CN112376033B - C、Al双元素注入制备低摩擦氟硅橡胶表面的方法 - Google Patents

C、Al双元素注入制备低摩擦氟硅橡胶表面的方法 Download PDF

Info

Publication number
CN112376033B
CN112376033B CN202011362699.8A CN202011362699A CN112376033B CN 112376033 B CN112376033 B CN 112376033B CN 202011362699 A CN202011362699 A CN 202011362699A CN 112376033 B CN112376033 B CN 112376033B
Authority
CN
China
Prior art keywords
fluorosilicone rubber
friction
target
ion source
fvmq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011362699.8A
Other languages
English (en)
Other versions
CN112376033A (zh
Inventor
张斌
贾倩
张俊彦
杨生荣
王宏刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou Institute of Chemical Physics LICP of CAS
Original Assignee
Lanzhou Institute of Chemical Physics LICP of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou Institute of Chemical Physics LICP of CAS filed Critical Lanzhou Institute of Chemical Physics LICP of CAS
Priority to CN202011362699.8A priority Critical patent/CN112376033B/zh
Publication of CN112376033A publication Critical patent/CN112376033A/zh
Application granted granted Critical
Publication of CN112376033B publication Critical patent/CN112376033B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/48Ion implantation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • C08J2383/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen, and oxygen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种C、Al双元素注入制备低摩擦氟硅橡胶表面的方法,是采用真空电弧离子源,在氟硅橡胶表面依次注入C、Al,获得机械强度改善的低摩擦氟硅橡胶,氟硅橡胶的摩擦系数从0.8降低到0.25左右。本发明由于氟硅橡胶C元素的掺入能够有效提高了FVMQ机械强度、耐油性和溶胀性;Al元素的掺入能够降低FVMQ的摩擦系数,获得低摩擦补强FVMQ,对工业应用来说,本发明具有重要意义。另外,本发明采用Mevva‑5.Ru真空电弧离子源在FVMQ表面进行了双元素(C和Al)的序列注入,其操作简单,可控性强。

Description

C、Al双元素注入制备低摩擦氟硅橡胶表面的方法
技术领域
本发明涉及一种表面改性降低氟硅橡胶表面摩擦系数的方法,尤其涉及一种C、Al双元素注入制备低摩擦氟硅橡胶表面的方法,属于聚合物表面改性领域。
背景技术
氟硅橡胶(FVMQ)是一种无色透明高黏滞塑性直链高分子化合物,是以柔软的Si-O为主链构成的线型高聚物,与硅相连的侧基为甲基、乙烯基和三氟丙基,分子量在50~80万之间。FVMQ在保持有机硅材料的耐热性、耐寒性、耐高电压性、耐气候老化等优异性能的基础上,由于含氟基团的引入,还有优良的耐航空燃料油、液压油、机油、化学试剂及溶剂等性能。FVMQ被用于国防、交通运输、电子电气、医学等领域,宇航、飞机、汽车、石油化工等工业部门,具体可作为高档汽车或机器中于燃料油、润滑油接触的密封件、衬垫、膜片、连接器、管类等。FVMQ在这些应用场景中的高可靠服役与其摩擦学性能息息相关,低摩擦高耐磨的FVMQ被相关领域需要。另外,FVMQ在应用中面临机械强度低,补强过程复杂的问题,因此,改善和提高氟硅橡胶的强度也是一个重要的研究课题。
发明内容
本发明的目的是提供一种C、Al双元素改性制备低摩擦氟硅橡胶的方法,以获得具有高机械强度低摩擦高耐磨性能的FVMQ。
一、FVMQ的改性
本发明改性制备低摩擦氟硅橡胶的方法,是采用真空电弧离子源,在FVMQ表面依次注入C、Al,获得机械强度改善的低摩擦氟硅橡胶。具体包括以下工艺步骤:
(1)将氟硅橡胶用细砂纸进行打磨,去除表面的污染物,获得光滑样品;再放置于30~50℃肥皂水中用小毛刷进一步清洗;然后放入加热至60~85℃的去离子水中超声清洗5~10 min,重复3~5次,去除表面残余肥皂及污染物;清洗结束后放入烘箱,于60~85℃烘干;
(2)将清洗后的氟硅橡胶放入真空腔,真空抽至1×10-4 Pa;真空腔内安装有C、Al靶材作为注入材料;
(3)打开电弧电源,调节C靶电流为35~50 A ,占空比为40%,产生束电流密度为0.25~0.5 A/100cm2·s;
(4)控制加速电压-25 kV,额定电流90 A,频率1~5 kHz,采用真空电弧离子源在氟硅橡胶表面注入C,时间为100~300 s;
(5)关闭C靶同时打开Al靶,调节Al靶电流为30~50 A,占空比为60%,产生束电流密度为0.25~0.5 A/100cm2·s;
(6)保持加速电压-25 kV,额定电流90A,频率3 kHz,采用真空电弧离子源注入Al,时间120~360 s;待腔体冷却后取出,即得改性低摩擦氟硅橡胶。
上述真空电弧离子源采用Mevva-5·Ru真空电弧离子源,电弧电源采用脉冲弧电源。
通过上述方法制备的低摩擦氟硅橡胶的结构见图1。
二、改性氟硅橡胶的摩擦性能
测试方法:在往复摩擦试验机上检测双元素序列注入处理后的FVMQ,选择直径为ø6 mm 的GCr15钢球作为对偶球。具体参数如下:摩擦载荷为5 N,振幅为5mm,频率5 Hz,湿度30 %,测试时间为40 min。
测试结果:测试后的FVMQ肉眼几乎看不到磨损痕迹。摩擦系数从0.8降低至0.25左右。
综上所述,本发明将C、Al双元素序列注入FVMQ中,由于氟硅橡胶C元素的掺入能够有效提高了FVMQ机械强度、耐油性和溶胀性;Al元素的掺入能够降低FVMQ的摩擦系数,获得低摩擦补强FVMQ,对工业应用来说,本发明具有重要意义;另外,本发明采用Mevva-5.Ru真空电弧离子源在FVMQ表面进行了双元素(C和Al)的序列注入,其操作简单,可控性强。
附图说明
图1为本发明C、Al双元素序列注入改性低摩擦氟硅橡胶的结构示意图,其中1为先注入的C元素层,2为后注入的Al元素层。
具体实施方式
下面通过具体实施例对本发明C、Al双元素序列注入改性低摩擦氟硅橡胶的方法及改性后产品的性能作进一步说明。
实施例1
(1)将FVMQ用细砂纸进行打磨,去除表面的污染物,获得光滑样品,在放置于45 ℃肥皂水中用小毛刷进一步清洗;然后放入加热至80 ℃左右的去离子水中超声清洗8min,重复5次,去除表面残余肥皂及污染物;清洗结束后将FVMQ放入烘箱,于85 ℃烘干30 min,冷却至室温备用;
(2)将处理后的FVMQ放入真空腔,真空抽至1×10-4 Pa(真空腔中预先安置了C靶和Al靶作为离子注入材料);
(3)打开电弧电源,调节C靶电流为43 A,占空比为40%,产生束电流密度为0.43 A/100 cm2·s;控制加速电压-25 kV,额定电流90A,频率3 kHz,采用Mevva-5·Ru真空电弧离子源注入C,时间为230s;
(4)关闭C靶同时打开Al靶,调节Al靶电流为43 A,占空比为60%,产生束电流密度为0.43 A/100cm2·s;
(5)保持加速电压-25 kV,额定电流90A,频率3 kHz;采用Mevva-5·Ru真空电弧离子源注入Al,时间为280 s;待腔体冷却后取出,即得改性FVMQ;
(6)在往复摩擦试验机上检测改性FVMQ的摩擦性能:选择直径为ø6 mm 的GCr15钢球作为对偶球。具体参数如下:摩擦载荷为5 N,振幅为5 mm,频率5Hz,湿度30%,测试时间为40 min,测试后的FVMQ肉眼几乎看不到磨损痕迹,摩擦系数为0.25。
实施例2
(1)FVMQ的清洗:同实施例1;
(2)将处理后的FVMQ放入真空腔,真空抽至1×10-4 Pa(真空腔中预先安置了C靶和Al靶作为离子注入材料);
(3)打开电弧电源,调节C靶电流为35 A,占空比为40%,产生束电流密度为0.35 A/100cm2·s;控制加速电压-25 kV,额定电流90 A,频率5 kHz,采用Mevva-5·Ru真空电弧离子源注入C,时间300 s;
(4)关闭C靶同时打开Al靶,调节Al靶电流为35 A,占空比为60%,产生束电流密度为0.35 A/100cm2·s;
(5)保持加速电压-25 kV,额定电流90 A,频率5 kHz,采用Mevva-5·Ru真空电弧离子源注入Al,时间为360 s,待所述腔体冷却后取出,即得改性FVMQ;
(6)在往复摩擦试验机上检测改性FVMQ的摩擦性能:选择直径为ø6 mm 的GCr15钢球作为对偶球。具体参数如下:摩擦载荷为5 N,振幅为5 mm,频率5 Hz,湿度30 %,测试时间为40 min,测试后的FVMQ肉眼几乎看不到磨损痕迹,摩擦系数为0.23。
实施例3
(1)清洗处理FVMQ同实施例1;
(2)将处理后的FVMQ放入真空腔,真空抽至1×10-4 Pa(真空腔中预先安置了C靶和Al靶作为离子注入材料);
(3)打开电弧电源,调节C靶电流为50 A,占空比为40%,产生束电流密度为0.50 A/100cm2·s;控制加速电压-25 kV,额定电流90 A,频率1 kHz,采用Mevva-5·Ru真空电弧离子源注入C,时间为100s;
(4)关闭C靶同时打开Al靶,调节Al靶电流为50 A,占空比为60%,产生束电流密度为0.50A/100cm2·s;
(5)保持加速电压-25 kV,额定电流90 A,频率1 kHz,采用Mevva-5·Ru真空电弧离子源注入Al,时间为120 s;待腔体冷却后取出,即得改性FVMQ;
(6)在往复摩擦试验机上检测改性FVMQ的摩擦性能:选择直径为ø6 mm 的GCr15钢球作为对偶球。具体参数如下:摩擦载荷为5 N,振幅为5 mm,频率5 Hz,湿度30 %,测试时间为40 min,测试后的FVMQ肉眼几乎看不到磨损痕迹,摩擦系数为0.27。

Claims (3)

1.C、Al双元素注入制备低摩擦氟硅橡胶表面的方法,是采用真空电弧离子源,在氟硅橡胶表面依次注入C、Al,获得机械强度改善的低摩擦氟硅橡胶表面;具体包括以下步骤:
(1)将氟硅橡胶进行清洗去除表面污染物;
(2)将清洗后的氟硅橡胶放入真空腔,真空抽至1×10-4 Pa;真空腔内安装有C、Al靶材作为注入材料;
(3)打开电弧电源,调节C靶电流为35~50 A ,占空比为40%,产生束电流密度为0.25~0.5 A/100cm2·s;
(4)控制加速电压-25 kV,额定电流90 A,频率1~5 kHz,采用真空电弧离子源在氟硅橡胶表面注入C,时间为100~300s;真空电弧离子源采用Mevva-5·Ru真空电弧离子源;
(5)关闭C靶同时打开Al靶,调节Al靶电流为30~50 A,占空比为60%,产生束电流密度为0.25~0.5 A/100cm2·s;
(6)保持加速电压-25 kV,额定电流90 A,频率3 kHz,采用真空电弧离子源注入Al,时间120~360 s;待腔体冷却后取出,即得改性摩擦氟硅橡胶。
2.如权利要求1所述C、Al双元素注入制备低摩擦氟硅橡胶表面 的方法,其特征在于:氟硅橡胶的表面清洗,是将氟硅橡胶用细砂纸进行打磨,去除表面的污染物,获得光滑样品;再放置于30~50 ℃肥皂水中用小毛刷进一步清洗;然后放入加热至60~85℃的去离子水中超声清洗5~10 min,重复3~5次,去除表面残余肥皂及污染物;清洗结束后放入烘箱,于60~85℃烘干。
3.如权利要求1所述C、Al双元素注入制备低摩擦氟硅橡胶表面的方法,其特征在于:所述电弧电源采用脉冲弧电源。
CN202011362699.8A 2020-11-27 2020-11-27 C、Al双元素注入制备低摩擦氟硅橡胶表面的方法 Active CN112376033B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011362699.8A CN112376033B (zh) 2020-11-27 2020-11-27 C、Al双元素注入制备低摩擦氟硅橡胶表面的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011362699.8A CN112376033B (zh) 2020-11-27 2020-11-27 C、Al双元素注入制备低摩擦氟硅橡胶表面的方法

Publications (2)

Publication Number Publication Date
CN112376033A CN112376033A (zh) 2021-02-19
CN112376033B true CN112376033B (zh) 2021-07-23

Family

ID=74588776

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011362699.8A Active CN112376033B (zh) 2020-11-27 2020-11-27 C、Al双元素注入制备低摩擦氟硅橡胶表面的方法

Country Status (1)

Country Link
CN (1) CN112376033B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113201720B (zh) * 2021-05-18 2022-06-14 中国科学院兰州化学物理研究所 一种通过原位离子共注入构筑高承载低摩擦橡胶表面的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5882738A (en) * 1997-12-19 1999-03-16 Advanced Micro Devices, Inc. Apparatus and method to improve electromigration performance by use of amorphous barrier layer
CN1670392A (zh) * 2005-03-31 2005-09-21 哈尔滨理工大学 纳米表面改性弹性金属塑料瓦及其制造方法
CN101880402A (zh) * 2010-06-30 2010-11-10 中国人民解放军第三军医大学第二附属医院 医用硅橡胶的表面改性方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104674168B (zh) * 2015-03-03 2016-11-30 温州职业技术学院 一种聚合物高分子材料等离子体表面改性工艺

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5882738A (en) * 1997-12-19 1999-03-16 Advanced Micro Devices, Inc. Apparatus and method to improve electromigration performance by use of amorphous barrier layer
CN1670392A (zh) * 2005-03-31 2005-09-21 哈尔滨理工大学 纳米表面改性弹性金属塑料瓦及其制造方法
CN101880402A (zh) * 2010-06-30 2010-11-10 中国人民解放军第三军医大学第二附属医院 医用硅橡胶的表面改性方法

Also Published As

Publication number Publication date
CN112376033A (zh) 2021-02-19

Similar Documents

Publication Publication Date Title
CN112376033B (zh) C、Al双元素注入制备低摩擦氟硅橡胶表面的方法
Yang et al. Enhanced dielectric properties and actuated strain of elastomer composites with dopamine-induced surface functionalization
CN103068909B (zh) 氟橡胶成型品
Wang et al. UV-cured nanocomposite coating for surface charging mitigation and breakdown strength enhancement: exploring the combination of surface topographical structure and perfluorooctyl chain
Haijuan et al. Surface modification of poly (p-phenylene terephthalamide) fibers with HDI assisted by supercritical carbon dioxide
JP6383802B2 (ja) フッ素ゴム組成物及びフッ素ゴム架橋物
Zhu et al. Plasma-electrified repair of damaged polymer composites for surface crack healing and insulation recovery
Nazir et al. AC corona resistance of micro-ATH/nano-Al 2 O 3 filled silicone rubber composites
CN109679354A (zh) 高抗撕裂性能的氟硅橡胶组合物及其制备方法
KR20110034728A (ko) 연속식 상압플라즈마 장치를 이용한 탄소섬유의 표면처리방법
Nie et al. Effects of plasma and nitric acid treatment of carbon fibers on the mechanical properties of thermoplastic polymer composites.
CN112376031B (zh) 低温电子束激发等离子体注入碳纳米团簇制备低摩擦高耐磨硅橡胶表面的方法
CN112321880B (zh) 双金属离子注入改性聚醚醚酮表面的方法
JP7293302B2 (ja) フッ素ゴム組成物およびフッ素ゴム架橋物
Lee et al. Evaluation of Aging Behavior of Nitrile Butadiene Rubbers via Oxygen-consumption Experiments
CN112480452B (zh) 各向异性织构/金属离子注入改性聚合物表面的方法
Choi et al. Effect of oxygen plasma treatment on anodic bonding
Mahmoud et al. Dielectric Properties of Polymer Blends Using Least Square Method
Rajab et al. Comparison of low thermal fault gases of various fatty acid mono esters
CN112376032A (zh) 金属离子注入制备低摩擦丁腈橡胶表面的方法
Huang et al. Effect of silicone grease soaking on electrical tree degradation of silicone rubber
Dunn et al. Using Simulated End-Use Conditions in Assessing the High Temperature Performance of Oil Resistant Vulçanizates
CN110468580A (zh) 一种辉光放电等离子体表面处理方法及装置
Su et al. Effect of Interfacial Pressure on Electrical Tree between XLPE and Silicone Rubber
KR101439747B1 (ko) 퍼지 컨트롤 솔레노이드 밸브

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant