CN112375765B - 一种水稻细菌性条斑病的感病基因OsHXK5及其应用 - Google Patents

一种水稻细菌性条斑病的感病基因OsHXK5及其应用 Download PDF

Info

Publication number
CN112375765B
CN112375765B CN202011290233.1A CN202011290233A CN112375765B CN 112375765 B CN112375765 B CN 112375765B CN 202011290233 A CN202011290233 A CN 202011290233A CN 112375765 B CN112375765 B CN 112375765B
Authority
CN
China
Prior art keywords
rice
gene
oshxk5
disease
streak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011290233.1A
Other languages
English (en)
Other versions
CN112375765A (zh
Inventor
黄胜
金霞
廖舟翔
罗军
倪哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangxi University
Original Assignee
Guangxi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangxi University filed Critical Guangxi University
Priority to CN202011290233.1A priority Critical patent/CN112375765B/zh
Publication of CN112375765A publication Critical patent/CN112375765A/zh
Application granted granted Critical
Publication of CN112375765B publication Critical patent/CN112375765B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H4/00Plant reproduction by tissue culture techniques ; Tissue culture techniques therefor
    • A01H4/005Methods for micropropagation; Vegetative plant propagation using cell or tissue culture techniques
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8281Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for bacterial resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Botany (AREA)
  • Developmental Biology & Embryology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Environmental Sciences (AREA)
  • Virology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明公开了一种水稻细菌性条斑病的感病基因OsHXK5及其应用,所述水稻细菌性条斑病菌的感病基因OsHXK5基因特征在于基因序列如SEQ ID No.1所示。本发明利用CRISPR/Cas9技术在水稻中定点突变OsHXK5基因启动子区的靶标序列,选育抗细条病菌水稻,所述靶标序列如SEQ ID No.2所示。致病实验表明用本发明方法选育的抗病的水稻NH,对水稻细菌性条斑病菌的抗性明显增强。在实际应用中OsHXK5基因可作为基因编辑靶标用于培育抗细菌性条斑病水稻新种质,本发明提供的抗病育种方法可用于研发和构建抗病水稻,可广泛应用于农业生产中的抗病育种。

Description

一种水稻细菌性条斑病的感病基因OsHXK5及其应用
技术领域
本发明属于基因工程技术领域,涉及一种水稻细菌性条斑病的感病基因OsHXK5及其应用。
背景技术
由水稻黄单胞菌属条斑病致病变种(Xanthomonas oryzae pv.oryzicola,以下简称Xoc)引起的水稻细菌性条斑病,是危害水稻生产的重要细菌性病害之一。该病害在我国秦岭、淮河以南稻区广泛流行,通常导致水稻减产5%~20%,较为严重时可达到40%~60%,且近年来,该病大量出现在我国的东南部沿海地区并有逐渐蔓延的趋势,是我国检疫性病害。目前我国的农业生产主要还是依赖农药来防治该病,但使用农药进行防治只能暂时减轻细菌性条斑病的危害,且成本高、污染重、安全性低。病菌长期面对药剂压力必定会发生变异,使农药效果降低。培育和种植抗性品种是防治水稻细菌性条斑病最经济有效的手段。
植物中的感病基因是病害发生的关键基因,其在与病原细菌的效应蛋白直接接触后会过量表达,随后激活植物的整个感病通路,最终导致植物发生病害。转录因子类似效应蛋白(Transcription activator like effector,简称TALE)是Xoc中一类重要的毒性因子,其通过III型分泌系统进入水稻细胞后结合到特定感病基因(Susceptible gene,简称S基因)启动子区的EBE(Effector binding element)序列而激活S基因的表达。在先前的研究中,并没有任何Xoc中Tal10a靶向OsHXK5基因启动子区的报道。而这一发现,可以让我们通过日前已经初步成熟的基因定点编辑技术(CRISPR/Cas9)对感病基因的启动子区进行修饰,从而培育抗性水稻。
CRISPR/Cas9(成簇、规律间隔短回文重复序列及相关蛋白)系统是来自原核生物的获得性免疫系统。近年来被发展为对基因组进行定点编辑的新技术,在多种领域都有广泛的研究和应用。CRISPR/Cas9系统通过导向RNA(guide RNA,gRNA)锚定基因组特定序列,Cas9蛋白对该特定序列进行切割产生双链断裂,细胞启动DNA损伤修复机制,借助非同源末端连接或同源重组方式引入突变。目前,仍无运用该技术突变水稻OsHXK5感病基因启动子区来获得细菌性条斑病抗性水稻的报道。
发明内容
本发明基于转基因的基因定向敲除技术提供了水稻细菌性条斑病感病基因OsHXK5,以感病基因OsHXK5为靶点,利用CRISPR/Cas9系统定点编辑水稻OsHXK5基因启动子区培育广谱抗细菌性条斑病水稻品种。
为达到上述技术目的,本发明具体通过以下技术方案实现:
本发明以水稻细菌性条斑病菌Xoc和水稻互作转录组测序结果为基础,通过生物信息学预测和半定量RT-PCR验证,在日本晴中筛选了13个候选的Xoc GX01 TAL效应物靶基因。其中,Tal10a可与基因OsHXK5接合,并激活了该基因的转录。且申请人前期的实验结果证实了Tal10a对Xoc GX01的致病力起贡献。并利用构建的绿色荧光蛋白报告系统,确认了Tal10a在植物体内能与OsHXK5上游序列结合,激活下游基因的转录。
通过人工合成tal效应物的方法来诱导基因编辑水稻中的OsHXK5的表达,经证明所述的感病基因OsHXK5的过表达会导致水稻对细菌性条斑病感病。
所述的感病基因OsHXK5的核苷酸序列如SEQ ID No.1所示。
优选的,所述感病基因OsHXK5的同源基因也在本发明的保护范围之内。
在本发明的另一方面,提供了所述的感病基因OsHXK5在增强水稻对细菌性条斑病抗性中的应用。通过编辑OsHXK5基因启动子区靶标序列,使靶标序列产生突变,增强水稻对细菌性条斑病的抗性。
进一步的,所述的OsHXK5基因启动子区靶标序列核苷酸序列如SEQ ID No.2示。
具体的,采用CRISPR/Cas9编辑系统编辑SEQ ID No.2所述序列,使靶标序列获得突变。
在本发明的另一方面,提供了所述感病基因OsHXK5在培育抗细菌性条斑病水稻品种中的应用。
具体的,一种培育广谱抗细菌性条斑病水稻的方法,包括以下步骤:
1)根据SEQ ID No.2所示靶位点,设计互补引物EBEe10a-gRNA-F和EBEe10a-gRNA-R,序列如SEQ ID No.3~4所示;并将两条互补引物合成得到接头引物,与质粒pLacZ-U6a酶切后的产物连接重组,获得sgRNA表达盒连接物OsU6a-NH-gRNA;
2)以OsU6a-NH-gRNA为模板,分别用引物U-F/EBEe10a-gRNA-R扩增得产物A,用引物sgRNA-R/EBEe10a-gRNA-F扩增得产物B,引物U-F序列如SEQ ID No.5示,引物sgRNA-R序列如SEQ ID No.6示;
3)将产物A和B等体积混合作为模板,用引物B1-F/BL-R扩增,获得gRNA表达盒EBEe10a-sgRNA,引物B1-F序列如SEQ ID No.7示,引物BL-R序列如SEQ ID No.8示;
4)将EBEe10a-sgRNA通过酶切连接克隆至pYLCRISPR/Cas9-MH载体,获得重组载体pYLCRISPR/Cas9-pEBEe10a;
5)将载体pYLCRISPR/Cas9-pEBEe10a通过电转化的方式转入农杆菌EHA105中,获得EHA105/pYLCRISPR/Cas9-NH菌株;
6)利用EHA105/pYLCRISPR/Cas9-NH菌株侵染水稻品种日本晴成熟胚诱导的愈伤组织,培养得到转基因阳性植株。
另外,所述感病基因OsHXK5在制备抗细菌性条斑病生物制剂中应用也在本发明的保护范围之内。
所述感病基因OsHXK5在建立细菌性条斑病菌与水稻互作关系模型中的应用也在本发明的保护范围之内。
本发明的有益效果为:
1)本发明中所涉及到的OsHXK5基因为首次在水稻中发现其对水稻细菌性条斑病病菌具有感病功能的报道,之前无任何相关研究和报道;
2)本发明利用CRISPR/Cas9基因组定点编辑系统突变了水稻的OsHXK5基因启动子,构建的抗病水稻株系对细菌性条斑病有广谱抗性;
3)用本发明方法获得抗病水稻既能广谱抗病又不含转基因标记,获得的抗病水稻与自然突变结果相似,在实际应用中可以用来研发和构建抗病水稻新品种;
4)用本发明方法可以定向改变水稻抗病性,育种周期短可控性高,且不受水稻品种限制;
5)用本发明获得的水稻可以广谱抗水稻细菌性条斑病,获得新品种水稻可以用来杂交育种或直接用于农业生产。
附图说明
图1是携带表达tal10a的pBYD载体的农杆菌单独或混合压渗到本氏烟的叶片中进行瞬时表达荧光分析;其中,Expressed TALE表示TAL效应物,Promoter to test表示启动子序列,“-”表示无,GFP为GFP荧光通道;Merged为GFP通道与明场通道的叠加;
图2是纯合突变体植株的OsHXK5基因靶序列突变,其中,“-”表示缺失;
图3是qRT-PCR检测Xoc GX01侵染日本晴和转基因水稻前后OsHXK5的表达量变化;
图4是Xoc GX01在EBE10a编辑水稻上的致病力检测;
图5是水稻株系NH6-39 OsHXK5被特异性激活后的致病力检测;
图6是野生型GX01和GX01/p6dTAL6-39在转基因水稻6-39中致病力检测。
具体实施方式
下面将结合本发明具体的实施例,对本发明技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1OsHXK5基因启动子的克隆
本实施例克隆水稻中OsHXK5基因上游500bp的DNA片段以及Xoc GX01中的tal10a基因,通过农杆菌瞬时表达技术,验证与水稻条斑病菌Xoc蛋白的互作。
以水稻日本晴基因组DNA为模板,设计引物进行PCR扩增,PCR扩增条件为:95℃/5min+(95℃/45sec+55℃/30sec+72℃/1min30sec)×35循环+72℃/10min。PCR产物经纯化后使用XbaI/BamHI双酶切后,连接到同样经过XbaI/BamHI双酶切的pCAMBIA-1300GFP载体中,获得pC1300GFP-EBE10a质粒,并和携带表达tal10a的pBYD载体的农杆菌单独或混合压渗到本氏烟的叶片中进行瞬时表达荧光分析。
转化烟草经过3天的温室培养(25℃,光照/黑暗,16h/12h)后,测定GFP报道基因活性发现:同时转入了pBYD和pC1300GFP-EBE10a质粒的烟草叶肉在GFP通道下能观察到被激发产生的绿色荧光蛋白(图1),而分别转入pBYD或pC1300GFP-EBE10a的烟草叶肉则无荧光反应,说明Tal10a可以显著激活OsHXK5基因启动子的表达,确定了两者的结合具有特异性。
实施例2基于CRISPR/Cas9系统的水稻OsHXK5基因启动子定点突变
1)gRNA靶位点的选择和sgRNA表达盒的构建
根据CRISPR/Cas9技术靶位点设计的原则,在可被水稻细菌性条斑病菌识别和诱导的区域(EBE区)选择靶位点序列,选择位于OsHXK5基因启动子区正义链上含有NGG的序列为水稻中特异的靶序列,即为靶位点序列(SEQ ID No.2)。
1.1根据所选靶位点,合成一对互补的引物EBEe10a-gRNA-F和EBEe10a-gRNA-R,所述引物EBEe10a-gRNA-F序列如SEQ ID No.3示,引物EBEe10a-gRNA-R如SEQ ID No.4示。
1.2将引物EBEe10a-gRNA-F和EBEe10a-gRNA-R用TE溶解成100μM母液,两个引物各取1μl加入到98μl 0.5x TE混合稀释到1μM,90℃30s,移至室温缓慢冷却完成退火,得到接头引物。
1.3取1μg的pLacZ-U6a质粒在20μl反应用10U BsaI酶切,70℃5min,使酶失活。
1.4将获得的接头产物和质粒酶切产物连接重组,获得sgRNA表达盒连接物OsU6a-NH-gRNA。
1.5第一轮PCR:以OsU6a-NH-gRNA质粒为模板,做两个PCR反应,用引物U-F/EBEe10a-gRNA-R扩增,产物为A;另用引物sgRNA-R/EBEe10a-gRNA-F扩增,产物为B;所述引物U-F如SEQ ID No.5示,sgRNA-R如SEQ ID No.6示。
1.6第二轮PCR:将第一轮PCR反应获得的产物A、B等体积混合作为模板,用引物B1-F/BL-R扩增,获得gRNA表达盒EBEe10a-sgRNA,所述引物B1-F序列如SEQ ID No.7示,引物BL-R序列如SEQ ID No.8示。
2)表达载体pYLCRISPR/Cas9-pEBEe10a的构建
将获得的EBEe10a-sgRNA通过酶切连接克隆至pYLCRISPR/Cas9-MH载体,获得重组载体pYLCRISPR/Cas9-pEBEe10a。
3)将获得的pYLCRISPR/Cas9-pEBEe10a载体通过电转化的方式转入农杆菌EHA105中,获得EHA105/pYLCRISPR/Cas9-NH菌株。
4)用EHA105/pYLCRISPR/Cas9-NH侵染水稻品种日本晴成熟胚诱导的愈伤组织,在含潮霉素抗生素培养基上成功再生及生根的植株为转基因阳性植株,将其命名为NH。
5)转基因水稻靶位点编辑情况检测
使用引物hyg-F/hyg-R(SEQ ID No.9~10)通过快速PCR的方式扩增pEBEe10a质粒上的潮霉素片段来进行判断,确定了部分F1代植株不再携带转入的CRISPR质粒片段。并用测序的方式确定了这些不再携带插入质粒的基因编辑水稻的EBE10a已经被破坏。进行进一步扩繁后,通过对它们的F2代进行基因分型,确认获得了NH6-39、NH8-33、NH9-41和NH9-524个EBE10a被破坏,且遗传稳定的转基因水稻株系。
在对EBE10a序列分析后,结果如下(图2)。Line NH6-39和Line NH9-41的EBE10a发生了相同的变化,均是在原来的第8与第9碱基之间插入了一个碱基G。而Line NH8-33则是在第8与第9碱基之间插入了一个C。而Line NH9-52则在EBE10a区域发生了较大的变化,丢失了原识别位点的第2至18碱基,又被插入了一个9个碱基的插入片段。经过观察,EBE10a被编辑后,水稻的生长与野生型日本晴相比,没有显著的差异。
实施例3基因编辑水稻的对Xoc的抗病能力检测
通过叶压渗法用Xoc GX01接种转基因水稻的叶片。经过24h后,分别回收接种过的叶片样本与未被接种的叶片样本。在提取总RNA并反转录为cDNA后,使用qRT-PCR检测样本中OsHXK5的表达量。
检测的结果EBE10a编辑水稻中的OsHXK5的表达不再受Xoc GX01所诱导(图3)。之后的植株实验证明,Xoc GX01在EBE10a修饰水稻NH6-39、NH8-33、NH9-41和NH9-52这四个株系上的致病力比在日本晴上的致病力低(图4)。
以上结果说明,当Tal10a的靶位点EBE10a被基因编辑修饰后,Tal10a无法与被编辑后的位点结合,进而无法激活OsHXK5的转录,从而导致致病力有所下降。因此可以确定基因编辑水稻对Xoc的抗病性提高。
实施例4OsHXK5被特异性激活后的致病力检测
本实施例通过人工合成tal效应物的方法来诱导基因编辑水稻中的OsHXK5的表达。
选定基因编辑水稻株系NH6-39中OsHXK5启动子的一段序列(SEQ ID No.11)作为靶点设计并合成dTal基因。将GX01/p6dTAL6-39压渗后24h的水稻叶片样本进行qPCR检测发现,dTAL6-39能够诱导OsHXK5的表达,而且其诱导幅度与野生型Xoc GX01对日本晴的OsHXK5的诱导倍数接近(图5)。之后进行的植株检测则显示,携带GX01/p6dTAL6-39在转基因水稻6-39中的致病力比野生型GX01高。且GX01/p6dTAL6-39在转基因水稻NH6-39上产生的病斑长度与野生型Xoc GX01在日本晴上产生的病斑长度接近(图6)。
以上实验说明说明dTAL6-39能通过诱导基因水稻NH6-39中OsHXK5的表达,提高其对Xoc GX01的感病性。因此OsHXK5的高表达与日本晴对Xoc的感病性有直接关联。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。
序列表
<110> 广西大学
<120> 一种水稻细菌性条斑病的感病基因OsHXK5及其应用
<160> 11
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1847
<212> DNA
<213> 水稻细菌性条斑病感病基因(OsHXK5)
<400> 1
attgactcgt gtcgccgtct cgccgagcga acccgacgtc gtcggcgatg aggaaggcgg 60
cggcgctggc gtccgcggcg atggccgcag cagcagtagc ggtagtctcc acggtgttgc 120
accagaggca acgtcgggcg gcgaagcggt cagagcgcgc ggaggccgtg ctgctgcggg 180
acctgcagga gcggtgcgcc gcgccggtgg agctgctgcg gcaggtggcg gacgcgatgg 240
ccgcggagat gcgcgcgggg ctcgccgccg agggcgggag cgacctccag atgctcgtca 300
cctacgttga ctccctcccc tccgggggtg agaaagggat gttttatgca cttgaccttg 360
gaggaacaaa tttccgtgtt ttacgagttc aattaggagg caaagaacgt cgaattatca 420
agcaagactc agaagggata tccattccac aacatttaat gtccagcagt tcacatgagt 480
tgtttgattt tgttgctgtg gctttagcaa aatttgttgc ctctgaaggt gaagactgcc 540
atcttcctga gggtacccaa agagaactag gttttacatt ctcctttcca gtgaaacaaa 600
aatcattggc atctggcact cttatcaagt ggacgaagag ttttgcaatt gatgaaatgg 660
tcggcaagga tgttgtggct gaattaaaca tggctatcag aagtcaagga cttgatatga 720
aagtcacagc attggttaat gatacagtag ggacattagc tgctgggaga tatgtgaatc 780
atgatactat tgctgctgtt atactgggaa caggtagtaa tgcagcgtac atagatcatg 840
cagatgcaat tccaaaatgg catggatccc tgcccaagtc tggaaatatg gtaataaaca 900
tggaatgggg taactttaag tcctcacatc ttccacttac tgaatttgat caagagttgg 960
atgcagaaag tttgaaccct ggcaaacagg tttacgagaa atcgatttct ggtatgtata 1020
tgggggaact tgttcgaaga atcttactaa agatggctca agaaactcgc atttttggtg 1080
ataatatacc tccaaaactt gagagaccat acatcttaag gacacttgac atgctgatca 1140
tgcatcatga tacatcatct gatctcagaa cagttgccaa caagttgaaa gaagtcttgg 1200
ggatcgaata tacctctttc acgacgagga aactggtttt ggatgtttgt gaggccattg 1260
cgacacgcgg tgcacggctt gctgctgctg ggatatatgg cattatccaa aagcttggtc 1320
agcattctga cagccccagt acgagaaggt ccgtgattgc tgtggatgga ggggtctata 1380
aatactacac tttcttcagc cagtgcatgg agagcactct gagtgacatg cttgggcagg 1440
agctggcccc ctctgttatg atcaagcatg tcaatgatgg ctcaggcgtt ggggcagctc 1500
tcctggcagc ctcttattct caataccacc aggctgaatc tgcagatagt tcataatatt 1560
ctaaaaaaaa gaagctgaat ctgcagatag ctcttaatat tctgaaaaaa ctgtcaaaaa 1620
ataatattct gaaaaaaaac tgtgtattaa ggtgataaac aataggtttt ggagcaattt 1680
tttttttaag ataatggatt aaaccggcct ctacatccaa acgagattct agagcaatag 1740
cagctataca gtttgcctaa gggctaaata tcttgtattt tgcaaatgtc aattgtacat 1800
gaactctatc tgcaatatct gttcagtgtt tcagtgggtc atagaca 1847
<210> 2
<211> 20
<212> DNA
<213> 靶标序列(EBEe10a)
<400> 2
cgcttatggc gcaaaggcga 20
<210> 3
<211> 24
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 3
gccgcgctta tggcgcaaag gcga 24
<210> 4
<211> 24
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 4
aaactcgcct ttgcgccata agcg 24
<210> 5
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 5
ctccgtttta cctgtggaat cg 22
<210> 6
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 6
cggaggaaaa ttccatccac 20
<210> 7
<211> 38
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 7
ttcagaggtc tctctcgcac tggaatcggc agcaaagg 38
<210> 8
<211> 40
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 8
agcgtgggtc tcgaccgacg cgtccatcca ctccaagctc 40
<210> 9
<211> 23
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 9
gcgtctccga cctgatgcag ctc 23
<210> 10
<211> 25
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 10
gaacatcgcc tcgctccagt caatg 25
<210> 11
<211> 24
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 11
tggcgcaaag ggcgaagggt actc 24

Claims (1)

1.核苷酸序列如SEQ ID No.1所示的感病基因OsHXK5在培育抗细菌性条斑病水稻品种中的应用。
CN202011290233.1A 2020-11-17 2020-11-17 一种水稻细菌性条斑病的感病基因OsHXK5及其应用 Active CN112375765B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011290233.1A CN112375765B (zh) 2020-11-17 2020-11-17 一种水稻细菌性条斑病的感病基因OsHXK5及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011290233.1A CN112375765B (zh) 2020-11-17 2020-11-17 一种水稻细菌性条斑病的感病基因OsHXK5及其应用

Publications (2)

Publication Number Publication Date
CN112375765A CN112375765A (zh) 2021-02-19
CN112375765B true CN112375765B (zh) 2023-01-10

Family

ID=74585031

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011290233.1A Active CN112375765B (zh) 2020-11-17 2020-11-17 一种水稻细菌性条斑病的感病基因OsHXK5及其应用

Country Status (1)

Country Link
CN (1) CN112375765B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112522300A (zh) * 2020-12-08 2021-03-19 广西大学 一种培育广谱抗细菌性条斑病水稻的方法及引物和表达盒

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100990118B1 (ko) * 2008-07-14 2010-10-29 경희대학교 산학협력단 글루코스 센서로서 OsHXK5 유전자의 용도
WO2020222517A1 (ko) * 2019-04-30 2020-11-05 경희대학교 산학협력단 식물 웅성불임 유도를 위한 oshxk5 및 이의 용도
CN111411123B (zh) * 2020-04-08 2023-04-11 上海市农业生物基因中心 一种利用CRISPR/Cas9系统同时改良水稻香味和白叶枯病抗性的方法及表达载体

Also Published As

Publication number Publication date
CN112375765A (zh) 2021-02-19

Similar Documents

Publication Publication Date Title
CN107988229B (zh) 一种利用CRISPR-Cas修饰OsTAC1基因获得分蘖改变的水稻的方法
CN107043775B (zh) 一种能促进棉花侧根发育的sgRNA及其应用
US11767536B2 (en) Method for obtaining glyphosate-resistant rice by site-directed nucleotide substitution
KR102107735B1 (ko) 식물 원형질체로부터 식물체를 제조하는 방법
CN106222197A (zh) 植物基因组定点修饰方法
CN110891965A (zh) 植物中使用的抗crispr蛋白的方法和组合物
CN105112435A (zh) 植物多基因敲除载体的构建及应用
CN109705198B (zh) OsCKX7蛋白质及其编码基因在调控植物纹枯病抗性中的应用
CN113801891B (zh) 甜菜BvCENH3基因单倍体诱导系的构建方法与应用
CN111187778A (zh) 小麦耐盐基因TaFLZ2及其应用
Char et al. CRISPR/Cas9 for mutagenesis in rice
CN112375765B (zh) 一种水稻细菌性条斑病的感病基因OsHXK5及其应用
US10941412B2 (en) Citrus varieties resistant to Xanthomonas citri infection
US20050066386A1 (en) Method of modifying genome in higher plant
Rezaei et al. In planta removal of nptII selectable marker gene from transgenic tobacco plants using CRISPR/Cas9 system
Li et al. Creating large chromosomal deletions in rice using CRISPR/Cas9
CN111909956B (zh) 阻断或减弱水稻OsNAC092基因表达以提高水稻抗旱性的方法
CN112522299A (zh) 一种利用OsTNC1基因突变获得分蘖增加的水稻的方法
Flaishman et al. Advanced molecular tools for breeding in Mediterranean fruit trees: Genome editing approach of Ficus carica L.
WO2020006112A1 (en) Delivery of developmental regulators to plants for the induction of meristematic tissue with genetic alterations
CN114181951B (zh) 一个玉米纹枯病抗病相关基因Zmbzip45及其应用
CN110295192B (zh) 利用Gateway技术构建TYLCV和ToCV的双价RNAi表达载体及其应用
CN114181943B (zh) 一种创制早熟玉米种质的方法及其应用
US20230392160A1 (en) Compositions and methods for increasing genome editing efficiency
Chen et al. Establishment of a CRISPR/Cas9 gene-editing system for Chrysanthemum morifolium

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant