CN112347614A - 基于热流的功率半导体器件特征频率提取方法及系统 - Google Patents

基于热流的功率半导体器件特征频率提取方法及系统 Download PDF

Info

Publication number
CN112347614A
CN112347614A CN202011122486.8A CN202011122486A CN112347614A CN 112347614 A CN112347614 A CN 112347614A CN 202011122486 A CN202011122486 A CN 202011122486A CN 112347614 A CN112347614 A CN 112347614A
Authority
CN
China
Prior art keywords
thermal impedance
frequency
curve
semiconductor device
power semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011122486.8A
Other languages
English (en)
Inventor
马柯
徐梦琦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN202011122486.8A priority Critical patent/CN112347614A/zh
Publication of CN112347614A publication Critical patent/CN112347614A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/08Thermal analysis or thermal optimisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • General Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • Marketing (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Development Economics (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Conversion In General (AREA)

Abstract

本发明提供了一种基于热流的功率半导体器件特征频率提取方法,包括:给功率半导体器件施加阶跃损耗,记录器件时域热阻抗曲线和输出热流曲线;对所述时域热阻抗曲线进行频域转换,得到频域热阻抗模型及其特征频率个数及区间;结合所述频域热阻抗模型的特征频率,对所述时域输出热流曲线进行拟合,提取出功率半导体器件的特征频率值。进一步的,对时域热阻抗曲线进行曲线拟合,提高频域热阻抗模型的特征频率的准确度。对应的,本发明还提供了上述方法对应的系统、终端以及介质。本发明简化了频域热阻抗模型参数提取过程,提高了参数的准确度。

Description

基于热流的功率半导体器件特征频率提取方法及系统
技术领域
本发明涉及电力电子技术领域,具体的,涉及一种基于热流的功率半导体器件特征频率提取方法、系统、终端及介质。
背景技术
是否能准确预测功率半导体器件在实际应用下的温度特性,是提高电力电子系统可靠性的重要基础。近年来,频域热阻抗模型正逐渐受到人们的关注,因为相较于传统Foster和Cauer模型,它在全频段都能准确预测功率半导体器件的温度特性。但是,频域热阻抗模型中最为关键的特征频率参数目前还没有统一的提取方法。现在已有的方法非常复杂,而且无法保证准确度。
发明内容
针对现有技术中存在的上述不足,本发明的目的是提供一种基于热流的功率半导体器件特征频率提取方法、系统、终端及介质。
根据本发明第一方面,提供一种基于热流的功率半导体器件特征频率提取方法,包括:
给功率半导体器件施加阶跃损耗,记录所述功率半导体器件的时域热阻抗曲线和输出热流曲线;
对所述时域热阻抗曲线进行频域分析,得到频域热阻抗模型及其特征频率个数;
结合所述频域热阻抗模型的特征频率个数及区间,对所述时域输出热流曲线进行拟合,提取出精确的功率半导体器件特征频率值。
优选地,对所述时域输出热流曲线进行拟合,其中拟合公式如下:
Figure BDA0002732467050000021
其中,ε(t)为时域下单位阶跃响应,Pin为输入损耗,n为特征频率个数,f1、f2…fn为频域热阻抗模型的所有特征频率。
优选地,所述特征频率个数,通过对功率半导体器件的热阻抗频域分析得到。进一步的,所述对功率半导体器件的热阻抗频域分析,包括:
将时域热阻抗曲线转化为频域热阻抗曲线
Figure BDA0002732467050000022
通过s=2πf·j,f=10x的关系,即将复频率s用2πj·10x替代,使其变为以x为自变量的函数
Figure BDA0002732467050000023
再对其求二阶导,得到图形函数D(x):
Figure BDA0002732467050000024
找出图形函数D(x)在有效区间内n个极小值点,即代表频域热阻抗模型的特征频率的个数,j是虚数单位。
根据本发明的第二方面,提供一种提高频域热阻抗模型的特征频率准确度的方法,包括:
采用上述任一项基于热流的功率半导体器件特征频率提取方法得到频域热阻抗模型的特征频率;
对时域热阻抗曲线进行曲线拟合,提高频域热阻抗模型的特征频率的准确度。
优选地,所述对时域热阻抗曲线进行曲线拟合,其中拟合公式如下:
Figure BDA0002732467050000025
其中,R1、R2…Rn为热阻,f1、f2…fn为特征频率。
根据本发明的第三方面,提供一种基于热流的功率半导体器件特征频率提取系统,包括:
损耗施加模块,该模块给功率半导体器件施加阶跃损耗,记录时域热阻抗曲线和输出热流曲线;
频域分析模块,该模块对所述时域热阻抗曲线进行频域分析,得到频域热阻抗模型及其特征频率个数;
提取模块,该模块结合所述频域热阻抗模型的特征频率,对所述时域输出热流曲线进行拟合,提取出功率半导体器件的特征频率值。
根据本发明的第四方面,提供一种提高频域热阻抗模型的特征频率准确度的系统,包括:
特征频率提取模块,该模块采用所述基于热流的功率半导体器件特征频率提取系统得到频域热阻抗模型的特征频率;
曲线拟合模块,对时域热阻抗曲线进行曲线拟合,提高频域热阻抗模型的特征频率的准确度。
根据本发明的第五方面,提供一种终端,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时可用于执行上述任一项基于热流的功率半导体器件特征频率提取方法或提高频域热阻抗模型的特征频率准确度的方法。
根据本发明的第六方面,提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时可用于执行上述任一项基于热流的功率半导体器件特征频率提取方法或提高频域热阻抗模型的特征频率准确度的方法。
与现有技术相比,本发明具有如下的有益效果:
1、本发明提供的基于热流的功率半导体器件特征频率提取方法,简化了特征频率的提取过程,通过对于热流曲线的曲线拟合即可简便地提取频域热阻抗模型的所有特征频率。
2、本发明提供的提高频域热阻抗模型的特征频率准确度的方法,通过对时域热阻抗曲线的曲线拟合,提取出的特征频率具有较高的准确度,能保证通过频域热阻抗模型预测功率半导体器件热特性的有效性。
3、本发明提供的方法、终端及介质,简化了频域热阻抗模型参数提取过程,提高了参数的准确度。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为本发明一实施例中基于热流的功率半导体器件特征频率提取方法流程图。
图2为本发明一实施例中提高频域热阻抗模型的特征频率准确度的方法流程图。
图3为本发明一较优实施例中提高频域热阻抗模型的特征频率准确度的方法流程图。
图4为本发明一实施例中所提供的频域热阻抗模型示意图。
图5为本发明一实施例中所提供的热流拟合曲线与实验曲线对比图。
图6为本发明一实施例中所提供的热阻抗拟合曲线与实验曲线对比图。
图7为本发明一实施例中所提供的阶跃损耗下温度预测曲线与实验曲线对比图。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变化和改进。这些都属于本发明的保护范围。
图1为本发明一实施例中基于热流的功率半导体器件特征频率提取方法流程图。
参照图1所示,该实施例中的基于热流的功率半导体器件特征频率提取方法,包括如下步骤:
S100,给功率半导体器件施加阶跃损耗,记录功率半导体器件热阻抗曲线和输出热流曲线;
S200,对功率半导体器件热阻抗曲线进行频域分析,得到频域热阻抗模型的特征频率个数n;
S300,结合频域热阻抗模型的特征频率个数和区间,对功率半导体器件时域输出热流曲线的曲线拟合,得到频域热阻抗模型的特征频率。
本发明上述实施例提供的基于热流的功率半导体器件特征频率提取方法,简化了特征频率的提取过程,通过对于热流曲线的曲线拟合即可简便地提取频域热阻抗模型的所有特征频率。
较佳地,在上述S300中,对时域输出热流曲线的曲线拟合时,可以采用如下拟合公式:
Figure BDA0002732467050000051
其中,ε(t)为时域下单位阶跃响应,Pin为输入损耗,n为特征频率个数,f1、f2…fn为频域热阻抗模型的所有特征频率。
较佳地,对于上述的特征频率个数,可以通过对功率半导体器件的热阻抗频域分析得到。在一具体实施例中,对功率半导体器件的热阻抗频域分析,可以采用:将时域热阻抗曲线转化为频域热阻抗曲线
Figure BDA0002732467050000052
通过s=2πf·j,f=10x的关系,即将复频率s用2πj·10x替代,使其变为以x为自变量的函数
Figure BDA0002732467050000053
再对其求二阶导,得到图形函数D(x):
Figure BDA0002732467050000054
找出图形函数D(x)在有效区间内n个极小值点,即代表频域热阻抗模型的特征频率的个数。
上述实施例中,功率半导体器件的输出热流曲线和热阻抗曲线,可以采用基于器件数据手册的估算方法进行测量,也可以是基于仿真的方法进行测量,还可以采用基于实验测量的方法测量。当然,在其他实施例中,也可以采用其他测量方法得到。具体的测量方式可以采用温度传感器、电压传感器、电流传感器或热流传感器等实现。
进一步的,在上述功率半导体器件的输出热流曲线和热阻抗曲线测量,其中输出热流可以由测量得到,或者由外壳-散热器温差除以外壳-散热器热阻估算得到。具体的,外壳-散热器热阻由器件数据手册给出或由外壳-散热器温差稳态值除以导通损耗得到。导通损耗可以用功率半导体器件的导通压降与加热电流的乘积计算得到。
上述实施例中,功率半导体器件的输出热流曲线和热阻抗曲线测量,其中热阻抗由测量所得的结-外壳温差除以导通损耗计算得到。导通损耗可以用功率半导体器件的导通压降与加热电流的乘积计算得到。
在本发明上述实施例中,频域分析、曲线拟合可以采用计算机来进行,通过在计算机中安装相应的软件程序来实现频域分析、曲线拟合;也可以采用其他电子器件等来实现频域分析、曲线拟合,比如包含信号采样调理电路的DSP、FPGA或CPLD,在这些电子器件内部设置相应的运算程序。当然,具体实施时也可以是上述计算机、电子器件等任意组合来进行。
本发明上述实施例中的基于热流的功率半导体器件特征频率提取方法,根据功率半导体器件在阶跃损耗下输出热流的特性提取频域热阻抗模型特征频率,并设计了输出热流曲线和热阻抗曲线的表达式,可通过曲线拟合的方式得到频域热阻抗模型特征频率值,简化了频域热阻抗模型参数提取过程,提高了参数的准确度。
图2为本发明一实施例中提高频域热阻抗模型的特征频率准确度的方法流程图。
参照图2所示,该实施例中的提高频域热阻抗模型的特征频率准确度的方法,包括如下步骤:
S1,得到频域热阻抗模型的特征频率,该步骤可以采用上述任一实施例中的基于热流的功率半导体器件特征频率提取方法来实现。
S2,对时域热阻抗曲线进行曲线拟合,提高频域热阻抗模型的特征频率的准确度。
本发明上述实施例的提高频域热阻抗模型的特征频率准确度的方法,提取出的特征频率具有较高的准确度。
较佳地,上述实施例中的对时域热阻抗曲线进行曲线拟合,可以采用如下拟合公式:
Figure BDA0002732467050000061
其中,R1、R2…Rn为热阻,f1、f2…fn为特征频率。
上述实施例中的对时域输出热流曲线的曲线拟合,其拟合结果作为频域热阻抗模型第一通道的参数。
本发明上述实施例的提高频域热阻抗模型的特征频率准确度的方法,提取出的特征频率具有较高的准确度,能保证通过频域热阻抗模型预测功率半导体器件热特性的有效性。
基于上述的方法实施例,在本发明另一实施例中,还提供一种基于热流的功率半导体器件特征频率提取系统,包括:损耗施加模块,该模块给功率半导体器件施加阶跃损耗,记录时域热阻抗曲线和输出热流曲线;频域分析模块,该模块对所述时域热阻抗曲线进行频域分析,得到频域热阻抗模型及其特征频率个数;提取模块,该模块结合所述频域热阻抗模型的特征频率,对所述时域输出热流曲线进行拟合,提取出功率半导体器件的特征频率值。该系统中对应模块具体实现的技术可以参考上述基于热流的功率半导体器件特征频率提取方法实施例中的记载,在此不再赘述。
基于上述的系统实施例,在本发明另一实施例中,还提供一种提高频域热阻抗模型的特征频率准确度的系统,包括:特征频率提取模块,该模块采用上述任一项实施例的方法得到频域热阻抗模型的特征频率;曲线拟合模块,对时域热阻抗曲线进行曲线拟合,提高频域热阻抗模型的特征频率的准确度。该系统中对应模块具体实现的技术可以参考上述提高频域热阻抗模型的特征频率准确度的方法实施例中的记载,在此不再赘述。
在本发明另一实施例中,还提供一种终端,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时可用于执行上述任一项实施例中的基于热流的功率半导体器件特征频率提取方法,或执行上述任一项实施例中的提高频域热阻抗模型的特征频率准确度的方法。本实施例中终端可以是任一种具有运算功能的智能终端。
可选地,存储器,用于存储程序;存储器,可以包括易失性存储器(英文:volatilememory),例如随机存取存储器(英文:random-access memory,缩写:RAM),如静态随机存取存储器(英文:static random-access memory,缩写:SRAM),双倍数据率同步动态随机存取存储器(英文:Double Data Rate Synchronous Dynamic Random Access Memory,缩写:DDR SDRAM)等;存储器也可以包括非易失性存储器(英文:non-volatile memory),例如快闪存储器(英文:flash memory)。存储器用于存储计算机程序(如实现上述方法的应用程序、功能模块等)、计算机指令等,上述的计算机程序、计算机指令等可以分区存储在一个或多个存储器中。并且上述的计算机程序、计算机指令、数据等可以被处理器调用。
上述的计算机程序、计算机指令等可以分区存储在一个或多个存储器中。并且上述的计算机程序、计算机指令、数据等可以被处理器调用。
处理器,用于执行存储器存储的计算机程序,以实现上述实施例涉及的方法中的各个步骤。具体可以参见前面方法实施例中的相关描述。处理器和存储器可以是独立结构,也可以是集成在一起的集成结构。当处理器和存储器是独立结构时,存储器、处理器可以通过总线耦合连接。
在本发明另一实施例中,还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时可用于执行上述任一项实施例中的基于热流的功率半导体器件特征频率提取方法,或执行上述任一项实施例中的提高频域热阻抗模型的特征频率准确度的方法。
为了更好地说明本发明上述的基于热流的功率半导体器件特征频率提取方法、提高频域热阻抗模型的特征频率准确度的方法,以下结合具体应用实例来进一步说明,应该理解的是,以下实例并不用于限定本发明。
具体的,图3为本发明一较优实施例中提高频域热阻抗模型的特征频率准确度的方法流程图。如图3所示,该方法测量的是IGBT模块中某一路IGBT的热特性。首先给功率半导体器件施加阶跃损耗,记录热阻抗曲线和输出热流曲线;然后通过对热阻抗曲线的频域分析得到频域热阻抗模型的特征频率个数;再通过对时域输出热流曲线的曲线拟合得到频域热阻抗模型的特征频率;最后对时域热阻抗曲线的曲线拟合提高频域热阻抗模型的特征频率的准确度,输出频域热阻抗模型的所有特征频率。具体地,参照图3所示,可以包括如下步骤:
第一步,热特性测量
本步骤中,给功率半导体器件施加阶跃损耗,记录热阻抗曲线和输出热流曲线。根据热阻抗曲线和输出热流曲线的计算方法,热阻抗曲线由测量所得的结-外壳温差除以导通损耗计算得到,输出热流曲线由外壳-散热器温差除以外壳-散热器热阻估算得到。导通损耗用功率半导体器件的导通压降与加热电流的乘积得到。外壳-散热器热阻由外壳-散热器温差稳态值除以导通损耗得到。所有的数据通过温度传感器、电压传感器、电流传感器采集得到。
第二步,计算特征频率个数n
本步骤中,将时域热阻抗曲线转化为频域热阻抗曲线,从频域热阻抗曲线的二阶导图像中提取特征频率个数为3。
第三步,拟合输出热流曲线
本步骤中,对时域输出热流曲线进行曲线拟合,将拟合公式中n设为3,具体地,拟合公式变为
Figure BDA0002732467050000091
其中,ε(t)为单位阶跃响应,Pin为输入损耗。
本步骤中,拟合公式参数n并不局限于3,在其他实施例中,也可以采用其他的n参数值。
第四步,拟合热阻抗曲线
本步骤中,拟合输出热流曲线得到的特征频率,通过拟合热阻抗曲线提高准确度,将拟合公式中n设为3,具体地,拟合公式变为
Figure BDA0002732467050000092
若拟合优度满足要求,则得到频域热阻抗模型的特征频率f1、f2和f3。拟合结果作为频域热阻抗网络模型第一通道的参数。
图4为本发明一实施例所提供的频域热阻抗模型示意图,根据图4所示,频域热阻抗模型由两个通道构成,第一通道为Foster型热网络,第二通道为低通滤波器。第二通道与外部环境热阻抗相连,为第一通道提供了壳温参考温度,第一通道提供结温预测。当然,在其他实施例中,也可以采用其他的频域热阻抗模型,并不局限于该模型。
图5为本发明一实施例中所提供的热流拟合曲线与实验曲线对比图,如图5所示,根据本发明提供的热流公式能较好地拟合实验曲线,得到一组频域热阻抗网络的特征频率。
图6为本发明实施例中所提供的热流拟合曲线与实验曲线对比图,如图6所示,根据本发明提供的热阻抗公式能较好地拟合实验曲线,对图5中得到的特征频率进行修正。
图7为本发明实施例中所提供的阶跃损耗下温度预测曲线与实验曲线对比图,如图7所示,根据本发明提供的基于热流的功率半导体器件特征频率提取方法和提高频域热阻抗模型的特征频率准确度的方法,所得到的特征频率应用于温度预测时,不论是结温还是壳温都能实现全频段内预测的准确度较高,误差较小。
需要说明的是,本发明提供的方法中的步骤,可以利用系统中对应的模块、装置、单元等予以实现,本领域技术人员可以参照系统的技术方案实现方法的步骤流程,即,系统中的实施例可理解为实现方法的优选例,在此不予赘述。
本领域技术人员知道,除了以纯计算机可读程序代码方式实现本发明提供的系统及其各个装置以外,完全可以通过将方法步骤进行逻辑编程来使得本发明提供的系统及其各个装置以逻辑门、开关、专用集成电路、可编程逻辑控制器以及嵌入式微控制器等的形式来实现相同功能。所以,本发明提供的系统及其各项装置可以被认为是一种硬件部件,而对其内包括的用于实现各种功能的装置也可以视为硬件部件内的结构;也可以将用于实现各种功能的装置视为既可以是实现方法的软件模块又可以是硬件部件内的结构。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本发明的实质内容。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。

Claims (14)

1.一种基于热流的功率半导体器件特征频率提取方法,其特征在于,包括:
给功率半导体器件施加阶跃损耗,记录所述功率半导体器件的时域热阻抗曲线和输出热流曲线;
对所述时域热阻抗曲线进行频域分析,得到频域热阻抗模型及其特征频率个数;
结合所述频域热阻抗模型的特征频率个数及区间,对所述时域输出热流曲线进行拟合,提取出功率半导体器件特征频率值。
2.根据权利要求1所述的基于热流的功率半导体器件特征频率提取方法,其特征在于,对所述时域输出热流曲线进行拟合,其中拟合公式如下:
Figure FDA0002732467040000011
其中,ε(t)为时域下的单位阶跃响应,Pin为功率半导体器件输入损耗,n为特征频率个数,f1、f2…fn为功率半导体器件频域热阻抗模型的特征频率。
3.根据权利要求2所述的基于热流的功率半导体器件特征频率提取方法,其特征在于,所述特征频率个数,通过对所述功率半导体器件的热阻抗频域分析得到。
4.根据权利要求3所述的基于热流的功率半导体器件特征频率提取方法,其特征在于,所述对功率半导体器件的热阻抗频域分析,包括:
将时域表达的热阻抗转化为频域下的热阻抗
Figure FDA0002732467040000012
Figure FDA0002732467040000013
通过s=2πf·j,f=10x的关系,即将复频率s用2πj·10x替代,使频域热阻抗曲线变为以x为自变量的函数
Figure FDA0002732467040000014
再对其求二阶导,得到图形函数D(x):
Figure FDA0002732467040000021
找出图形函数D(x)在有效区间内n个极小值点,即代表频域热阻抗模型的特征频率的个数,j是虚数单位。
5.根据权利要求1所述的基于热流的功率半导体器件特征频率提取方法,其特征在于,所述功率半导体器件的输出热流曲线和热阻抗曲线,采用以下任意一种方法测量:
-基于器件数据手册的估算方法;
-基于仿真的方法;
-基于实验测量的方法。
6.根据权利要求5所述的基于热流的功率半导体器件特征频率提取方法,其特征在于,所述输出热流由测量得到或由外壳-散热器温差除以外壳-散热器热阻估算得到;
所述热阻抗由测量所得的结-外壳温差除以导通损耗计算得到;
其中,所述外壳-散热器热阻由器件数据手册给出或由外壳-散热器温差稳态值除以导通损耗得到;
所述导通损耗用功率半导体器件的导通压降与加热电流的乘积计算得到。
7.根据权利要求5所述的基于热流的功率半导体器件特征频率提取方法,其特征在于,所述测量,采用温度传感器、电压传感器、电流传感器或热流传感器。
8.根据权利要求1所述的基于热流的功率半导体器件特征频率提取方法,其特征在于,所述频域分析和所述曲线拟合,采用以下任意一种或任意多种组合的形式:
-计算机以及包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序;
-包含信号采样调理电路的DSP、FPGA或CPLD以及内部运算程序。
9.一种提高频域热阻抗模型的特征频率准确度的方法,其特征在于,包括:
采用权利要求1-8任一项所述方法得到功率半导体器件频域热阻抗模型的特征频率;
以频域热阻抗模型的特征频率值为参考,设定特征频率的区间并对时域热阻抗曲线进行公式拟合,提高频域热阻抗模型的特征频率的准确度,拟合后得到的特征频率值作为最终值。
10.根据权利要求9所述的提高频域热阻抗模型的特征频率准确度的方法,其特征在于,所述对时域热阻抗曲线进行曲线拟合,其中拟合公式如下:
Figure FDA0002732467040000031
其中,R1、R2…Rn为热阻,f1、f2…fn为特征频率。
11.一种基于热流的功率半导体器件特征频率提取系统,其特征在于,包括:
损耗施加模块,该模块给功率半导体器件施加阶跃损耗,记录所述功率半导体器件时域热阻抗曲线和输出热流曲线;
频域分析模块,该模块对所述时域热阻抗曲线进行频域分析,得到频域热阻抗模型及其特征频率个数;
提取模块,该模块结合所述频域热阻抗模型的特征频率个数及区间,对所述时域输出热流曲线进行拟合,提取出功率半导体器件的特征频率值。
12.一种提高频域热阻抗模型的特征频率准确度的系统,其特征在于,包括:
特征频率提取模块,该模块采用权利要求11所述系统得到频域热阻抗模型的特征频率;
曲线拟合模块,对时域热阻抗曲线进行曲线拟合,提高频域热阻抗模型的特征频率的准确度。
13.一种终端,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时可用于执行权利要求1-8任一所述的方法或执行权利要求9-10任一所述的方法。
14.一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时可用于执行权利要求1-8任一所述的方法或执行权利要求9-10任一所述的方法。
CN202011122486.8A 2020-10-20 2020-10-20 基于热流的功率半导体器件特征频率提取方法及系统 Pending CN112347614A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011122486.8A CN112347614A (zh) 2020-10-20 2020-10-20 基于热流的功率半导体器件特征频率提取方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011122486.8A CN112347614A (zh) 2020-10-20 2020-10-20 基于热流的功率半导体器件特征频率提取方法及系统

Publications (1)

Publication Number Publication Date
CN112347614A true CN112347614A (zh) 2021-02-09

Family

ID=74361011

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011122486.8A Pending CN112347614A (zh) 2020-10-20 2020-10-20 基于热流的功率半导体器件特征频率提取方法及系统

Country Status (1)

Country Link
CN (1) CN112347614A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113702794A (zh) * 2021-09-03 2021-11-26 上海交通大学 基于热阻抗特征频率的功率半导体器件健康状态评估方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107562978A (zh) * 2017-07-05 2018-01-09 上海交通大学 热阻抗拓扑结构以及热功率滤波器
US20180172522A1 (en) * 2016-12-15 2018-06-21 Hyundai Motor Company System and method for measuring junction temperature of power module
US20190296541A1 (en) * 2017-11-08 2019-09-26 Eaton Intelligent Power Limited System, method, and apparatus for power distribution in an electric mobile application using a combined breaker and relay
CN111769733A (zh) * 2020-06-23 2020-10-13 上海交通大学 基于阻尼比的lcl滤波器参数设计方法、设备及介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180172522A1 (en) * 2016-12-15 2018-06-21 Hyundai Motor Company System and method for measuring junction temperature of power module
CN107562978A (zh) * 2017-07-05 2018-01-09 上海交通大学 热阻抗拓扑结构以及热功率滤波器
US20190296541A1 (en) * 2017-11-08 2019-09-26 Eaton Intelligent Power Limited System, method, and apparatus for power distribution in an electric mobile application using a combined breaker and relay
CN111769733A (zh) * 2020-06-23 2020-10-13 上海交通大学 基于阻尼比的lcl滤波器参数设计方法、设备及介质

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KE MA等: "Frequency-domain thermal modelling of power semiconductor devices", 《2015 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION (ECCE)》 *
KE MA等: "Modeling and Characterization of Frequency-Domain Thermal Impedance for IGBT Module Through Heat Flow Information", 《IEEE TRANSACTIONS ON POWER ELECTRONICS》 *
刘波等: "功率半导体器件热阻抗自动化测试及其控制策略", 《电源学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113702794A (zh) * 2021-09-03 2021-11-26 上海交通大学 基于热阻抗特征频率的功率半导体器件健康状态评估方法
CN113702794B (zh) * 2021-09-03 2022-07-15 上海交通大学 基于热阻抗特征频率的功率半导体器件健康状态评估方法

Similar Documents

Publication Publication Date Title
CN109073710B (zh) 用于电热电池模型的生成与使用的系统及方法
US8442786B2 (en) Flexible power reporting in a computing system
US7203920B2 (en) Method and apparatus for retrofitting semiconductor chip performance analysis tools with full-chip thermal analysis capabilities
CN107908875B (zh) 一种功率半导体器件热特性参数的确定方法及系统
US10338669B2 (en) Current sense accuracy improvement for MOSFET RDS (on) sense based voltage regulator by adaptive temperature compensation
Yu et al. Fractional-order modeling of lithium-ion batteries using additive noise assisted modeling and correlative information criterion
WO2020259096A1 (zh) 电池的许用功率估算方法、装置、系统和存储介质
US10409301B2 (en) Electronic apparatus and surface temperature calculation method
US10520368B2 (en) Electronic apparatus and surface temperature estimation method therefor
Wang et al. A thermal modeling method considering ambient temperature dynamics
US7260809B2 (en) Power estimation employing cycle-accurate functional descriptions
Cooman et al. Model-free closed-loop stability analysis: A linear functional approach
CN112818535B (zh) 建立电热仿真模型及获得电热仿真值的方法和装置
US8594989B2 (en) Compensating for variations in device characteristics in integrated circuit simulation
KR20150072349A (ko) 모바일 기기의 주변 온도 측정 방법
CN112347614A (zh) 基于热流的功率半导体器件特征频率提取方法及系统
Benedikt et al. Automated configuration for non-iterative co-simulation
CN108896919B (zh) 电池老化状态的估算方法、装置及电池管理系统
CN107562978B (zh) 热阻抗拓扑结构以及热功率滤波器
CN111026603B (zh) 片上网络温度预测方法及装置、设备、存储介质
Langbauer et al. Closing the loop between circuit and thermal simulation: a system level co-simulation for loss related electro-thermal interactions
US8635044B2 (en) Transient thermal modeling of multisource power devices
Lian et al. Noise-immune state of charge estimation for lithium-ion batteries based on optimized dynamic model and improved adaptive unscented Kalman filter under wide temperature range
US8121822B2 (en) Integrated circuit modeling based on empirical test data
JP2002304434A (ja) Emiシミュレーション用半導体集積回路電源モデルの作成方法、装置及びプログラム

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210209