CN112375804A - 一种Au/g-C3N4全天候光催化抗菌材料及其明-暗双模式抗菌机理 - Google Patents

一种Au/g-C3N4全天候光催化抗菌材料及其明-暗双模式抗菌机理 Download PDF

Info

Publication number
CN112375804A
CN112375804A CN202011068980.0A CN202011068980A CN112375804A CN 112375804 A CN112375804 A CN 112375804A CN 202011068980 A CN202011068980 A CN 202011068980A CN 112375804 A CN112375804 A CN 112375804A
Authority
CN
China
Prior art keywords
antibacterial
dark
photocatalytic
light
cfu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011068980.0A
Other languages
English (en)
Other versions
CN112375804B (zh
Inventor
李海彦
张宏达
马铭瑞
金丽虹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun University of Science and Technology
Original Assignee
Changchun University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun University of Science and Technology filed Critical Changchun University of Science and Technology
Priority to CN202011068980.0A priority Critical patent/CN112375804B/zh
Publication of CN112375804A publication Critical patent/CN112375804A/zh
Application granted granted Critical
Publication of CN112375804B publication Critical patent/CN112375804B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/18Testing for antimicrobial activity of a material
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/195Assays involving biological materials from specific organisms or of a specific nature from bacteria
    • G01N2333/24Assays involving biological materials from specific organisms or of a specific nature from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
    • G01N2333/245Escherichia (G)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biotechnology (AREA)
  • Toxicology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Composite Materials (AREA)
  • Immunology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Manufacturing & Machinery (AREA)
  • Agronomy & Crop Science (AREA)
  • Inorganic Chemistry (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Dentistry (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种Au/g‑C3N4全天候光催化抗菌材料,制备的具体步骤如下:第一步、通过三聚氰胺的热聚合制备g‑C3N4纳米材料,将4g三聚氰胺粉末放入氧化铝坩埚中;第二步、将坩埚放入马弗炉中,设置程序将温度以3℃/min的速度升温到550℃,在空气气氛中煅烧2小时;第三步、将最终产物在自然冷却到室温,并用研钵研磨成粉末;第四步、通过煅烧方法制备了一系列具有不同Au浓度的Au/g‑C3N4纳米复合材料,并命名为x%Au/g‑C3N4;第五步、将获得的g‑C3N4样品重新分散在5mL蒸馏水中,然后加入氯金酸溶液,将悬浮液搅拌并干燥,将获得的粉末放入马弗炉中,在550℃下煅烧2小时;第六步、通过重复上述实验分别制备0.3%,0.6%,0.9%,1.2%的Au/g‑C3N4纳米复合材料。

Description

一种Au/g-C3N4全天候光催化抗菌材料及其明-暗双模式抗菌 机理
技术领域
本发明涉及抗菌材料技术领域,具体是一种Au/g-C3N4全天候光催化抗菌材料及其明-暗双模式抗菌机理。
背景技术
随着生活水平的提高,人们越来越意识到健康的重要性,微生物污染已成为人们共同关注和亟待解决的问题。据估计,全世界70%的食源性疾病是由食用被各种致病性微生物污染的食物和水引起的。最传统的水消毒方法是使用氯,但氯化后往往产生副产物。光催化技术能以绿色、高效、广谱的方式杀灭病原微生物,是一个具有巨大应用潜力的新研究领域。近年来,半导体光催化剂在处理水体中各种微生物方面的研究越来越多。其中,传统的光催化剂仍TiO2和ZnO为主。虽然许多研究成果取得了优异的抗菌性能,但它们存在阳光利用率低、在无光照条件下对细菌无活性的问题,这很大程度上限制了它们的应用范围。
针对传统的TiO2和ZnO半导体的宽带隙和低太阳光利用率的问题,研究人员采用了多种方法来扩大光催化剂的太阳光吸收范围,包括非金属掺杂,金属掺杂,有机敏化等。这些方法可以提高太阳光的利用率同时,也削弱了半导体材料的光热稳定性。因此,开发带隙窄,稳定性好,活性高的光催化材料越来越迫切。石墨化氮化碳(g-C3N4)是理想的候选物,其带隙能量(Eg)为2.7eV,可以根据激发波长的转换公式由可见光(400nm<λ<459nm)激发。例如:λ=1240/Eg。此外,g-C3N4具有无金属,无毒,化学性质稳定,热稳定性好(在700℃完全分解),合成成本低(前驱体的来源广泛,包括三聚氰胺,尿素,硫脲,氰胺,双氰胺等),以及较大的比表面积等。
针对在黑暗状态下光催化剂对细菌无抗菌活性的问题,研究人员还进行了许多尝试来解决该问题。例如,wang等设计在Ti片上电化学生长TiO2,然后通过溅射法在其表面加载一层Au纳米颗粒,在黑暗条件下金黄色葡萄球菌的灭活率达到95%。在这种Au/TiO2系统中,Au纳米粒子的浓度较高,从而增加了合成成本,而且TiO2负载在Ti片上,限制了其在实际工作中的应用。Yi等人设计并制备了Zn@ZnO颗粒,在无光照条件下,通过牺牲Zn生成活性氧物质(ROS)来实现抗菌活性。但是,由于Zn负载量的限制,该材料将在Zn耗尽后失去其抗菌性能。鉴于上述限制,开发稳定,高效,具有可见光吸收的光催化剂以达到24小时有-无光照条件下的全天候持续抗菌作用。
最传统的水消毒方法是使用氯氯基消毒剂,主要包括氯气、次氯酸钠和次氯酸钙,这些消毒剂的水解或解离产生次氯酸和次氯酸根离子作为消毒的有效成分(请参阅图16)。现有技术的缺点:氯是目前使用最为广泛的消毒剂,用含氯的消毒药剂对自来水进行消毒杀菌,价廉、效果好、操作方便,深受欢迎,全世界通用。但是氯对细菌细胞杀灭效果好,同样,对其它生物体细胞、人体细胞也有严重影响。氯化后往往会产生消毒副产物,由于其出现频率高、浓度高和毒性强,被大家广泛关注。消毒副产物往往会对人体有很大的伤害,影响人类的身体健康。添加氯作为一种有效的杀菌消毒手段,目前仍被世界上超过80%的水厂使用着。所以,市政自来水中必须保持一定量的余氯,以确保饮用水的微生物指标安全。但是,当氯和有机酸反应,就会产生许多致癌的副产物,比如三氯甲烷等。超过一定量的氯,就会对人体产生许多危害,且带有难闻的气味,俗称“漂白粉味”。外用自来水中的氯,对任何有毛细孔如皮肤、鼻孔、口腔、肺部、毛发、眼睛、肉类蔬果菜等氧化表层,有更直接性的危害,因为氯很容易快速被上述物体快速吸收。儿童幼嫩的皮肤和毛发对此最为敏感,科学研究证明:氯不仅可经由食物的摄取,也经皮肤吸收而对人体产生影响,包括膀胱癌、肝癌、直肠癌、心脏疾病、动脉硬化、贫血症、高血压和过敏等症状,这都是和氯有关。
现有技术二的技术方案
半导体光催化技术以绿色、广谱的方式杀灭病原微生物,是一个具有巨大应用潜力的新研究领域。其机理如下:利用太阳光激发半导体材料产生光生电子和空穴,光生电子和空穴分别与氧气和水作用产生超氧自由基(·O2 -)和羟基自由基(·OH)活性氧物质,·O2 -和·OH具有强氧化能力,能够穿透细胞膜,破坏细胞壁结构,使细菌、病毒内容物渗出,从而死亡。
现有技术二的缺点
传统的半导体光催化剂以TiO2和ZnO为主,虽然许多研究成果取得了优异的抗菌性能,但它们存在两个方面的问题。一方面,TiO2和ZnO禁带宽度大,只能吸收紫外光、紫外光只占太阳光谱的4%,因而太阳光利用率低。另一方面,光催化抗菌必须在有光照的条件下才能进行,在无光照条件下,半导体无法被激发产生活性氧物质,因此对细菌无抗菌活性。这两个方面很大程度上限制了它们的实际应用。
本发明基于细菌呼吸链的标准还原电位(NAD+/NADH,-0.32V;FAD/FADH2,-0.06V;细胞色素c(Fe3+/Fe2+),0.29Vvs.NHE)和半导体的能级位置(Au,Ef=0.45V;g-C3N4,ECB=-1.11V),选择能级匹配的Au/g-C3N4系统为研究对象,该系统结合了g-C3N4的可见光吸收,大比表面积和Au优异的电子传输能力,将其应用于抗菌领域,实现了在有光照-无光照条件下的全天候持续抗菌。详细地研究了接触时间,Au负载量和细菌浓度对材料暗态抗菌性能的影响,并通过光电化学,TEM和ROS检测,深入研究有无-光照条件下,系统中的微观电荷行为,并在此基础上,提出了一种明-暗双模抗菌机制,Au/g-C3N4半导体材料打破光催化技术对光的依懒性,实现了在有光-无光照条件的24小时持续抗菌,阐明了明-暗双模式抗菌机理。
发明内容
本发明的目的在于提供一种Au/g-C3N4全天候光催化抗菌材料及其明-暗双模式抗菌机理,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:
一种Au/g-C3N4明-暗双模式抗菌机理,其特征在于,暗态抗菌测试的具体步骤如下:
第一步:将准备好的样品放在EP试管中,选择大肠杆菌来评估其抗菌性能;
第二步:大肠杆菌在37℃的摇床上培养,用LB稀释细菌溶液,测得的OD值为1,浓度为约109cfu/mL,之后,将细菌溶液用LB稀释至105cfu/mL留用;
第三步:将40mg x%Au/g-C3N4样品分散在EP管中的40μL原始细菌溶液中,在黑暗条件下物理接触6小时和12h后,从每个EP管中取出等分试样,依次稀释然后分散在LB琼脂平板上;
第四步:对菌落形成单位进行计数和分析。
可见光抗菌测试的具体步骤如下:
第一步:用9g/L NaCl溶液将细菌溶液稀释至108cfu/mL;
第二步:在连接循环水冷凝系统的定制玻璃反应器中进行可见光抗菌实验,以将温度保持在25℃;
第三步:光源模拟太阳光,配有截止滤光片获得波长大于400nm的可见光;
第四步:在典型的光催化测试中,将25mL原始细菌溶液,25mL 9g/L NaCl溶液和50mg Au/g-C3N4样品添加到光催化反应器中,然后在恒定磁搅拌下,每隔0、1、2和3h的给定时间点,取出1mL混合溶液,稀释并分散在琼脂板上,然后在37℃下培养12h,以评价其光催化抗菌活性。
作为本发明再进一步的方案:所述一种Au/g-C3N4暗态抗菌测试的第四步中,计算出样品的抗菌率。
作为本发明再进一步的方案:所述一种Au/g-C3N4暗态抗菌测试中,所有实验均重复三次。
作为本发明再进一步的方案:所述一种Au/g-C3N4暗态抗菌测试的第二步中,摇床的转速为120rpm。
作为本发明再进一步的方案:所述一种Au/g-C3N4可见光抗菌测试的第三步中,光源为氙灯,型号为“PLS-SXE300C”。
与现有技术相比,本发明的有益效果是:本发明基于半导体能带理论,构建了一个简单的Au/g-C3N4体系,突破光催化剂对光的依赖,实现了在有光-无光条件下的24小时持续、高效抗菌,赋予了光催化纳米材料更多的功能,进一步丰富和扩展了这些材料的实际应用范围,可广泛应用于光催化杀菌、水质和土壤净化、空气净化、自洁净诸多领域,如我们能够把具有光催化和暗态抑菌性的Au/g-C3N4添加到产品中,获得具有抗菌功能的涂料、建材、装饰材料、纺织品、卫生洁具等各类产品,特别是用于学校、医院、银行等公共场所,使其可以长期高效的杀菌抑菌,预防各种细菌病毒在公共场所的二次传播,避免大面积传染性疾病,而且抗菌功能也能为传统企业向高科技产品转型、提升产品附加值提供新路径。
附图说明
图1为一种Au/g-C3N4全天候光催化抗菌材料及其明-暗双模式抗菌机理中样品的XRD谱图的示意图。
图2为一种Au/g-C3N4全天候光催化抗菌材料及其明-暗双模式抗菌机理中0.3%Au/g-C3N4样品的TEM和HRTEM(插图)图像示意图。
图3为一种Au/g-C3N4全天候光催化抗菌材料及其明-暗双模式抗菌机理中0.3%、0.6%、0.9%、1.2%Au/g-C3N4纳米复合材料氮气吸附-脱附曲线的示意图。
图4为一种Au/g-C3N4全天候光催化抗菌材料及其明-暗双模式抗菌机理中不同Au浓度下Au/g-C3N4纳米复合材料的TGA曲线的示意图。
图5为一种Au/g-C3N4全天候光催化抗菌材料及其明-暗双模式抗菌机理中在没有光照的情况下与样品物理接触(a)6h和(b)12h后,细菌菌落生长的照片的示意图。
图6为一种Au/g-C3N4全天候光催化抗菌材料及其明-暗双模式抗菌机理中将样品物理暴露于不同浓度的细菌液体(a)106cfu/mL和(b)107cfu/mL不用光照12h后,细菌菌落生长的数码照片的示意图。
图7为一种Au/g-C3N4全天候光催化抗菌材料及其明-暗双模式抗菌机理中(a)在没有光照的情况下(左)6h,(右)12h,Au/g-C3N4纳米复合材料对105cfu/mL大肠杆菌的抗菌效率。(b)在没有光照的情况下,用Au/g-C3N4纳米复合材料对大肠杆菌的抗菌效率,(左)106cfu/mL,(右)107cfu/mL的示意图。
图8为一种Au/g-C3N4全天候光催化抗菌材料及其明-暗双模式抗菌机理中可见光激发(λ>400nm)1h,2h,和3h后,细菌菌落生长的数码照片(大肠杆菌的浓度是107cfu/mL)的示意图。
图9为一种Au/g-C3N4全天候光催化抗菌材料及其明-暗双模式抗菌机理中浓度为1mg/mL的Au/g-C3N4纳米复合材料在可见光照射下(λ>400nm)对大肠杆菌的光催化抗菌效率,Au/g-C3N4诱导大肠杆菌的生理变化的结构示意图。
图10为一种Au/g-C3N4全天候光催化抗菌材料及其明-暗双模式抗菌机理中大肠杆菌的TEM照片,(a)未处理的大肠杆菌,(b)暗态处理的大肠杆菌,(c)光催化处理的大肠杆菌,活性氧分析的示意图。
图11为一种Au/g-C3N4全天候光催化抗菌材料及其明-暗双模式抗菌机理中在没有光照的情况下,在0.5mM异丙醇,0.5mM草酸钠和0.1mM对苯醌存在下,1.2%Au/g-C3N4纳米复合材料对105cfu/mL大肠杆菌的抗菌效率的示意图。
图12为一种Au/g-C3N4全天候光催化抗菌材料及其明-暗双模式抗菌机理中在可见光照射下,分别加入0.1mM BQ,0.5mM IPA,0.5mM Na2C2O4和0.05mM K2Cr2O7后,0.9%Au/g-C3N4纳米复合材料对108cfu/mL大肠杆菌的抗菌效率,细菌与材料之间的电子转移的示意图。
图13为一种Au/g-C3N4全天候光催化抗菌材料及其明-暗双模式抗菌机理中纯g-C3N4和1.2%Au/g-C3N4的I-V曲线(a)可见光条件下,(b)暗条件下与活菌和死菌的物理接触的示意图。
图14为一种Au/g-C2N3全天候光催化抗菌材料及其明-暗双模式抗菌机理中不同条件下样品的EIS示意图。
图15为一种Au/g-C3N4全天候光催化抗菌材料及其明-暗双模式抗菌机理中机理1.Au/g-C3N4体系在可见光(a)和黑暗(b)条件下的抗菌机理图。
图16为一种Au/g-C3N4全天候光催化抗菌材料及其明-暗双模式抗菌机理的背景技术中消毒剂的水解和分解示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1~16,本发明实施例中,一种Au/g-C3N4全天候光催化抗菌材料及其明-暗双模式抗菌机理,Au/g-C3N4纳米复合材料的制备。
本实验中的所有溶液和材料均用无菌蒸馏水制备,所有玻璃仪器均在121℃下高压灭菌。通过三聚氰胺的热聚合制备g-C3N4纳米材料。将4g三聚氰胺粉末放入氧化铝坩埚中,然后将坩埚放入马弗炉中,设置程序将温度以3℃/min的速度升温到550℃,在空气气氛中煅烧2小时,将最终产物在自然冷却到室温,并用研钵研磨成粉末。
通过煅烧方法制备了一系列具有不同Au浓度的Au/g-C3N4纳米复合材料,并命名为x%Au/g-C3N4,x%表示最终产物中Au的质量百分比。将获得的g-C3N4样品重新分散在5mL蒸馏水中,然后加入计算好浓度的氯金酸溶液,将悬浮液搅拌并干燥,将获得的粉末放入马弗炉中,在550℃下煅烧2小时。通过重复上述实验分别制备0.3%,0.6%,0.9%,1.2%的Au/g-C3N4纳米复合材料。
表征
使用HITACHIH-8100EM(Hitachi,Tokyo,Japan),用透射电子显微镜(TEM)表征纳米复合材料的形貌,纳米颗粒分布和晶格。Bruker D8 Advance X射线衍射(XRD)用于验证样品的化学组成和晶相。样品中的Au浓度通过电感耦合等离子体发射光谱仪(ICP-OES,Focused Photonics)确定。使用Altamira仪器(AMI-300)测量Au/g-C3N4纳米复合材料的比表面积。使用热重分析仪(TGA 4000)测试不同样品的热稳定性。使用Zeta电位计(Zetaprobe)测量不同分散体系中g-C3N4和大肠杆菌的表面带电情况。
可见光-暗态抗菌实验
暗态抗菌测试。将准备好的样品放在EP试管中,选择大肠杆菌(E.coli)来评估其抗菌性能。大肠杆菌在37℃的摇床(120rpm)上培养,用LB稀释细菌溶液,测得的OD值为1,浓度为约109cfu/mL。之后,将细菌溶液用LB稀释至105cfu/mL留用。将40mg x%Au/g-C3N4样品分散在EP管中的40μL原始细菌溶液中,在黑暗条件下物理接触6小时和12h后,从每个EP管中取出等分试样,依次稀释然后分散在LB琼脂平板上。使用以下方程对菌落形成单位(CFU)进行计数和分析。样品的抗菌率=(CFU原液-CFU样品)/CFU原液×100%。所有实验均重复三次。
可见光抗菌测试。用9g/L NaCl溶液将细菌溶液稀释至108cfu/mL。在连接循环水冷凝系统的定制玻璃反应器中进行可见光抗菌实验,以将温度保持在25℃。氙灯(PLS-SXE300C)做为光源模拟太阳光,配有截止滤光片获得波长大于400nm的可见光。在典型的光催化测试中,将25mL原始细菌溶液,25mL 9g/L NaCl溶液和50mg Au/g-C3N4样品添加到光催化反应器中,然后在恒定磁搅拌下,每隔0、1、2和3h的给定时间点,取出1mL混合溶液,稀释并分散在琼脂板上,然后在37℃下培养12h,以评价其光催化抗菌活性。
光电化学测量
使用Na2SO4作为电解质,在电化学工作站(CHI660E,上海)上获得了I-V和电化学阻抗谱(EIS)曲线(0.05-1e+5Hz)。铂丝,饱和甘汞电极(SCE)分别用作对电极和参比电极,并将样品涂覆在ITO上作为工作电极。使用装有紫外线截止滤光片的500W氙灯(PLS-SXE300C)作为光源,以获取波长大于400nm的可见光,并且该光源距离样品10cm。细菌的浓度约为107cfu/mL,通过用2.5%的戊二醛固定2小时,然后与该材料混合并施加到ITO表面上,获得死亡的细菌。
用TEM研究E.coli处理前后形态
在黑暗条件下将1.2%Au/g-C3N4+E.coli物理混合12h,将0.9%Au/g-C3N4+E.coli在400nm以上可见光激发3小时后的这两个样品离心以除去上清液,用500μL 2.5%戊二醛处理,固定1h,离心除去上清液。然后用PBS缓冲液洗涤两次并离心以除去上清液。分别用30%,50%,70%,90%的乙醇溶液和无水乙醇脱水15分钟,然后逐滴添加到铜网上,用TEM观察样品形态。
结果和讨论
结构和形态分析
XRD用于样品的组成测定,如图1所示。在13.0°和27.6°有两个明显特征衍射峰,归属于g-C3N4的(100)和(002)衍射平面的.没有检测到Au的特征衍射峰,可能是由于Au的含量较低造成的。因此,采用ICP法进一步测定Au/g-C3N4中Au的浓度,结果表明0.3%、0.6%、0.9%、1.2%的Au/g-C3N4纳米复合材料中,Au的含量分别是为0.27%、0.5%、0.71%、1.07%,与理论值接近。
图2显示了所制备的0.3%Au/g-C3N4样品的TEM和HRTEM图像,所制备的g-C3N4具有纳米片结构,并且在纳米片表面观察到一些具有高对比度的暗点。相应的HRTEM图像证实暗点是高结晶的Au,特征晶格间距为0.23nm,属于(111)晶面。以上结果证实成功合成了Au/g-C3N4纳米复合材料,Au纳米粒子生长,并均匀地分布在g-C3N4纳米片的表面。
为进一步了解不同Au浓度下Au/g-C3N4复合材料的结构,采用N2吸附-脱附等温线测定了纳米复合材料的比表面积和孔结构,并对样品进行了分析。从图3可以看出,所有的曲线都属于H3滞后环吸附等温线,孔的形成可能是g-C3N4纳米片与Au纳米颗粒的的堆积造成的。
表1总结了不同Au浓度下Au/g-C3N4纳米复合材料的比表面积、孔径和孔容。纯g-C3N4纳米片的比表面积为15.4m2/g,而所有Au/g-C3N4纳米复合材料的比表面积均略有增加,相应的平均孔径和孔体积也略有变化,这应归因于Au纳米颗粒的尺寸较小。提高Au/g-C3N4纳米复合材料的比表面积对于光催化抗菌过程非常有利,因为它可以大大增加光催化材料与微生物的接触面积,使更多的活性位点参与反应,从而提高抗菌性能。
表1.考察了不同Au浓度下Au/g-C3N4纳米复合材料的比表面积、孔径和孔容。
Figure BDA0002713368280000091
表1
采用热重(TGA)分析A Au/g-C3N4纳米复合材料随温度的失重情况,如图4所示。对于纯g-C3N4纳米薄片,在150℃以下有轻微的失重,这是由于材料表面吸附的水分子失去了。随着温度的增加,在500-675℃的快速失重,这是g-C3N4自身分解造成的。与纯g-C3N4相比,Au/g-C3N4纳米复合材料在540℃开始分解,在715℃分解完全,这表明Au/g-C3N4引入金纳米颗粒后具有更好的热稳定性。且随着Au浓度的增加,纳米复合材料的热稳定性没有明显变化。
暗态抗菌性能
虽然对g-C3N4基纳米材料在可见光光照下的光催化抑菌性能的研究较多,但在无光照条件下对g-C3N4半导体的抑菌活性研究报道较少。这里我们利用一系列实验结果证明Au/g-C3N4纳米复合材料在无光条件下具有良好的抗菌效果。
我们首先研究了接触时间对Au/g-C3N4纳米复合材料抗菌性能的影响,图5为在无光照条件下E.coli与Au/g-C3N4纳米复合材料物理接触6和12小时后在琼脂平板上培养菌落数的照片。E.coli的浓度是105cfu/mL,与纯g-C3N4物理接触后6小时,没有太大变化。然而,可以清楚地看到单菌落的数量随金浓度的增加而减少,1.2%Au/g-C3N4显示最高的抗菌活性。将适当倍数的样品稀释10倍后,通过稀释程度计算样品的抗菌效率,如图7a所示。Au/g-C3N4纳米复合材料的抗菌率分别为2.7%、21.4%、35.2%、94.5%和99.1%。进一步延长物理接触时间至12小时后,Au/g-C3N4纳米复合材料均表现出较好的抗菌活性(图5b),0.3%、0.6%、0.9%和1.2%Au/g-C3N4纳米复合材料的抗菌率分别为7.3%、43.2%、61.8%、99.5%和100%。以上结果初步证明了Au/g-C3N4纳米复合材料在无光照条件下引入Au纳米粒子后具有抗菌性能。在没有光照的情况下与样品物理接触(a)6h和(b)12h后,细菌菌落生长的照片。1:无样品;2:g-C3N4;3:0.3%Au/g-C3N4;4:0.6%Au/g-C3N4;5:0.9%Au/g-C3N4;6:1.2%Au/g-C3N4,大肠杆菌浓度为105cfu/mL。(参考图5)
延长抗菌时间后,不同Au浓度样品的抗菌效果均有所提高,较低Au浓度下0.9%Au/g-C3N4的抗菌活性与1.2%Au/g-C3N4的抗菌活性相近。在接下来的实验中,进一步探究细菌浓度对材料性能的影响,图6为不光照条件下,Au/g-C3N4纳米复合材料与106和107cfu/mL菌液接触12h后在琼脂平板上培养的菌落数照片。当大肠杆菌浓度增加到106CFU/mL时,所有纳米复合材料均表现出良好的抗菌性能,对0%、0.3%、0.6%、0.9%和1.2%Au/g-C3N4纳米复合材料的抗菌效率分别为3.9%、30.8%、50.1%、69.2%和96.2%(图7b)。随着菌液浓度的增加,纳米复合材料的抗菌效果下降,这可能是由于细菌溶液浓度过高,导致纳米复合材料的活性位点无法直接接触到细菌,但1.2%Au/g-C3N4的抗菌效果仍保持在80.3%。
将样品物理暴露于不同浓度的细菌液体(a)106cfu/mL和(b)107cfu/mL不用光照12h后,细菌菌落生长的数码照片。1:无样品;2:g-C3N4;3:0.3%Au/g-C3N4;4:0.6%Au/g-C3N4;5:0.9%Au/g-C3N4;6:1.2%Au/g-C3N4。(参考图6)
(a)在没有光照的情况下(左)6h,(右)12h,Au/g-C3N4纳米复合材料对105cfu/mL大肠杆菌的抗菌效率。(b)在没有光照的情况下,用Au/g-C3N4纳米复合材料对大肠杆菌的抗菌效率,(左)106cfu/mL,(右)107cfu/mL。(参考图7)
光催化抗菌性能
Au/g-C3N4纳米复合材料的可见光催化抗菌性能如图8所示,可见光照射3h后,Au/g-C3N4纳米复合材料随着光照时间的增加均表现出明显的光催化抗菌能力。对Au/g-C3N4样品进行适当倍数稀释10倍后,通过稀释倍数计算其光催化抗菌效率。可见光激发(λ>400nm)1h,2h,和3h后,细菌菌落生长的数码照片,大肠杆菌的浓度是107cfu/mL。(参考图8)
如图9所示,在可见光照射条件下,Au/g-C3N4复合材料表现出明显的抗菌能力,且活性随着Au含量的增加而持续增加。在可见光照射3h后,纯g-C3N4对大肠杆菌的抗菌效率达到70.7%。0.3%、0.6%、0.9%和1.2%Au/g-C3N4复合材料的抗菌率分别为76.1%、80.4%、94.1%和93.6%。其中,0.9%Au/g-C3N4对大肠杆菌的抗菌性活性最高,达到94.1%,说明Au纳米粒子的负载量存在最优值,过量或过少都会影响光催化活性。浓度为1mg/mL的Au/g-C3N4纳米复合材料在可见光照射下(λ>400nm)对大肠杆菌的光催化抗菌效率。(参考图9)
Au/g-C3N4诱导大肠杆菌的生理变化
通过TEM观察大肠杆菌的细胞结构变化,如图10所示。未经处理的大肠杆菌呈棒状(图10a)。大肠杆菌与1.2%Au/g-C3N4物理接触12小时后,细胞壁被破坏,但细胞轮廓尚清晰(图10b)。加入0.9%Au/g-C3N4可见光激发3小时后,大肠杆菌的细胞壁被完全破坏并破碎(图10c),这与黑暗条件下的明显不同。大肠杆菌的TEM照片,(a)未处理的大肠杆菌,(b)暗态处理的大肠杆菌,(c)光催化处理的大肠杆菌。(参考图10)
活性氧分析
为了探究材料的抗菌机理,在黑暗状态下使用0.5mM异丙醇(IPA),0.5mM草酸钠和0.1mM对苯醌(BQ)验证体系中是否产生·OH,h+和超氧自由基阴离子(·O2 -)。如图11所示,细菌浓度为约105cfu/mL时,在添加异丙醇,草酸钠,重铬酸钾或对苯醌后,1.2%Au/g-C3N4抗菌性能几乎没有变化,表明样品没有产生·OH,h+和·O2 -,因此,牺牲剂的引入对抗菌过程没有影响。在没有光照的情况下,在0.5mM异丙醇,0.5mM草酸钠和0.1mM对苯醌存在下,1.2%Au/g-C3N4纳米复合材料对105cfu/mL大肠杆菌的抗菌效率。(参考图11)
在光催化抗菌过程中,分别使用0.1mM BQ,0.5mM IPA,0.5mM Na2C2O4和0.05mMK2Cr2O7作为·O2 -,·OH,h+和e-的清除剂。从图12可以看出,加入IPA和K2Cr2O7后,抗菌效率略有下降,这表明在抗菌过程中产生了少量的·OH和e-。但是,在添加BQ和Na2C2O4之后,抗菌效果显著降低,证明·O2 -和h+在光催化过程中起着重要作用。这表明,在可见光照射下,·O2 -和h+起主导作用,其次是·OH和e-。在可见光照射下,分别加入0.1mM BQ,0.5mMIPA,0.5mM Na2C2O4和0.05mM K2Cr2O7后,0.9%Au/g-C3N4纳米复合材料对108cfu/mL大肠杆菌的抗菌效率。(参考图12)
细菌与材料之间的电子转移
为了探究其抗菌机理,分析了材料的I-V曲线。从图13可以看出,与暗态相比,在可见光激发下(λ>400nm),纯g-C3N4获得光能产生大量的可移动的光生电子,光电流显著增强。引入Au纳米粒子后,1.2%Au/g-C3N4光电流进一步增加,这与g-C3N4(-1.11eV)和Au(Ef=0.45V vs.NHE)的能级匹配有关。金纳米颗粒可以快速从g-C3N4的CB中获取电子,提高了光生电子-空穴对的分离,抑制了它们的复合。在黑暗条件下,如图13b所示,1.2%Au/g-C3N4样品与死亡的大肠杆菌接触,光电流几乎没有变化。然而,当1.2%Au/g-C3N4样品与活大肠杆菌接触时,得到非常明显的电流信号。此外,代表半导体费米能级的零电流电势从-0.67eV变为-0.72eV,说明1.2%Au/g-C3N4样品获得了大量电子,从而导致了费米能级的提高。这些结果与可见光照射下1.2%Au/g-C3N4的光电流相似,说明活大肠杆菌作为电子供体为系统提供了电子。为了确定Au NPs的作用,我们还测量了g-C3N4样品与活大肠杆菌接触后的电流。可见,在没有Au纳米颗粒的情况下,活大肠杆菌无法引起g-C3N4光电流增加和费米能级负移。结果进一步表明Au作为电子传递介质,使电子从大肠杆菌转移到g-C3N4。(参考图13)
为了探究光生电子-空穴对的分离和输运能力,分别测试了g-C3N4和0.9%Au/g-C3N4EIS曲线。将1.2%Au/g-C3N4分别用活菌和死菌在黑暗条件下进行测试,如图14所示。在图14a中,0.9%Au/g-C3N4的Nyquist曲线上的圆弧半径小于纯的g-C3N4,证明了Au NPs的加入促进了g-C3N4的电荷转移,降低了g-C3N4表面的电荷转移阻力。因此,光催化抑菌性能得到了加强。从图14b可以看出,活大肠杆菌+1.2%Au/g-C3N4的EIS曲线的弧半径小于死大肠杆菌+1.2%Au/g-C3N4的弧半径,表明添加了活的大肠杆菌可为系统提供电子,并降低1.2%Au/g-C3N4的电荷转移电阻,这与I-V结果一致。(参考图14)
表2.细菌液体和材料在不同溶剂中的Zeta电位
Figure BDA0002713368280000131
表2
表2列出了细菌液体和材料在不同溶剂中的Zeta电位,大肠杆菌和材料在不同溶剂中的Zeta电位都呈负电位,因此材料和大肠杆菌之间不存在静电力,排除了静电力的抑制作用。
基于上述TEM,光电化学,ROS和Zeta电位结果,我们提出了在有或没有光照条件下Au/g-C3N4纳米复合材料的双模式抗菌机理。(1)可见光光催化抗菌模式(方案1a):根据激发波长和Eg的转换公式,g-C3N4的带隙能(Eg)为2.7eV,λ=1240/Eg,g-C3N4可以被可见光(400nm<λ<459nm)激发,价带中的电子获得光子能量,然后转移到导带中形成光生电子,相应地留下相等数量的光生空穴在价带。导电带中的光生电子将很快被沉积在g-C3N4表面的Au纳米颗粒捕获,这归因于g-C3N4和Au的能级匹配。具体而言,当g-C3N4与Au接触时,会在界面处形成肖特基结,以标准氢电极为参比,g-C3N4中导带的能级位置为-1.11V,它高于Au的费米能级(Ef=0.45V vs.NHE),因此,g-C3N4导带中的光生电子由于能级差而迅速转移到Au的费米能级,Au作为活性位能促进光生电子与Au纳米颗粒表面的溶解氧反应形成·O2 -,因此g-C3N4价带中的空穴将与OH-反应形成·OH。上述ROS破坏细胞膜,通过增加细胞的渗透性而引起细胞内物质的流出,导致细菌失活。(2)暗抗菌模式(方案1a):根据呼吸链和相关电子载体的标准还原电位,NAD+/NADH,FAD/FADH2,细胞色素c(Fe3+/Fe2+)的标准还原电位为-0.32,-0.06,0.29V vs.NHE,与Au的费米能级匹配。而且,Au具有优异的导电性并且易于捕获电子。当Au纳米颗粒与大肠杆菌接触时,Au纳米颗粒将捕获大肠杆菌呼吸链中的电子,然后在肖特基势垒的驱动下将其转移到g-C3N4的导带,增加电流强度并降低电阻。呼吸链中电子的丢失,导致大肠杆菌死亡。(参考图15)
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (5)

1.一种Au/g-C3N4明-暗双模式抗菌机理,其特征在于,暗态抗菌测试的具体步骤如下:
第一步:将准备好的样品放在EP试管中,选择大肠杆菌来评估其抗菌性能;
第二步:大肠杆菌在37℃的摇床上培养,用LB稀释细菌溶液,测得的OD值为1,浓度为约109cfu/mL,之后,将细菌溶液用LB稀释至105cfu/mL留用;
第三步:将40mg x%Au/g-C3N4样品分散在EP管中的40μL原始细菌溶液中,在黑暗条件下物理接触6小时和12小时后,从每个EP管中取出等分试样,依次稀释然后分散在LB琼脂平板上;
第四步:对菌落形成单位进行计数和分析;
可见光抗菌测试的具体步骤如下:
第一步:用9g/L NaCl溶液将细菌溶液稀释至108cfu/mL;
第二步:在连接循环水冷凝系统的定制玻璃反应器中进行可见光抗菌实验,以将温度保持在25℃;
第三步:光源模拟太阳光,配有截止滤光片获得波长大于400nm的可见光;
第四步:在典型的光催化测试中,将25mL原始细菌溶液,25mL 9g/L NaCl溶液和50mgAu/g-C3N4样品添加到光催化反应器中,然后在恒定磁搅拌下,每隔0、1、2和3h的给定时间点,取出1mL混合溶液,稀释并分散在琼脂板上,然后在37℃下培养12小时,以评价其光催化抗菌活性。
2.如权利要求1所述的一种Au/g-C3N4明-暗双模式抗菌机理,其特征在于,所述一种Au/g-C3N4暗态抗菌测试的第四步中,计算出样品的抗菌率。
3.如权利要求1所述的一种Au/g-C3N4明-暗双模式抗菌机理,其特征在于,所述一种Au/g-C3N4暗态抗菌测试中,所有实验均重复三次。
4.如权利要求1所述的一种Au/g-C3N4明-暗双模式抗菌机理,其特征在于,所述一种Au/g-C3N4暗态抗菌测试的第二步中,摇床的转速为120rpm。
5.如权利要求1所述的一种Au/g-C3N4明-暗双模式抗菌机理,其特征在于,所述一种Au/g-C3N4可见光抗菌测试的第三步中,光源为氙灯,型号为“PLS-SXE300C”。
CN202011068980.0A 2020-09-30 2020-09-30 一种Au/g-C3N4全天候光催化抗菌材料及其明-暗双模式抗菌机理 Active CN112375804B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011068980.0A CN112375804B (zh) 2020-09-30 2020-09-30 一种Au/g-C3N4全天候光催化抗菌材料及其明-暗双模式抗菌机理

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011068980.0A CN112375804B (zh) 2020-09-30 2020-09-30 一种Au/g-C3N4全天候光催化抗菌材料及其明-暗双模式抗菌机理

Publications (2)

Publication Number Publication Date
CN112375804A true CN112375804A (zh) 2021-02-19
CN112375804B CN112375804B (zh) 2023-12-12

Family

ID=74581078

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011068980.0A Active CN112375804B (zh) 2020-09-30 2020-09-30 一种Au/g-C3N4全天候光催化抗菌材料及其明-暗双模式抗菌机理

Country Status (1)

Country Link
CN (1) CN112375804B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113813977A (zh) * 2021-09-17 2021-12-21 浙江师范大学 一种用于1,3-丁二烯选择性加氢制富含1-丁烯的混合丁烯的催化剂及制备方法和应用
CN114949243A (zh) * 2022-06-07 2022-08-30 湖北科技学院 g-C3N4暗-光双模式抗菌材料及其接枝方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050287112A1 (en) * 2004-06-21 2005-12-29 Samsung Electronics Co., Ltd. Antibacterial paint containing nano silver particles and coating method using the same
CN107034585A (zh) * 2017-04-19 2017-08-11 江苏大学 一种g‑C3N4纳米纤维抗菌膜及其制备方法与用途
CN107354194A (zh) * 2017-07-03 2017-11-17 广州市微生物研究所 一种光催化抗菌材料抗真菌性能的检测方法
CN107570191A (zh) * 2017-07-31 2018-01-12 江苏大学 一种可见光催化剂的制备方法及用途
CN108208003A (zh) * 2017-12-29 2018-06-29 江苏大学 一种Ag/多巴胺/g-C3N4可见光催化杀菌剂
CN109675450A (zh) * 2018-12-26 2019-04-26 中国科学院深圳先进技术研究院 一种抗菌复合纳米纤维膜及其制备方法和应用
CN110142057A (zh) * 2019-05-17 2019-08-20 浙江工业大学 一种Ag/g-C3N4/竹炭/蒙脱土复合材料及其应用
CN110389162A (zh) * 2019-07-23 2019-10-29 合肥工业大学 金掺杂氮化碳复合材料及其制备方法、甲基汞的检测方法
CN110560125A (zh) * 2019-09-06 2019-12-13 北京交通大学 N-g-C3N4可见光催化材料制备方法及应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050287112A1 (en) * 2004-06-21 2005-12-29 Samsung Electronics Co., Ltd. Antibacterial paint containing nano silver particles and coating method using the same
CN107034585A (zh) * 2017-04-19 2017-08-11 江苏大学 一种g‑C3N4纳米纤维抗菌膜及其制备方法与用途
CN107354194A (zh) * 2017-07-03 2017-11-17 广州市微生物研究所 一种光催化抗菌材料抗真菌性能的检测方法
CN107570191A (zh) * 2017-07-31 2018-01-12 江苏大学 一种可见光催化剂的制备方法及用途
CN108208003A (zh) * 2017-12-29 2018-06-29 江苏大学 一种Ag/多巴胺/g-C3N4可见光催化杀菌剂
CN109675450A (zh) * 2018-12-26 2019-04-26 中国科学院深圳先进技术研究院 一种抗菌复合纳米纤维膜及其制备方法和应用
CN110142057A (zh) * 2019-05-17 2019-08-20 浙江工业大学 一种Ag/g-C3N4/竹炭/蒙脱土复合材料及其应用
CN110389162A (zh) * 2019-07-23 2019-10-29 合肥工业大学 金掺杂氮化碳复合材料及其制备方法、甲基汞的检测方法
CN110560125A (zh) * 2019-09-06 2019-12-13 北京交通大学 N-g-C3N4可见光催化材料制备方法及应用

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
HONGDA ZHANG等: "Antibacterial Performance of a Gold-Loaded g-C3 N4 Nanocomposite System in Visible Light-Dark Dual Mode", 《CHEMPLUSCHEM》, vol. 85, no. 12, pages 2722 - 2730 *
JIAYONG DAI等: "Gold Nanoparticle-Decorated g-C3N4 Nanosheets for Controlled Generation of Reactive Oxygen Species upon 670 nm Laser Illumination", 《ACS APPL MATER INTERFACES》, vol. 11, no. 11, pages 10589 - 10596 *
KHAN ME等: "Environmentally Sustainable Fabrication of Ag@g-C3N4 Nanostructures and Their Multifunctional Efficacy as Antibacterial Agents and Photocatalysts", 《ACS APPL NANO MATER》, vol. 1, no. 6, pages 2912 - 2922 *
ZHENZHEN WANG等: "Activation of biologically relevant levels of reactive oxygen species by Au/g-C3N4 hybrid nanozyme for bacteria killing and wound disinfection", 《BIOMATERIALS》, vol. 113, pages 145 - 157, XP029812732, DOI: 10.1016/j.biomaterials.2016.10.041 *
张宏达: "金属/g-C3N4纳米复合抗菌剂的构建及其明-暗双模式抗菌性能研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》, pages 016 - 633 *
杜文修;杨娟;桑玉祥;张莉莉;赵南;徐凯;程晓农;: "Ag/Fe_3O_4/rGO纳米复合材料的制备及抗菌性能", 高等学校化学学报, no. 03 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113813977A (zh) * 2021-09-17 2021-12-21 浙江师范大学 一种用于1,3-丁二烯选择性加氢制富含1-丁烯的混合丁烯的催化剂及制备方法和应用
CN113813977B (zh) * 2021-09-17 2023-10-03 浙江师范大学 一种用于1,3-丁二烯选择性加氢制富含1-丁烯的混合丁烯的催化剂及制备方法和应用
CN114949243A (zh) * 2022-06-07 2022-08-30 湖北科技学院 g-C3N4暗-光双模式抗菌材料及其接枝方法

Also Published As

Publication number Publication date
CN112375804B (zh) 2023-12-12

Similar Documents

Publication Publication Date Title
Demirel et al. A comprehensive review on the use of second generation TiO2 photocatalysts: Microorganism inactivation
Wang et al. Enhanced visible-light-driven photocatalytic sterilization of tungsten trioxide by surface-engineering oxygen vacancy and carbon matrix
Koli et al. Visible light photo-induced antibacterial activity of TiO2-MWCNTs nanocomposites with varying the contents of MWCNTs
Xu et al. Synthesis of zinc ferrite/silver iodide composite with enhanced photocatalytic antibacterial and pollutant degradation ability
Yang et al. Bifunctional TiO 2/Ag 3 PO 4/graphene composites with superior visible light photocatalytic performance and synergistic inactivation of bacteria
Gan et al. Enhanced visible-light-driven photocatalytic inactivation of Escherichia coli by Bi2O2CO3/Bi3NbO7 composites
Li et al. Direct Z-scheme TiO2-x/AgI heterojunctions for highly efficient photocatalytic degradation of organic contaminants and inactivation of pathogens
Xiong et al. Size-controlled synthesis of Cu 2 O nanoparticles: size effect on antibacterial activity and application as a photocatalyst for highly efficient H 2 O 2 evolution
Zhu et al. Enhanced photocatalytic disinfection of E. coli 8099 using Ag/BiOI composite under visible light irradiation
Saud et al. Preparation and photocatalytic activity of fly ash incorporated TiO2 nanofibers for effective removal of organic pollutants
Yadav et al. Enhanced photocatalytic inactivation of bacteria on Fe-containing TiO 2 nanoparticles under fluorescent light
Liu et al. Thermal-sprayed photocatalytic coatings for biocidal applications: A review
CN105664991A (zh) 一种高效杀菌剂银/石墨相氮化碳复合材料的制备方法
Caratto et al. Inactivation of Escherichia coli on anatase and rutile nanoparticles using UV and fluorescent light
Gao et al. Dimensional-matched two dimensional/two dimensional TiO2/Bi2O3 step-scheme heterojunction for boosted photocatalytic performance of sterilization and water splitting
Yan et al. Efficient photocatalytic disinfection of Escherichia coli by N-doped TiO2 coated on coal fly ash cenospheres
Ren et al. Photocatalytic activity of silver vanadate with one-dimensional structure under fluorescent light
CN112375804B (zh) 一种Au/g-C3N4全天候光催化抗菌材料及其明-暗双模式抗菌机理
Zhang et al. Antibacterial Performance of a Gold‐Loaded g‐C3N4 Nanocomposite System in Visible Light‐Dark Dual Mode
Nie et al. Synthesis and characterization of N-doped carbonaceous/TiO2 composite photoanodes for visible-light photoelectrocatalytic inactivation of Escherichia coli K-12
Wang et al. Enhanced photocatalytic bacteriostatic activity towards Escherichia coli using 3D hierarchical microsphere BiOI/BiOBr under visible light irradiation
Okab et al. Synergistic behavior between the plasmonic Ag metal and the mesoporous β-Bi2O3/SiO2 heterostructure for the photocatalytic destruction of bacterial cells under simulated sunlight illumination: Schottky junction electron-transfer pathway
Garvey et al. Titania nanotube photocatalysts for effectively treating waterborne microbial pathogens
Kumar et al. Photocatalytic disinfection of water with Ag–TiO 2 nanocrystalline composite
Chen et al. A study on the photocatalytic sterilization performance and mechanism of Fe-SnO 2/gC 3 N 4 heterojunction materials

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant