CN112361322A - 锅炉给水自动加氨装置及灰色预测前馈pid控制方法 - Google Patents

锅炉给水自动加氨装置及灰色预测前馈pid控制方法 Download PDF

Info

Publication number
CN112361322A
CN112361322A CN202011166099.4A CN202011166099A CN112361322A CN 112361322 A CN112361322 A CN 112361322A CN 202011166099 A CN202011166099 A CN 202011166099A CN 112361322 A CN112361322 A CN 112361322A
Authority
CN
China
Prior art keywords
ammonia
water
value
pipeline
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011166099.4A
Other languages
English (en)
Inventor
谢宙桦
黄万启
张洪博
郭焱
刘涛
张瑞
刘铁勇
齐超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Thermal Power Research Institute Co Ltd
Original Assignee
Xian Thermal Power Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Thermal Power Research Institute Co Ltd filed Critical Xian Thermal Power Research Institute Co Ltd
Priority to CN202011166099.4A priority Critical patent/CN112361322A/zh
Publication of CN112361322A publication Critical patent/CN112361322A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D11/00Feed-water supply not provided for in other main groups
    • F22D11/006Arrangements of feedwater cleaning with a boiler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D5/00Controlling water feed or water level; Automatic water feeding or water-level regulators
    • F22D5/26Automatic feed-control systems
    • F22D5/34Applications of valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Treating Waste Gases (AREA)
  • Feedback Control In General (AREA)
  • Control Of Non-Electrical Variables (AREA)

Abstract

本发明公开了一种锅炉给水自动加氨装置及灰色预测前馈PID控制方法,装置包括:PLC控制器,与氨混合罐连通的除盐水管道和氨气管道,与锅炉给水系统的省煤器入口连通的第一管路,及与锅炉给水系统的凝结水母管连通的第二管路;所述氨气管道上依次设置有氨气一次截止阀、凝结水加氨电动调节阀、氨气止回阀和氨气二次截止阀;所述氨混合罐底部通过管道连通凝结水加氨点,管道上设置有凝结水加氨泵;所述第一管路上设置有省煤器入口pH传感器,第二管路上设置有凝结水流量计;PLC控制器连接凝结水加氨电动调节阀、凝结水加氨泵、省煤器入口pH传感器和凝结水流量计。该装置保证了省煤器入口pH的稳定性,即满足水汽系统对锅炉给水pH的控制要求。

Description

锅炉给水自动加氨装置及灰色预测前馈PID控制方法
技术领域
本发明涉及电厂水汽系统化学加氨技术领域,特别是涉及锅炉给水自动加氨装置及灰色预测前馈PID控制方法。
背景技术
氨作为热力系统最常用的碱化剂,用于金属防腐。锅炉给水加氨技术是电厂汽水加药系统中的组成部分,通过控制给水的pH值可以有效的防止给水管路的腐蚀和金属表面保护膜的破坏,是防止金属腐蚀中最经济实用的办法。
目前电厂锅炉给水加氨系统都是人工操作的,包括运行人员对氨溶液箱的氨水进行等比例稀释,每天根据省煤器入口在线pH值,人工调节计量泵的频率,从而改变加氨量,水质控制指标不稳定,存在一定的设备腐蚀。
目前大多数电厂处于调峰运行,负荷变化明显,导致水汽系统中的省煤器入口pH值不稳定,不仅影响机组运行的安全性,同时也极大地增加了运行人员的工作难度。鉴于此,需要有一种锅炉给水自动加氨装置及灰色预测前馈PID控制方法。
发明内容
为了克服上述现有技术的不足,本发明提供了一种锅炉给水自动加氨装置及灰色预测前馈PID控制方法,在机组负荷频繁发生变化时,保证省煤器入口pH的稳定性。
为了达到以上目的,本发明采用如下技术方案:
一种锅炉给水自动加氨装置,包括:PLC控制器,与氨混合罐连通的除盐水管道和氨气管道,与锅炉给水系统的省煤器入口连通的第一管路,及与锅炉给水系统的凝结水母管连通的第二管路;
所述氨气管道上依次设置有氨气一次截止阀、凝结水加氨电动调节阀、氨气止回阀和氨气二次截止阀;
所述氨混合罐底部通过管道连通凝结水加氨点,管道上设置有凝结水加氨泵;
所述第一管路上设置有省煤器入口pH传感器,第二管路上设置有凝结水流量计;PLC控制器连接凝结水加氨电动调节阀、凝结水加氨泵、省煤器入口pH传感器和凝结水流量计。
作为本发明的进一步改进,所述PLC控制器包括灰色预测模块,所述灰色预测模块用于将省煤器入口的pH实际值进行预测,得出省煤器入口的pH的变化趋势,同时使用凝结水流量作为前馈PID算法的前馈值。
作为本发明的进一步改进,所述凝结水加氨泵入口和出口的管道上分别设置凝结水加氨泵入口截止阀和凝结水加氨泵出口截止阀。
作为本发明的进一步改进,所述除盐水管道上依次设置有除盐水一次截止阀、除盐水二次截止阀。
作为本发明的进一步改进,还包括触摸显示屏,所述PLC控制器连接触摸显示屏。
作为本发明的进一步改进,还包括并联在凝结水加氨电动调节阀两端的凝结水加氨电动调节阀旁路阀,凝结水加氨电动调节阀旁路阀用于手动向氨混合罐中通入氨气。
一种锅炉给水自动加氨装置的灰色预测前馈PID控制方法,包括以下步骤:
设置省煤器入口pH期望值,启动凝结水加氨泵;将省煤器入口的pH采样值经过灰色预测模块预测处理后,得到省煤器入口pH的预测值,提前与省煤器入口pH的期望值进行比较,将差值和凝结水流量送入前馈PID控制器进行运算,其中凝结水流量信号作为前馈值,得到此时凝结水加氨氨气电动调节阀所需的开度指令,根据开度指令控制省煤器入口pH达到期望值。
所述灰色预测模块预测处理步骤如下:
S1确定灰色模型类型GM(1,1),具体表达式如下:
Figure BDA0002745832750000031
其中x为省煤器入口pH采样值,而待辨识参数为发展系数a和灰作用量u;
S2省煤器入口pH采样值数据处理
采集后处理的非负数据序列为:
xn=[x(0)(1),x(0)(2),x(0)(3)Kx(0)(n)]T
其中,n是灰色预测模型的维数;
对以上数据进行累加:
x(1)=[x(1)(1),x(1)(2),x(1)(3)Kx(1)(n)]T
其中,
Figure BDA0002745832750000032
S3构造省煤器入口pH采样值数据背景向量和数据矩阵
y=[x(0)(2),x(0)(3)Kx(0)(n)]T
Figure BDA0002745832750000033
S4 GM辨识参数
使用最小二乘法,得出GM(1,1)模型的两个参数为:
[a,u]T=(BTB)-1BTy
S5通过辨识所得参数,得出时域的响应模型为:
Figure BDA0002745832750000041
S6将时域响应模型离散化后得到:
Figure BDA0002745832750000042
S7对预测的省煤器入口pH数据进行还原
将预测出的省煤器入口pH数据进行累减,得到原始的预测值:
Figure BDA0002745832750000043
所述开度指令的计算具体步骤为:
将省煤器入口pH采样值通过灰色预测算法,得到预测后的省煤器入口pH值,将其与省煤器入口pH期望值的差值送入前馈PID控制;前馈PID计算公式如下:
Figure BDA0002745832750000044
其中Kp为比例系数,Ti为积分时间系数,Td为微分时间系数,Kq为前馈系数,e(t)为省煤器入口pH期望值和省煤器入口pH预测值的差值,q(t)为凝结水流量信号的前馈值,u(t)为控制量即凝结水加氨氨气电动调节阀的开度指令。
和现有技术相比较,本发明具备如下优点:
本发明装置第一管路上设置有省煤器入口pH传感器,第二管路上设置有凝结水流量计;PLC控制器连接凝结水加氨电动调节阀、凝结水加氨泵、省煤器入口pH传感器和凝结水流量计。整体装置简单实用且控制准确度高,能够准确快速的调节锅炉给水加氨量,满足负荷波动时机组对给水pH控制要求。相比目前的加氨系统,增加了凝结水加氨电动调节阀,根据调整氨气的进气量,动态的改变氨混合罐中的氨水浓度,使用灰色预测前馈PID控制方法,利用灰色预测算法尽早的预测出省煤器入口pH的变化,同时使用凝结水流量作为前馈信号,自动改变凝结水加氨电动调节阀的开度指令,使得省煤器入口pH值达到期望值,即满足水气系统对给水pH的控制要求。
本发明方法灰色预测模块将省煤器入口的pH实际值进行预测,得出省煤器入口的pH的变化趋势,同时使用凝结水流量作为前馈PID算法的前馈值,在负荷波动时,尽早的调节凝结水加氨电动调节阀的开度,改变凝结水加氨的氨水浓度,利用凝结水加氨泵将氨水加入凝结水加氨点,对锅炉给水pH进行控制,保证了省煤器入口pH的稳定性,即满足水汽系统对锅炉给水pH的控制要求。采用该发明不仅解决了锅炉给水自动加氨的控制问题,而且减少了运行人员的工作量,提高了发电机组运行的安全性和经济性。
附图说明
图1锅炉给水自动加氨装置;
图2锅炉给水自动加氨装置灰色预测前馈PID控制方法。
具体实施方式
下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明的保护范围。
如图1所示,锅炉给水自动加氨装置,包括:PLC控制器13,与氨混合罐8连通的除盐水管道和氨气管道,与锅炉给水系统的省煤器入口连通的第一管路,及与锅炉给水系统的凝结水母管连通的第二管路;
与氨混合罐8连通的除盐水管道上依次是除盐水一次截止阀1、除盐水二次截止阀2,与氨混合罐8连通的氨气管道上依次是氨气一次截止阀3、凝结水加氨电动调节阀4、氨气止回阀6和氨气二次截止阀7,氨气止回阀7是为了防止氨混合罐8中的氨水回灌至管道中;氨混合罐8底部通过管道连通凝结水加氨点,管道上设置有凝结水加氨泵10,凝结水加氨泵10入口和出口的管道上分别设置凝结水加氨泵入口截止阀9和凝结水加氨泵出口截止阀11;与锅炉给水系统的省煤器入口连通的管路上设置有省煤器入口pH传感器12,与锅炉给水系统的凝结水母管连通的管路上设置有凝结水流量计13;PLC控制器14连接凝结水加氨电动调节阀4、凝结水加氨泵10、省煤器入口pH传感器12和凝结水流量计13。
所述PLC控制器14连接触摸显示屏15。
还包括并联在凝结水加氨电动调节阀4两端的凝结水加氨电动调节阀旁路阀5,凝结水加氨电动调节阀旁路阀5用于在凝结水加氨电动调节阀4出现故障时,手动的向氨混合罐8中通入氨气。
所述PLC控制器包括灰色预测模块,所述灰色预测模块用于将省煤器入口的pH实际值进行预测,得出省煤器入口的pH的变化趋势,同时使用凝结水流量作为前馈PID算法的前馈值。从而控制省煤器入口pH达到期望值。
一种锅炉给水自动加氨装置进行灰色预测前馈PID控制方法,包括以下步骤:
在触摸屏15设置省煤器入口pH期望值,启动凝结水加氨泵。将省煤器入口的pH采样值经过灰色预测模块后,得到省煤器入口pH的预测值,提前与省煤器入口pH的期望值进行比较,将差值和凝结水流量送入前馈PID控制器进行运算,其中凝结水流量信号作为前馈值,得到此时凝结水加氨氨气电动调节阀所需的开度指令。从而控制省煤器入口pH达到期望值。
灰色预测算法需要借助于西门子S7-300的STEP7编程软件中的SCL编程语句实现。灰色预测算法选用的灰色模型(Grey Model,即GM)来描述算法自身结构,而灰色模型是使用连续的微分方程表示出来,表示灰色模型为GM(h,j),其中h为模型的阶次,j为变量个数。在工业背景中,一般算用h=j=1,即GM(1,1),单变量的一阶灰色预测模型。灰色预测的步骤如下:
S1确定灰色模型类型GM(1,1),具体表达式如下所示:
Figure BDA0002745832750000071
其中x为省煤器入口pH采样值,而待辨识参数为发展系数a和灰作用量u。
S2省煤器入口pH采样值数据处理
采集后处理的非负数据序列为:
xn=[x(0)(1),x(0)(2),x(0)(3)Kx(0)(n)]T
其中,n是灰色预测模型的维数。根据经验,数据取6个的时候为最佳,即n=6。
对以上数据进行累加:
x(1)=[x(1)(1),x(1)(2),x(1)(3)Kx(1)(n)]T
其中,
Figure BDA0002745832750000072
S3构造省煤器入口pH采样值数据背景向量和数据矩阵
y=[x(0)(2),x(0)(3)Kx(0)(n)]T
Figure BDA0002745832750000073
上述式分别为数据背景向量、数据序列。
S4 GM辨识参数
使用最小二乘法,得出GM(1,1)模型的两个参数为:
[a,u]T=(BTB)-1BTy
S5通过辨识所得参数,得出时域的响应模型为:
Figure BDA0002745832750000081
S6将时域响应模型离散化后得到:
Figure BDA0002745832750000082
S7对预测的省煤器入口pH数据进行还原
将预测出的省煤器入口pH数据进行累减,得到原始的预测值:
Figure BDA0002745832750000083
将省煤器入口pH采样值通过灰色预测算法,得到预测后的省煤器入口pH值,将其与省煤器入口pH期望值的差值送入前馈PID控制。前馈PID计算公式如下:
Figure BDA0002745832750000084
其中Kp为比例系数,Ti为积分时间系数,Td为微分时间系数,Kq为前馈系数,e(t)为省煤器入口pH期望值和省煤器入口pH预测值的差值,q(t)为凝结水流量信号的前馈值,u(t)为控制量即凝结水加氨氨气电动调节阀的开度指令。
下面结合附图1和附图2对本发明的具体实施方式作进一步的说明。
实施例
如附图1所示,投运锅炉给水自动加氨装置时,打开除盐水一次截止阀1、除盐水二次截止阀2、氨气一次截止阀3、氨气二次截止阀7、凝结水加氨泵入口阀9和凝结水加氨泵出口阀11,关闭凝结水加氨电动调节阀旁路阀5,在触摸显示屏15上,设置省煤器入口pH值后,启动凝结水加氨泵10,即可将锅炉给水自动加氨装置投入自动。
如附图2所示,调节省煤器入口pH灰色预测前馈PID参数,其中包括比例系数,积分时间系数、微分时间系数和凝结水流量的前馈系数,从而实现锅炉给水加氨的精确调节,使得省煤器入口pH具有自动控制的功能,即满足水气系统对给水pH的控制要求。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。

Claims (9)

1.一种锅炉给水自动加氨装置,其特征在于,包括:PLC控制器,与氨混合罐连通的除盐水管道和氨气管道,与锅炉给水系统的省煤器入口连通的第一管路,及与锅炉给水系统的凝结水母管连通的第二管路;
所述氨气管道上依次设置有氨气一次截止阀、凝结水加氨电动调节阀、氨气止回阀和氨气二次截止阀;
所述氨混合罐底部通过管道连通凝结水加氨点,管道上设置有凝结水加氨泵;
所述第一管路上设置有省煤器入口pH传感器,第二管路上设置有凝结水流量计;PLC控制器连接凝结水加氨电动调节阀、凝结水加氨泵、省煤器入口pH传感器和凝结水流量计。
2.根据权利要求1所述的一种锅炉给水自动加氨装置,其特征在于,所述PLC控制器包括灰色预测模块,所述灰色预测模块用于将省煤器入口的pH实际值进行预测,得出省煤器入口的pH的变化趋势,同时使用凝结水流量作为前馈PID算法的前馈值。
3.根据权利要求1所述的一种锅炉给水自动加氨装置,其特征在于,所述凝结水加氨泵入口和出口的管道上分别设置凝结水加氨泵入口截止阀和凝结水加氨泵出口截止阀。
4.根据权利要求1所述的一种锅炉给水自动加氨装置,其特征在于,所述除盐水管道上依次设置有除盐水一次截止阀、除盐水二次截止阀。
5.根据权利要求1所述的一种锅炉给水自动加氨装置,其特征在于,还包括触摸显示屏,所述PLC控制器连接触摸显示屏。
6.根据权利要求1所述的一种锅炉给水自动加氨装置,其特征在于,还包括并联在凝结水加氨电动调节阀两端的凝结水加氨电动调节阀旁路阀,凝结水加氨电动调节阀旁路阀用于手动向氨混合罐中通入氨气。
7.一种锅炉给水自动加氨装置的灰色预测前馈PID控制方法,其特征在于,包括以下步骤:
设置省煤器入口pH期望值,启动凝结水加氨泵;将省煤器入口的pH采样值经过灰色预测模块预测处理后,得到省煤器入口pH的预测值,提前与省煤器入口pH的期望值进行比较,将差值和凝结水流量送入前馈PID控制器进行运算,其中凝结水流量信号作为前馈值,得到此时凝结水加氨氨气电动调节阀所需的开度指令,根据开度指令控制省煤器入口pH达到期望值。
8.根据权利要求7所述锅炉给水自动加氨装置的灰色预测前馈PID控制方法,其特征在于,所述灰色预测模块预测处理步骤如下:
S1确定灰色模型类型GM(1,1),具体表达式如下:
Figure FDA0002745832740000022
其中x为省煤器入口pH采样值,而待辨识参数为发展系数a和灰作用量u;
S2省煤器入口pH采样值数据处理
采集后处理的非负数据序列为:
xn=[x(0)(1),x(0)(2),x(0)(3)Kx(0)(n)]T
其中,n是灰色预测模型的维数;
对以上数据进行累加:
x(1)=[x(1)(1),x(1)(2),x(1)(3)Kx(1)(n)]T
其中,
Figure FDA0002745832740000021
S3构造省煤器入口pH采样值数据背景向量和数据矩阵
y=[x(0)(2),x(0)(3)Kx(0)(n)]T
Figure FDA0002745832740000031
S4 GM辨识参数
使用最小二乘法,得出GM(1,1)模型的两个参数为:
[a,u]T=(BTB)-1BTy
S5通过辨识所得参数,得出时域的响应模型为:
Figure FDA0002745832740000032
S6将时域响应模型离散化后得到:
Figure FDA0002745832740000033
S7对预测的省煤器入口pH数据进行还原
将预测出的省煤器入口pH数据进行累减,得到原始的预测值:
Figure FDA0002745832740000034
9.根据权利要求8所述锅炉给水自动加氨装置的灰色预测前馈PID控制方法,其特征在于,所述开度指令的计算具体步骤为:
将省煤器入口pH采样值通过灰色预测算法,得到预测后的省煤器入口pH值,将其与省煤器入口pH期望值的差值送入前馈PID控制;前馈PID计算公式如下:
Figure FDA0002745832740000035
其中Kp为比例系数,Ti为积分时间系数,Td为微分时间系数,Kq为前馈系数,e(t)为省煤器入口pH期望值和省煤器入口pH预测值的差值,q(t)为凝结水流量信号的前馈值,u(t)为控制量即凝结水加氨氨气电动调节阀的开度指令。
CN202011166099.4A 2020-10-27 2020-10-27 锅炉给水自动加氨装置及灰色预测前馈pid控制方法 Pending CN112361322A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011166099.4A CN112361322A (zh) 2020-10-27 2020-10-27 锅炉给水自动加氨装置及灰色预测前馈pid控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011166099.4A CN112361322A (zh) 2020-10-27 2020-10-27 锅炉给水自动加氨装置及灰色预测前馈pid控制方法

Publications (1)

Publication Number Publication Date
CN112361322A true CN112361322A (zh) 2021-02-12

Family

ID=74512263

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011166099.4A Pending CN112361322A (zh) 2020-10-27 2020-10-27 锅炉给水自动加氨装置及灰色预测前馈pid控制方法

Country Status (1)

Country Link
CN (1) CN112361322A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114873665A (zh) * 2022-05-06 2022-08-09 南京宏唐控制工程有限公司 基于计算机视觉技术的凝结水精处理再生自动控制系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2203971Y (zh) * 1994-11-16 1995-07-26 王保国 全自动喷射加氨装置
CN105759712A (zh) * 2016-04-05 2016-07-13 西安西热电站化学科技有限公司 凝结水自动加氨的精确控制装置及方法
CN108397763A (zh) * 2018-03-19 2018-08-14 华润电力(海丰)有限公司 一种电厂锅炉给水加氨的新型控制策略
CN207738501U (zh) * 2017-12-05 2018-08-17 齐越 一种锅炉给水pH值自动调节装置
CN110182924A (zh) * 2019-06-04 2019-08-30 西安热工研究院有限公司 全自动配氨加氨一体机装置及全自动配氨加氨方法
CN110794883A (zh) * 2019-11-28 2020-02-14 湖北华电江陵发电有限公司 一种发电厂凝结水自动加氨的控制方法及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2203971Y (zh) * 1994-11-16 1995-07-26 王保国 全自动喷射加氨装置
CN105759712A (zh) * 2016-04-05 2016-07-13 西安西热电站化学科技有限公司 凝结水自动加氨的精确控制装置及方法
CN207738501U (zh) * 2017-12-05 2018-08-17 齐越 一种锅炉给水pH值自动调节装置
CN108397763A (zh) * 2018-03-19 2018-08-14 华润电力(海丰)有限公司 一种电厂锅炉给水加氨的新型控制策略
CN110182924A (zh) * 2019-06-04 2019-08-30 西安热工研究院有限公司 全自动配氨加氨一体机装置及全自动配氨加氨方法
CN110794883A (zh) * 2019-11-28 2020-02-14 湖北华电江陵发电有限公司 一种发电厂凝结水自动加氨的控制方法及系统

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
左旭岩: "基于PLC的污水处理控制系统研究", 《中国优秀硕士学位论文全文数据库信息科技辑》 *
杨津灵等: "基于灰色预测-模糊控制的絮凝剂自动添加系统设计", 《太原理工大学学报》 *
梁东义: "火电厂水处理系统的神经网络预测控制", 《中国优秀硕士学位论文全文数据库工程科技Ⅱ辑》 *
郭翔: "发电厂给水泵状态监测系统研究开发", 《中国优秀硕士学位论文全文数据库信息科技辑》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114873665A (zh) * 2022-05-06 2022-08-09 南京宏唐控制工程有限公司 基于计算机视觉技术的凝结水精处理再生自动控制系统
CN114873665B (zh) * 2022-05-06 2024-01-12 南京宏唐控制工程有限公司 基于计算机视觉技术的凝结水精处理再生自动控制系统

Similar Documents

Publication Publication Date Title
US11789417B2 (en) Method for determining and tuning process characteristic parameters using a simulation system
CN102080820B (zh) 一种蒸汽锅炉表面排污的最优化节能控制方法
CN110182924B (zh) 全自动配氨加氨一体机装置及全自动配氨加氨方法
CN102374520B (zh) 带有防止饱和蒸汽进入过热器的蒸汽温度的动态矩阵控制
CN104102211B (zh) 一种燃煤热电厂热电联产系统的调度方法、服务器和系统
CN112316718A (zh) 一种w火焰锅炉脱硝喷氨控制系统及方法
CN111905536B (zh) 一种通过脱硫吸收塔浆液ph值自动控制系统
CN112361322A (zh) 锅炉给水自动加氨装置及灰色预测前馈pid控制方法
WO2021207758A1 (en) Methods and systems for optimizing corrosion and scale inhibitor injection rates in process plants
CN115511665A (zh) 用于智慧燃气的储配站燃气净化管理方法和物联网系统
Campos et al. Advanced anti-slug control for offshore production plants
CN112783115B (zh) 一种蒸汽动力系统的在线实时优化方法及装置
Kruger et al. Optimal control for fast boiler start-up based on a nonlinear model and considering the thermal stress on thick-walled components
CN115579072A (zh) 一种供热管网水质智能监测控制系统及方法
TW202306634A (zh) 濕式排煙脫硫裝置的控制方法,濕式排煙脫硫裝置的控制裝置,具備此濕式排煙脫硫裝置的控制裝置的遠程監視系統,資訊處理裝置及資訊處理系統
CN103064284B (zh) 应用逆向差分抑制不可测扰动的模型预测控制器及方法
CN115974251A (zh) 一种热力系统给水加氨控制系统及方法
CN215723152U (zh) 一种锅炉给水pH自动控制装置
CN112791566A (zh) 一种SCR入口NOx浓度分区的预测方法
CN113566189A (zh) 一种锅炉给水pH自动控制装置及控制方法
CN114779722B (zh) 一种用于燃煤电站锅炉的智慧燃烧优化控制系统及方法
Havlena et al. Application of MPC to advanced combustion control
CN219976371U (zh) 一种工业供汽温度调节系统
Sniders et al. Invariant control of the technological plants to compensate an impact of main disturbances preemptively
CN209978017U (zh) 锅炉汽包给水调节系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210212

RJ01 Rejection of invention patent application after publication