CN112386253A - 一种针对人体局部静脉血流参数的近红外光学检测方法 - Google Patents

一种针对人体局部静脉血流参数的近红外光学检测方法 Download PDF

Info

Publication number
CN112386253A
CN112386253A CN201910756476.0A CN201910756476A CN112386253A CN 112386253 A CN112386253 A CN 112386253A CN 201910756476 A CN201910756476 A CN 201910756476A CN 112386253 A CN112386253 A CN 112386253A
Authority
CN
China
Prior art keywords
wavelength
opt1
optical density
opt2
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910756476.0A
Other languages
English (en)
Inventor
刘军
朱敬祎
王玲玲
毛天慧
牟健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Xiangli Medical Technology Co ltd
Original Assignee
Zhejiang Xiangli Medical Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Xiangli Medical Technology Co ltd filed Critical Zhejiang Xiangli Medical Technology Co ltd
Priority to CN201910756476.0A priority Critical patent/CN112386253A/zh
Publication of CN112386253A publication Critical patent/CN112386253A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • A61B5/14553Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases specially adapted for cerebral tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • A61B5/14552Details of sensors specially adapted therefor

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Optics & Photonics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Neurology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

本发明公开一种针对人体局部静脉血流参数的近红外光学检测方法;光电传感器由一个三波长(760nm,850nm,805nm)发光二极管和两个光电探测器组成;基于组织代谢中氧合与还原血红蛋白的不同光谱特性,根据光在组织中吸收与散射的规律,获得人体局部组织血氧参量;三波长发光二极管与两个光电探测器排列与一条直线上,并且光源与两个光电探测器的间距分别为30mm和40mm(成人)或20mm和30mm(儿童)。

Description

一种针对人体局部静脉血流参数的近红外光学检测方法
技术领域
本发明属于生物医学工程技术领域,涉及一种针对人体局部静脉血流参数的近红外光学检测方法;
背景技术
组织氧合和还原血红蛋白的浓度的监测有助于了解缺氧缺血脑病患者及手术过程中患者局部组织的血容量,对治疗效果评定有重要意义;基于光学测量的无创监测人体组织氧代谢状况稳定可靠,使用方便安全;本技术是利用近红外光谱对血液参数进行检测的一种检测方法,结合基于光谱分析的凝血分析、血流分析,构成对血液参数的床旁检测,形成对血栓、血流和血供的综合分析;
由于在近红外波段,人体组织中的氧合、还原血红蛋白是主要的吸收体,故一些研究者假定组织光密度的变化只是由还原、氧合血红蛋白浓度的变化导致;在基于这一假设的情况下,比较常用的算法为基于修正的两波长朗伯-比尔定律的组织血氧检测;但实际情况是组织内的其他色素成分也会对组织光密度变化造成影响,比如细胞色素氧化酶(cyt-aa3cytochrome,oxidase),水分等等;虽然它们的含量较少,但是为了更精准的测量组织血氧,在实际应用中也希望将这些物质的变化引起的光密度变化消除掉,以提高测量系统的灵敏度和准确度;由于HbO2和Hb在波长805nm附近具有相等的消光系数,本专利提出近红外多光谱的组织血氧检测方法将波长为760nm与850nm的出射光密度差同时减去805nm的出射光密度差,可以消除掉背景吸收和外层组织对于测量结果的影响,进而提高系统的检测灵敏度和信噪比;
发明内容
本发明的目的是针对现有技术的不足,提供一种人体局部组织血氧参量的检测系统;
本发明系统包括三波长发光二极管LS、光电接收管OPT1、光电接收管OPT2;光电接收管OPT1与三波长发光二极管LS的水平距离为r1,光电接收管OPT2与三波长发光二极管LS的水平距离为r2
三波长发光二极管与两个光电探测器排列与一条直线上,并且光源与两个光电探测器的间距分别为30mm和40mm(成人)或20mm和30mm(儿童);
三波长发光二极管LS发出三个不同波长的光源;λ1=760nm,λ2=850nm,λ3=805nm;
一种针对人体局部静脉血流参数的近红外光学检测方法包括如下步骤:
(1)在待测组织表面保持设定间距的两个位置上各安放一个光电接收管,分别为OPT1,OPT2;在上述两个光电接收管连线的延长线的一端,安放三个不同发光波长的发光二极管作为光源(LS);
(2)发光二极管分时发出波长为λi的光,i=1、2、3,用两个光电接收管OPT1,OPT2依次分别测量对应波长的散射光强值;
(3)利用光密度的计算公式,计算算出不同检测距离下,对应各个发光波长的光密度
Figure BDA0002168869170000021
Figure BDA0002168869170000022
为例:
Figure BDA0002168869170000023
Figure BDA0002168869170000024
其中
Figure BDA0002168869170000025
分别表示两个光电接收管OPT1和OPT2处的光密度;DPF表示深层组织中的部分差分路径因子,通过蒙特卡洛仿真和查表可获得;
(4)根据步骤(3)测定的
Figure BDA0002168869170000029
计算各个波长两个光电接收管OPT1和OPT2处的出射光密度差:
Figure BDA0002168869170000026
Figure BDA0002168869170000027
Figure BDA0002168869170000028
(5)在近红外光波段,可近似认为因子G与波长无关;将波长为760nm与850nm的出射光密度差同时减去805nm的出射光密度差,进而消除掉背景吸收和外层组织等干扰:
Figure BDA0002168869170000031
Figure BDA0002168869170000032
(6)根据步骤(5)计算氧合血红蛋白HbO2、还原血红蛋白Hb含量和局部组织氧饱和度rSO2:
Figure BDA0002168869170000033
Figure BDA0002168869170000034
Figure BDA0002168869170000035
本发明提出近红外多光谱的组织血氧检测方法将波长为760nm与850nm的出射光密度差同时减去805nm的出射光密度差,可以消除掉背景吸收和外层组织对于测量结果的影响,进而提高系统的检测灵敏度和信噪比;
附图说明
图1现有检测方法示意图;
图2本发明所述检测方法示意图;
图3本发明所述检测方法流程图;
具体实施方式
下面根据附图对本发明做进一步的分析;
图1现有检测方法示意图;
一种针对人体局部静脉血流参数的近红外光学检测方法包括如下步骤,如图3所示:
(1)在待测组织表面保持设定间距的两个位置上各安放一个光电接收管,分别为OPT1(检测器1),OPT2(检测器2);在上述两个光电接收管连线的延长线的一端,安放三个不同发光波长的发光二极管作为光源(LS);如图2;
(2)发光二极管分时发出波长为λi的光,i=1,2,3,用两个光电接收管OPT1,OPT2依次分别测量对应波长的散射光强值;
(3)利用光密度的计算公式,计算不同检测距离下,对应各个发光波长的光密度
Figure BDA0002168869170000041
Figure BDA0002168869170000042
Figure BDA0002168869170000043
其中
Figure BDA0002168869170000044
分别表示从左到右的两个光电接收管OPT1和OPT2处的光密度;DPF表示深层组织中的部分差分路径因子,通过蒙特卡洛仿真和查表可获得;
(4)根据步骤(3)测定的
Figure BDA0002168869170000045
计算各个波长两个光电接收管OPT1和OPT2处的出射光密度差:
Figure BDA0002168869170000046
Figure BDA0002168869170000047
Figure BDA0002168869170000048
(5)在近红外光波段,可近似认为因子G与波长无关;将波长为760nm与850nm的出射光密度差同时减去805nm的出射光密度差,进而消除掉背景吸收和外层组织等干扰:
Figure BDA0002168869170000049
Figure BDA00021688691700000410
(6)根据步骤(5)计算氧合血红蛋白HbO2、还原血红蛋白Hb含量和局部组织氧饱和度rSO2:
Figure BDA00021688691700000411
Figure BDA00021688691700000412
Figure BDA0002168869170000051

Claims (1)

1.一种针对人体局部静脉血流参数的近红外光学检测方法,包括以下步骤:
(1)在待测组织表面保持设定间距的两个位置上各安放一个光电接收管,分别为OPT1,OPT2;在上述两个光电接收管连线的延长线的一端,安放三个不同发光波长的发光二极管作为光源(LS);
光电接收管OPT1与三波长发光二极管LS的水平距离为r1,光电接收管OPT2与三波长发光二极管LS的水平距离为r2
(2)发光二极管分时发出波长为λi的光,i=1、2、3,用两个光电接收管OPT1,OPT2依次分别测量对应波长的散射光强值;λ1=760nm,λ2=850nm,λ3=805nm;
(3)利用光密度的计算公式,计算算出不同检测距离下,对应各个发光波长的光密度
Figure FDA0002168869160000011
Figure FDA0002168869160000012
为例:
Figure FDA0002168869160000013
Figure FDA0002168869160000014
其中
Figure FDA0002168869160000015
分别表示两个光电接收管OPT1和OPT2处的光密度;DPF表示深层组织中的部分差分路径因子,通过蒙特卡洛仿真和查表可获得;
(4)根据步骤(3)测定的
Figure FDA0002168869160000016
计算各个波长两个光电接收管OPT1和OPT2处的出射光密度差:
Figure FDA0002168869160000017
Figure FDA0002168869160000018
Figure FDA0002168869160000019
(5)在近红外光波段,可近似认为因子G与波长无关;将波长为760nm与850nm的出射光密度差同时减去805nm的出射光密度差,进而消除掉背景吸收和外层组织等干扰:
Figure FDA0002168869160000021
Figure FDA0002168869160000022
(6)根据步骤(5)计算氧合血红蛋白HbO2、还原血红蛋白Hb含量和局部组织氧饱和度rSO2:
Figure FDA0002168869160000023
Figure FDA0002168869160000024
Figure FDA0002168869160000025
CN201910756476.0A 2019-08-16 2019-08-16 一种针对人体局部静脉血流参数的近红外光学检测方法 Pending CN112386253A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910756476.0A CN112386253A (zh) 2019-08-16 2019-08-16 一种针对人体局部静脉血流参数的近红外光学检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910756476.0A CN112386253A (zh) 2019-08-16 2019-08-16 一种针对人体局部静脉血流参数的近红外光学检测方法

Publications (1)

Publication Number Publication Date
CN112386253A true CN112386253A (zh) 2021-02-23

Family

ID=74601838

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910756476.0A Pending CN112386253A (zh) 2019-08-16 2019-08-16 一种针对人体局部静脉血流参数的近红外光学检测方法

Country Status (1)

Country Link
CN (1) CN112386253A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1911172A (zh) * 2006-08-25 2007-02-14 清华大学 人体组织氧合与还原血红蛋白浓度绝对量的检测方法
CN101972148A (zh) * 2010-11-19 2011-02-16 哈尔滨工业大学 基于经验模态分解的近红外脑功能检测的扰动消除方法
CN107773217A (zh) * 2017-09-29 2018-03-09 天津大学 活体组织微循环代谢动态测量装置及方法
CN110013225A (zh) * 2019-04-29 2019-07-16 河南大学 一种用于判别输尿管与血管的装置及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1911172A (zh) * 2006-08-25 2007-02-14 清华大学 人体组织氧合与还原血红蛋白浓度绝对量的检测方法
CN101972148A (zh) * 2010-11-19 2011-02-16 哈尔滨工业大学 基于经验模态分解的近红外脑功能检测的扰动消除方法
CN107773217A (zh) * 2017-09-29 2018-03-09 天津大学 活体组织微循环代谢动态测量装置及方法
CN110013225A (zh) * 2019-04-29 2019-07-16 河南大学 一种用于判别输尿管与血管的装置及方法

Similar Documents

Publication Publication Date Title
CA2558643C (en) Pulse oximetry motion artifact rejection using near infrared absorption by water
JP5062698B2 (ja) 光学的測定装置、光学的測定方法、及び光学的測定プログラムを格納した記憶媒体
US7072701B2 (en) Method for spectrophotometric blood oxygenation monitoring
US7215987B1 (en) Method and apparatus for processing signals reflecting physiological characteristics
US20080208019A1 (en) Modified Pulse Oximetry Technique For Measurement Of Oxygen Saturation In Arterial And Venous Blood
EP1259791A2 (en) Method for non-invasive spectrophotometric blood oxygenation monitoring
JP6276195B2 (ja) 血液中のヘモグロビン濃度を非侵襲的に測定するための方法、集成装置、センサ、及びコンピュータ・プログラム製品
US20090270700A1 (en) Non-invasive glucose sensor
CN209899402U (zh) 反射式血氧仪
Huang et al. Analysis of reflectance photoplethysmograph sensors
CN105942984B (zh) 黄疸检测方法及其装置
Timm et al. LED based sensor system for non-invasive measurement of the hemoglobin concentration in human blood
Stubán et al. Non-invasive calibration method for pulse oximeters
CN112386253A (zh) 一种针对人体局部静脉血流参数的近红外光学检测方法
WO2019026062A1 (en) METHOD FOR MEASURING OXYGEN SATURATION OF ARTERIAL BLOOD AND APPARATUS THEREFOR
EP2073695A1 (en) Method and apparatus for processing signals reflecting physiological characteristics
US20240049996A1 (en) Nirs / tissue oximetry based method to measure arterial blood oxygen saturation from pulsatile hemoglobin waveforms
Timm et al. Sensor System Concept for Non-Invasive Blood Diagnosis
Paez et al. Development of noise-immune oximetry: Theory and measurement
CN115089171A (zh) 一种增强深肤色人群血氧测量结果准确性的方法及装置
CN117442200A (zh) 一种高精度测量大脑皮层组织血氧状态的装置
Abdallah et al. Signal Processing by Reflectance Pulse Oximetry for Monitoring the fractional Oxygen Saturation and the Detektion of Anemia
Talsma et al. Tissue-optical model to determine changes in saturation and blood volume during ischemia
Teng et al. Non-invasive detecting cerebral hemoglobin concentration of newborns during oxygen inhalation using near-infrared spectroscopy

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210223

RJ01 Rejection of invention patent application after publication