空心介孔有机硅球的应用

Publications (2)

Publication Number Publication Date
CN112386713A CN112386713A (zh) 2021-02-23
CN112386713B true CN112386713B (zh) 2021-11-05

Family

ID=74603808

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010160155.7A Active CN112386713B (zh) 2020-02-26 2020-02-26 一种光刺激响应的装载全氟己烷的空心介孔有机硅球的应用

Country Status (1)

Country Link
CN (1) CN112386713B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008027162A2 (en) * 2006-08-28 2008-03-06 The Trustees Of The University Of Pennsylvania 129xe biosensors and their use
CN102357250A (zh) * 2011-11-14 2012-02-22 中国科学院上海硅酸盐研究所 Mri导向的hifu增效剂及其制备方法
CN108392641A (zh) * 2018-04-03 2018-08-14 深圳大学 一种纳米乳剂及其制备方法与应用
CN109157663A (zh) * 2018-10-11 2019-01-08 中国科学院武汉物理与数学研究所 一种RGD-全氟化碳-纳米硅球129Xe磁共振成像显影剂及其制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109675034B (zh) * 2019-02-22 2021-04-30 重庆医科大学 一种多模态造影剂及其用途

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008027162A2 (en) * 2006-08-28 2008-03-06 The Trustees Of The University Of Pennsylvania 129xe biosensors and their use
CN102357250A (zh) * 2011-11-14 2012-02-22 中国科学院上海硅酸盐研究所 Mri导向的hifu增效剂及其制备方法
CN108392641A (zh) * 2018-04-03 2018-08-14 深圳大学 一种纳米乳剂及其制备方法与应用
CN109157663A (zh) * 2018-10-11 2019-01-08 中国科学院武汉物理与数学研究所 一种RGD-全氟化碳-纳米硅球129Xe磁共振成像显影剂及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
On the solubility of oxygen and xenon in n-hexane and n-perfluorohexane at room temperature;Giuseppe Graziano;《J Therm Anal Calorim》;20170209;第130卷;第497-501页 *
基于介孔有机氧化硅的肿瘤多模式成像及其引导下的增效治疗;卢楠;《中国博士学位论文全文数据库 医药卫生科技辑》;20170815(第08期);第E072-40页 *

Also Published As

Publication number Publication date
CN112386713A (zh) 2021-02-23

Similar Documents

Publication Publication Date Title
Ni et al. Single Ho3+‐doped upconversion nanoparticles for high‐performance T2‐weighted brain tumor diagnosis and MR/UCL/CT multimodal imaging
CN104826139B (zh) 一种rgd多肽靶向的超小四氧化三铁mri阳性纳米探针的制备方法
Hu et al. Polydopamine-decorated tobacco mosaic virus for photoacoustic/magnetic resonance bimodal imaging and photothermal cancer therapy
CN112759762B (zh) 一种用于肿瘤t1-t2磁共振成像的介孔聚多巴胺纳米粒
Wang et al. Gadolinium-labelled iron/iron oxide core/shell nanoparticles as T 1–T 2 contrast agent for magnetic resonance imaging
Yin et al. Biocompatible folate-modified Gd 3+/Yb 3+-doped ZnO nanoparticles for dualmodal MRI/CT imaging
CN102657881B (zh) 一种Fe3O4纳米磁共振造影剂材料的制备方法
Yang et al. Bio-inspired synthesis of PEGylated polypyrrole@ polydopamine nanocomposites as theranostic agents for T 1-weighted MR imaging guided photothermal therapy
CN110743019A (zh) 靶向肺腺癌肿瘤的细胞膜仿生纳米探针及其应用
Yin et al. MRI relaxivity enhancement of gadolinium oxide nanoshells with a controllable shell thickness
CN114177315A (zh) 前列腺癌靶向磁共振造影剂及应用
Zhou et al. Self-assembly of hyaluronic acid-mediated tumor-targeting theranostic nanoparticles
Tian et al. Single-step formulation of levodopa-based nanotheranostics–strategy for ultra-sensitive high longitudinal relaxivity MRI guided switchable therapeutics
CN108514642A (zh) 一种树状大分子稳定的超小四氧化三铁/金纳米花的制备方法
CN112386713B (zh) 一种光刺激响应的装载全氟己烷的空心介孔有机硅球的应用
CN107349435B (zh) 一种精氨酸稳定的中空泡状硅酸锰纳米粒的制备方法、产品及应用
Zhang et al. Preparation and MRI performances of core-shell structural PEG salicylic acid-gadolinium composite nanoparticles
CN107693803A (zh) 一种负载氧化锰的杂化海藻酸钠纳米凝胶的制备方法
CN110251688A (zh) 一种Gd掺杂碳点负载Fe3O4多模态成像探针的制备方法
CN112168983B (zh) 一种诊疗一体的中空碳纳米复合材料及其制备方法和应用
CN109106955A (zh) 一种酸环境响应的磁共振成像造影剂及其制备方法
CN105056253A (zh) 用于脂肪干细胞标记、活体示踪和治疗的多功能纳米探针
Xia et al. A facile synthesis of a theranostic nanoparticle by oxidation of dopamine-DTPA-Gd conjugates
Li et al. Hollow MnO2-Based Nanoprobes for Enhanced Photothermal/Photodynamic/Chemodynamic Co-Therapy of Hepatocellular Carcinoma
CN109157663A (zh) 一种RGD-全氟化碳-纳米硅球129Xe磁共振成像显影剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 430071 No. 30 West Hongshan, Wuhan, Hubei, Wuchang

Applicant after: Institute of precision measurement science and technology innovation, Chinese Academy of Sciences

Address before: 430071 No.30, Xiaohongshan West District, Wuchang District, Wuhan City, Hubei Province

Applicant before: WUHAN INSTITUTE OF PHYSICS AND MATHEMATICS, CHINESE ACADEMY OF SCIENCES

GR01 Patent grant
GR01 Patent grant