CN112347591A - 一种偏心旋转环状结构内力分析及自由振动建模方法 - Google Patents

一种偏心旋转环状结构内力分析及自由振动建模方法 Download PDF

Info

Publication number
CN112347591A
CN112347591A CN202011377707.6A CN202011377707A CN112347591A CN 112347591 A CN112347591 A CN 112347591A CN 202011377707 A CN202011377707 A CN 202011377707A CN 112347591 A CN112347591 A CN 112347591A
Authority
CN
China
Prior art keywords
eccentric rotating
force
internal force
ring structure
rotating ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011377707.6A
Other languages
English (en)
Other versions
CN112347591B (zh
Inventor
王世宇
王姚志豪
李海洋
刘晨
王久霞
夏春花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN202011377707.6A priority Critical patent/CN112347591B/zh
Publication of CN112347591A publication Critical patent/CN112347591A/zh
Application granted granted Critical
Publication of CN112347591B publication Critical patent/CN112347591B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • G06F17/13Differential equations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Geometry (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Data Mining & Analysis (AREA)
  • Operations Research (AREA)
  • Algebra (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

本发明提供一种偏心旋转环状结构内力分析及自由振动建模方法,包括以下步骤:根据偏心旋转的运动及受力特点,求取了结构离心力。利用微段研究了单载荷作用时的内力分布,通过叠加原理推广至复杂受载情形,以获得整体内力分布情况;基于内力分析,表达偏心旋转环状结构的动能与势能;利用Hamilton原理在惯性系下建立了动力学模型;使用Galerkin method将其离散,结合经典振动理论求解特征值,预测其固有特性及动力稳定性;采用变步长Runge‑kutta法进行数值验证。该一般性方法回避了无延展假设,解决了偏心旋转部件建模复杂、求解困难的问题,提高了旋转部件相关研究的解析与仿真精度,可以推广至其他旋转对称动力机械参激或受迫振动情形。

Description

一种偏心旋转环状结构内力分析及自由振动建模方法
技术领域
本发明涉及工程应用中旋转对称部件的静力学与动力学特性研究领域,特别是涉及一种偏心旋转环状结构的内力分析及自由振动建模方法。
背景技术
工程实践中广泛应用各类旋转部件,以实现传动、驱动、承载和能量转换等功能,常见的有齿轮传动、滚动轴承和旋转电机等。该类部件大量应用了环状结构,尽管工作条件和功能原理各不相同,但通常采用旋转对称设计,因而具有结构稳定、受载均衡和视觉美观的特点。工作时,环状结构常常受到接触或非接触、运动或静止、均布或离散的载荷作用。考虑到应用场合对运动形式的特殊要求与难以避免的制造及安装误差,在工程实际中,该类结构可能呈现偏心旋转状态。
相比于定轴旋转,偏心旋转的运动关系较为复杂,相互关联的自转与公转使其静力学与动力学分析存在一定难度。为了简化建模与分析过程,现有研究通常假定该类结构做理想的定轴旋转,忽略了客观存在的偏心运动。
文献(Wu X H,Parker R G.Vibration of rings on a general elasticfoundation[J].Journal of Sound and Vibration,2006,295(1-2):194-213.)采用微元法建立了旋转环状结构的面内振动模型,探讨了固有频率分裂及振型耦合规律。
文献(Huang S C,Soedel W.Effects of Coriolis acceleration on the freeand forced in-plane vibrations of rotating rings on elastic foundation[J].Journal of Sound and Vibration,1987,115(2):253-274.)关注旋转圆环的自由振动和参激振动特性,深入研究了静环动载与动环静载问题,还分析了受迫响应与科氏加速度之间的联系。
然而,随着定轴旋转环状结构相关研究的不断深入,一些学者开始注意到偏心运动可能对其动力学行为产生的特殊影响。
文献(Liu T,Zhang W,Mao J.Nonlinear breathing vibrations of eccentricrotating composite laminated circular cylindrical shell subjected totemperature,rotating speed and external excitations[J].Mechanical Systems andSignal Processing,2019,127(15):463-498.)采用多尺度法研究了偏心旋转复合材料层合圆柱壳的非线性振动,揭示了偏心率等几何参数对动力学行为的影响规律。
文献(Wu Z,Yao G,Zhang Y.Vibration analysis of a thin eccentricrotating circular cylindrical shell[J].Proceedings of the Institution ofMechanical Engineers,Part C:Journal of Mechanical Engineering Science,2018,233(5):1588-1600.)考虑了离心力与科里奥利力,同时计入偏心旋转产生的不均匀初始应力,深入研究了偏心旋转圆柱薄壳的颤振失稳现象。
在工作过程中,偏心旋转使构件产生沿周向变化的离心力,诱发系统的振动和噪声。在旋转载荷作用下,振动与噪声问题对设备的精度、可靠性、工作效率及寿命产生显著影响,甚至破坏旋转部件。在充分考虑偏心运动影响的前提下,开展该类结构的动力学行为研究,并提出有效的抑振措施,为动态参数设计提供理论指导,具有重要的工程实际意义。
发明内容
本发明的目的是为了完善现有研究方法及相关技术的不足,提供一种偏心旋转环状结构受力分析及自由振动建模方法。本发明解决了偏心旋转部件建模复杂、求解困难的问题,为提高旋转部件相关研究的解析与仿真精度提供了有效帮助,详见下文描述:
本发明的目的是通过以下技术方案实现的:
一种偏心旋转环状结构内力分析及自由振动建模方法,基于叠加原理,包括以下步骤:
(1)开展偏心旋转环状结构的运动学分析,表达其自转与公转离心力;
(2)通过微段受力分析,求取偏心旋转环状结构在单一的径向载荷或单一的切向载荷作用时的内力分布;
(3)叠加求取偏心旋转环状结构离心力与支反力引起的内力分布;
(4)根据Hamilton原理建立偏心旋转环状结构的自由振动动力学模型;
(5)使用Galerkin method将自由振动动力学模型离散化;结合经典振动理论求解特征值,以预测偏心旋转环状结构的固有特性及动力稳定性;
(6)采用变步长Runge-kutta法进行数值验证。
进一步的,偏心旋转环状结构的自转与公转速度满足:
Figure BDA0002807565380000021
其中,Ω为自转角速度,Ωa为公转角速度,R为中性圆半径,d为偏心距。
进一步的,偏心旋转环状结构的离心力在微段上的表达为:
Fru(θ)=-ρAΩa 2dsinθ
Frv(θ)=ρAR(Ω2a 2)+ρAΩa 2dcosθ
Fs=-2πRρAdΩa 2
其中,Fru(θ)为θ位置角处的离心力切向分量,Frv(θ)为θ位置角处的离心力径向分量,Fs为支反力,ρ为结构密度,A为结构截面积,负号代表受力方向;Ω为自转角速度,Ωa为公转角速度,R为中性圆半径,d为偏心距。
进一步的,偏心旋转环状结构在单一径向载荷作用时的内力分布具体为:
Figure BDA0002807565380000031
其中,Fef1为径向载荷大小,Fsf1、Ftf1和Mbm1分别为此时的剪力、切向内力与弯矩大小。
进一步的,偏心旋转环状结构在单一切向载荷作用时的内力分布具体为:
Figure BDA0002807565380000032
其中,Fef2为切向载荷大小,Fsf2、Ftf2和Mbm2分别为此时的剪力、切向内力与弯矩大小。
进一步的,步骤(3)中涉及的离心力与支反力引起的内力分布为:
Fθ=Fθv+Fθu+Fsv
Figure BDA0002807565380000033
Figure BDA0002807565380000034
其中,Fθ为整体切向内力分布,而Fθv、Fθu和Fsv分别为径向离心力、切向离心力和支反力引起的切向内力分布。
进一步的,步骤(4)中建立自由振动模型时引入的动能与势能为:
Figure BDA0002807565380000035
Figure BDA0002807565380000036
Figure BDA0002807565380000041
其中,va为该结构圆周上任意一点在惯性系下的绝对速度,b为该结构的轴向厚度,I为结构截面主惯性矩。
进一步的,偏心旋转环状结构的自由振动动力学模型具体为:
Figure BDA0002807565380000042
式中
Figure BDA0002807565380000043
Figure BDA0002807565380000044
Figure BDA0002807565380000045
A0=Ωavv
Figure BDA0002807565380000046
A2=ΩavΩv
Figure BDA0002807565380000047
式中,M1、G1、K1和D1分别为质量算子、陀螺算子、刚度算子以及支反力产生的附加刚度算子,而F为激励向量,q1是位移向量;A0,A1,A2,A3,fθ分别代指具体公式,无实际意义;u和v分别为切向与径向位移,R、RΔ、d、b、h、E和ρ分别表示偏心旋转环状结构的中性圆半径、偏心半径、偏心距、轴向厚度、径向厚度、杨氏模量和密度;I(I=bh3/12)为定子的截面惯性矩;Ωv和Ωav分别为无量纲自转角速度和公转角速度。
与现有技术相比,本发明的技术方案所带来的有益效果是:
1、现有技术对旋转部件进行动力学建模时,常常假定该类结构做理想的定轴旋转,以简化建模与分析过程。随着定轴旋转环状结构相关研究的不断深入,近年来,一些学者开始注意到偏心运动可能对其动力学行为产生特殊影响。然而,目前国内外有关偏心旋转环状结构的研究还很少,既有文献也打多关注于特定参数与简化模型下的动力学行为,有失一般性。开展偏心旋转环状结构在一般情形下的动力学研究,建立完整的数学模型,并系统地分析各类参数与固有频率及振动稳定性之间的映射关系,对于旋转部件的关键参数选取和动力选型具有重要的实际意义,尤其是行星齿轮、永磁电机、轴承保持架和陀螺仪等旋转机械。
2、环状结构的受载问题是结构静力学中的一类特殊问题。在超静定情形下,仅依靠静力学方程难以确定全部内力,需要引入结果对称性以辅助求解。本发明基于偏心旋转的运动及受力特点,充分考虑结构变形与位移的对称性,分析了环状结构的自转与公转离心力。利用叠加原理,将单一受载时的内力分布推广至复杂受载的情形,得到了静力学解析结果。该方法极大地降低了偏心旋转环状结构的建模难度,且得到的内力分布表达式准确而直观。
3、基于静力学分析结果,获取了偏心旋转环状结构的能量表达。利用Hamilton原理在惯性坐标系下建立了环状结构的自由振动模型,并通过离散手段得到了常微分动力学方程。结合经典振动理论求解系统特征值,可以快速、精确地预测该类系统的动力稳定性。相比于传统的有限元建模方法,该模型不受边界条件限制,具有更高的动态建模效率,得到的结果也更具一般性。
4、本发明使用的建模方法,回避了环状结构较为常见的无延展假设,得到的自由振动模型为完整动力学模型,能够更准确地反映动力学特性与结构参数之间的联系。该方法可以推广至参激振动与受迫振动的情形,乃至其他旋转对称动力机械的工程背景下,具有较强的工程实际应用和推广价值。
附图说明
图1a和图1b为本发明提供的偏心旋转环状结构计算模型及坐标系;
图2为根据本发明提供的方法获得的偏心旋转环状结构的受力分析;
图3a和图3b分别为根据本发明提供的方法获得的径向受力计算模型以及微元法受力分析;
图4a和图4b分别为根据本发明提供的方法获得的切向受力计算模型以及微元法受力分析;
图5a和图5b分别为根据本发明提供的方法获得的径向力与切向力作用下环状结构的切向内力分布;
图6为根据本发明提供的方法获得的偏心距对切向内力的影响;
图7a至图7d为根据本发明提供的方法获得的特征值随转速变化规律;
图8a和图8b分别为根据本发明提供的方法获得的不稳定域随转速和偏心率变化规律;
图9a至图9d为根据本发明提供的方法获得的不同d-R配比下的不稳定域随转速变化规律;
图10a和图10b为根据本发明提供的方法获得的数值验证参数取点;
图11a至图11d为根据本发明提供的方法获得的考虑切向内力的时域动态响应;
图12a至图12d为根据本发明提供的方法获得的不考虑切向内力的时域动态响应。
具体实施方式
以下结合附图和具体实施例对本发明作进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
本发明提供了一种高效、普适的偏心旋转环状结构受力分析及其自由振动建模方法。
S1根据偏心旋转的运动及受力特点,求取了结构离心力。利用微段研究了单载荷作用时的内力分布,通过叠加原理推广至复杂受载情形,以获取整体的内力分布情况;
S2基于内力分析,表达偏心旋转环状结构的动能与势能;
S3利用Hamilton原理在惯性系下建立了偏心旋转环状结构的动力学模型;
S4使用Galerkin method将偏心旋转环状结构的动力学模型离散,结合经典振动理论求解特征值,预测其固有特性及动力稳定性;
S5采用变步长Runge-kutta法进行数值验证。
图1a和图1b为偏心旋转环状结构计算模型及坐标系。该结构以角速度Ω绕其几何形心o自转,同时以角速度Ωa绕偏心o′公转,与刚性轨道接触于连心线上一点,其相对运动视为纯滚动。o-rθz为随动坐标系,o′-rθz为惯性坐标系。初始时刻极轴重合。p为中性圆上的任意一点,该点与几何形心连线和极轴夹角为θ,u和v分别为该点的切向与径向位移,eθ、er和ez分别表示该点的切向、径向和轴向单位矢量。R、RΔ、d、b、h、E和ρ分别表示环状结构的中性圆半径、偏心半径、偏心距、轴向厚度、径向厚度、杨氏模量和密度。
(S1)根据简单的运动学关系,可知自转与公转转速满足
Figure BDA0002807565380000061
由于偏心旋转,p处将产生自转离心力Fr与公转离心力Fr′,如图2所示。后者可沿切向和径向分解
Figure BDA0002807565380000062
Figure BDA0002807565380000063
故偏心旋转环状结构圆周上任意一点的离心力可表示为
Fru(θ)=-ρAΩa 2dsinθ (4)
Frv(θ)=ρAR(Ω2a 2)+ρAΩa 2dcosθ (5)
此外,轨道对环状结构的支反力为
Fs=-2πRρAdΩa 2 (6)
本实施例采用叠加方法计算环状结构的切向内力。如图3a所示,环状结构在极坐标θ=0处受一个指向圆心的径向集中力Fef1,其中性线上分布着均匀的若干虚拟力
Figure BDA0002807565380000071
与之平衡。为研究Fef1作用下结构的应力分布,截取p处微段dθ进行受力分析,如图3b所示,其中Fsf1、Ftf1和Mbm1分别表示微段所受剪力、切向内力和弯矩。
在集中力Fef1作用下,圆周将产生与之平衡的均布虚拟力
Figure BDA0002807565380000072
在图3b中,将该虚拟力沿切向和法向投影,同时对微段中心取矩,可得
Figure BDA0002807565380000073
考虑到微小量dθ,有sin(dθ/2)≈dθ/2,cos(dθ/2)≈1,sin(θ+dθ/2)≈sinθ,cos(θ+dθ/2)≈cosθ,将式(8)化简。仅考虑剪力Fsf1,有
Figure BDA0002807565380000074
切向内力及弯矩与径向、切向变形之间满足
Figure BDA0002807565380000075
式中μ为泊松比。根据环状结构的受力特征,可得如下边界条件
Figure BDA0002807565380000081
采用算子法求解式(9),可得径向力集中力作用产生的环状结构内力分布
Figure BDA0002807565380000082
采用类似方法,可分析仅受切向集中力作用时的情形。如图4a所示,环状结构在极坐标θ=0处受切向集中力Fef2。根据理论力学,其作用可等效为施加在几何形心处的集中力F′ef2和沿圆周方向的均布转矩Ttm2。中性线上分布着均匀的若干虚拟力
Figure BDA0002807565380000083
与F′ef2平衡。为研究F′ef2作用下该结构的应力分布,截取p处微段dθ进行受力分析,如图4b所示,其中Fsf2、Ftf2和Mbm2分别表示微段所受剪力、切向内力和弯矩,有
Figure BDA0002807565380000084
考虑式(10)与边界条件
Figure BDA0002807565380000085
可得内力分布
Figure BDA0002807565380000091
对于延展圆环而言,偏心旋转引发的切向应力应变变化,会显著影响系统的动力学特性。由前文基于微段的受力分析,已知径向集中力Fef1与切向集中力Fef2作用时环状结构圆周上的内力分布情况。其中,径向与切向集中力分别引起的切向内力分布为
Figure BDA0002807565380000092
Figure BDA0002807565380000093
根据式(16)与(17),可直接得到在径向集中力与切向集中力作用下的切向内力分布,如图5a和图5b所示。显然,当径向集中力作用时,环状结构以压缩应变状态为主,且其压缩与拉伸应变状态均关于极轴偶对称;而当切向集中力作用时,其压缩与拉伸应变状态关于集中力的作用点呈现奇对称特征。由式(4)、(5)和(6)知,偏心运动下环状结构圆周均布的离心力可视为从切向与径向作用于各微段的离散力,则偏心运动下的切向内力分布为
Fθ=Fθv+Fθu+Fsv (18)
式中Fθv、Fθu和Fsv分别表示由离心力的径向和切向分量以及轨道支反力引起的切向内力分布,且有
Figure BDA0002807565380000094
Figure BDA0002807565380000095
Fsv=fθ1(θ)·Fs (21)
引入无量纲切向内力Fθ′=Fθ/ρAR2Ωa 2和环状结构偏心率k=(R+d)/R,由式(18)~(21)可得
Figure BDA0002807565380000096
根据式(22)绘制偏心距与切向内力的关系,如图6所示。显然,图中偏心旋转环状结构处于拉伸应变状态,其切向应变峰值出现在极轴方向。相比之下,对于定轴旋转的情形,该结构仍处于拉伸应变状态,但切向内力呈现标准的圆形分布。
(S2)在图1a和图1b所示惯性系下,偏心旋转环状结构中性线上任意一点p处的位置矢量可表示为
Figure BDA0002807565380000101
点p在惯性坐标系下的绝对速度va可表示为
va=ve+vr (24)
其中,ve为点p相对于随动坐标系的速度(相对速度),vr为随动坐标系相对于惯性坐标系的速度(牵连速度),且有
Figure BDA0002807565380000102
因此偏心旋转环状结构的动能可表示为
Figure BDA0002807565380000103
由图6知,偏心旋转使环状结构发生膨胀效应。该结构在运动状态下的势能包括离心力引起的应变能和弹性振动引起的应变能。在平面应变状态下,点p处的切向应变可表示为
εθ=εθ0+(r-R)εθ1 (26)
式中
Figure BDA0002807565380000104
Figure BDA0002807565380000105
则势能可表示为
Figure BDA0002807565380000106
式中A和I分别为环状结构截面的面积(A=bh)和主惯性矩(I=bh3/12)。
(S3)根据Hamilton原理,有
Figure BDA0002807565380000107
利用奥式方程求解变分极值问题,并对结果进行无量纲化,可得动力学方程
Figure BDA0002807565380000108
式中
Figure BDA0002807565380000111
Figure BDA0002807565380000112
Figure BDA0002807565380000113
A0=Ωavv
Figure BDA0002807565380000114
A2=ΩavΩv
Figure BDA0002807565380000115
式中,M1、G1、K1和D1分别为质量算子、陀螺算子、刚度算子以及支反力产生的附加刚度算子,而F为激励向量,q1是位移向量;A0,A1,A2,A3,fθ分别代指具体公式,无实际意义;u和v分别为该点的切向与径向位移,R、RΔ、d、b、h、E和ρ分别表示环状结构的中性圆半径、偏心半径、偏心距、轴向厚度、径向厚度、杨氏模量和密度。I(I=bh3/12)为定子的截面惯性矩。Ωv和Ωav分别为无量纲自转角速度和公转角速度。
(S4)采用Galerkin method进行响应设解并将式(29)离散。为此,选取一个满足环状结构边界条件的形状函数einθ,构造径向与切向振动位移响应
Figure BDA0002807565380000116
式中i为虚数单位,“~”表示复共轭运算,U(t)和V(t)为离散操作中构造的最小残余力未知函数,且均为时间的复函数,故可定义
Figure BDA0002807565380000117
式中,xu(t)、yu(t)、xv(t)和yv(t)均为时间的实函数。定义内积运算
Figure BDA0002807565380000118
然后与einθ作内积并分离实、虚部,整理可得
Figure BDA0002807565380000119
式中
Figure BDA0002807565380000121
Figure BDA0002807565380000122
Figure BDA0002807565380000123
B0=Ωavv
Figure BDA0002807565380000124
Figure BDA0002807565380000125
Figure BDA0002807565380000126
Figure BDA0002807565380000127
式中,M2、G2、K2分别为质量矩阵、陀螺矩阵、刚度矩阵,q2是特征向量;B0,B1,B2,B3,B4,B5,B6,fθ分别代指具体公式,无实际意义;n为振动波数,R、RΔ、d、b、h、E和ρ分别表示环状结构的中性圆半径、偏心半径、偏心距、轴向厚度、径向厚度、杨氏模量和密度。I(I=bh3/12)为定子的截面惯性矩。Ωv和Ωav分别为无量纲自转角速度和公转角速度。
为了预测振动规律,可根据式(33)计算特征值。为此,首先假设
Figure BDA0002807565380000128
Figure BDA0002807565380000129
其中,I为4×4单位矩阵。假设λ为系统特征值,且x(t)=eλtx,则特征方程为
Figure BDA0002807565380000131
根据式(36)和表1所述参数,可预测系统的稳定性。
表1旋转环状结构基本参数
Figure BDA0002807565380000132
图7a至图7d描述了是否考虑切向内力的不同情形下特征值随公转转速变化的规律,其中图7a和图7b中的实线与虚线分别为前行波与后行波模态。可以看到,系统在两种情形下均存在不稳定问题,且仅与低阶振动相关。结合经典振动理论,由图7c可知,在考虑切向内力的情形下,特征值实部具有更小的波峰(0.043),系统的稳定性更强。对比图7d,在该情形下,偏心率的提高将致使致不稳定区间逐渐扩大,并使该区间的特征值实部波峰逐步增高,但其规模始终远小于不考虑切向内力的情形(0.814)。可以确定的是,在两种情形下,减小偏心距均有利于提高系统的稳定性。
图8a和图8b描述了公转转速和偏心率对不稳定域的影响。由图7a可知,在考虑切向内力的情形下,前行波模态的一阶特征值虚部为零,故图8a的不稳定参数域类型为发散不稳定。关注到不考虑切向内力的情形,根据图7b可知,前行波模态的一阶特征值虚部不为零,故图8b的不稳定参数域类型为颤振不稳定。对比图8a和图8b可发现,前者情形的不稳定域面积显著小于后者,而其不稳定类型也产生了明显变化。结合前文静力学研究结果,可以认为切向内力产生的应力刚化效应显著抑制了偏心旋转的不稳定。
为进一步研究偏心运动下的不稳定域随结构参数的变化规律,图9a描述了在考虑切向内力的情形下,偏心距、中性圆半径及公转转速对环状结构稳定性的影响。为便于观察,将不稳定参数域分为两部分,如图9b中的①和②所示。其中,参数域①的偏心距小于等于中性圆半径(k≤2),即偏心位于结构内部;而参数域②表示其余部分(k>2),即偏心位于结构外部。在参数域①中,不稳定域的分布特点与图8a一致,系统仅在低转速下出现狭窄的不稳定域。随偏心距的减小、公转转速的增加,结构稳定性得到提高,以图9c最为明显。而在参数域②中,随偏心率的增加,高转速范围内出现陡增的不稳定域,以图9d最为明显。结合式(22)可知,此时支反力对切向内力分布的影响更显著。
(S5)为了验证上述不稳定域及其类型判断的正确性,针对是否考虑切向内力这两种情形,分别在不同的区域选取计算参考点,如图10所示。
选取点的具体参数组合,如表2所述。采用变步长Runge-Kutta法分别求解时域动态响应,如图11a至图12d所示。
表2数值验证参数组合
Figure BDA0002807565380000141
图11a至图11d描述了考虑切向内力的情形,图12a至图12d描述了相反情形。可以看出,图11a和11b呈现发散不稳定特征,图12a和12b呈现颤振不稳定特征,而其余各图均呈现周期稳态特征。显然,数值计算与理论预测结果相符。
综上所述,本发明基于偏心旋转的运动及受力特点,建立了偏心旋转环状结构的动力学模型。回避了常用的无延展假设,得到的自由振动模型为完整动力学模型,能够更准确地反映动力学特性与结构参数之间的联系。该发明解决了偏心旋转部件建模复杂、求解困难的问题,为提高旋转部件相关研究的解析与仿真精度提供了有效帮助。该方法可以推广至参激振动与受迫振动的情形,乃至其他旋转对称动力机械的工程背景下,具有较强的工程实际应用和推广价值。
本领域技术人员可以理解附图只是一个优选实施例的示意图,上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
本发明并不限于上文描述的实施方式。以上对具体实施方式的描述旨在描述和说明本发明的技术方案,上述的具体实施方式仅仅是示意性的,并不是限制性的。在不脱离本发明宗旨和权利要求所保护的范围情况下,本领域的普通技术人员在本发明的启示下还可做出很多形式的具体变换,这些均属于本发明的保护范围之内。

Claims (8)

1.一种偏心旋转环状结构内力分析及自由振动建模方法,基于叠加原理,其特征在于,包括以下步骤:
(1)开展偏心旋转环状结构的运动学分析,表达其自转与公转离心力;
(2)通过微段受力分析,求取偏心旋转环状结构在单一的径向载荷或单一的切向载荷作用时的内力分布;
(3)叠加求取偏心旋转环状结构离心力与支反力引起的内力分布;
(4)根据Hamilton原理建立偏心旋转环状结构的自由振动动力学模型;
(5)使用Galerkin method将自由振动动力学模型离散化;结合经典振动理论求解特征值,以预测偏心旋转环状结构的固有特性及动力稳定性;
(6)采用变步长Runge-kutta法进行数值验证。
2.根据权利要求1所述一种偏心旋转环状结构内力分析及自由振动建模方法,其特征在于,偏心旋转环状结构的自转与公转速度满足:
Figure FDA0002807565370000011
其中,Ω为自转角速度,Ωa为公转角速度,R为中性圆半径,d为偏心距。
3.根据权利要求1所述一种偏心旋转环状结构内力分析及自由振动建模方法,其特征在于,偏心旋转环状结构的离心力在微段上的表达为:
Fru(θ)=-ρAΩa 2dsinθ
Frv(θ)=ρAR(Ω2a 2)+ρAΩa 2dcosθ
Fs=-2πRρAdΩa 2
其中,Fru(θ)为θ位置角处的离心力切向分量,Frv(θ)为θ位置角处的离心力径向分量,Fs为支反力,ρ为结构密度,A为结构截面积,负号代表受力方向;Ω为自转角速度,Ωa为公转角速度,R为中性圆半径,d为偏心距。
4.根据权利要求1所述一种偏心旋转环状结构内力分析及自由振动建模方法,其特征在于,偏心旋转环状结构在单一径向载荷作用时的内力分布具体为:
Figure FDA0002807565370000012
其中,Fef1为径向载荷大小,Fsf1、Ftf1和Mbm1分别为此时的剪力、切向内力与弯矩大小。
5.根据权利要求1所述一种偏心旋转环状结构内力分析及自由振动建模方法,其特征在于,偏心旋转环状结构在单一切向载荷作用时的内力分布具体为:
Figure FDA0002807565370000021
其中,Fef2为切向载荷大小,Fsf2、Ftf2和Mbm2分别为此时的剪力、切向内力与弯矩大小。
6.根据权利要求1所述一种偏心旋转环状结构内力分析及自由振动建模方法,其特征在于,步骤(3)中涉及的离心力与支反力引起的内力分布为:
Fθ=Fθv+Fθu+Fsv
Figure FDA0002807565370000022
Figure FDA0002807565370000023
其中,Fθ为整体切向内力分布,而Fθv、Fθu和Fsv分别为径向离心力、切向离心力和支反力引起的切向内力分布。
7.根据权利要求1所述一种偏心旋转环状结构内力分析及自由振动建模方法,其特征在于,步骤(4)中建立自由振动模型时引入的动能与势能为:
Figure FDA0002807565370000024
Figure FDA0002807565370000025
Figure FDA0002807565370000026
其中,va为该结构圆周上任意一点在惯性系下的绝对速度,b为该结构的轴向厚度,I为结构截面主惯性矩。
8.根据权利要求1所述一种偏心旋转环状结构内力分析及自由振动建模方法,其特征在于,偏心旋转环状结构的自由振动动力学模型具体为:
Figure FDA0002807565370000031
式中
Figure FDA0002807565370000032
Figure FDA0002807565370000033
Figure FDA0002807565370000034
A0=Ωavv
Figure FDA0002807565370000035
A2=ΩavΩv
Figure FDA0002807565370000036
式中,M1、G1、K1和D1分别为质量算子、陀螺算子、刚度算子以及支反力产生的附加刚度算子,而F为激励向量,q1是位移向量;A0,A1,A2,A3,fθ分别代指具体公式,无实际意义;u和v分别为切向与径向位移,R、RΔ、d、b、h、E和ρ分别表示偏心旋转环状结构的中性圆半径、偏心半径、偏心距、轴向厚度、径向厚度、杨氏模量和密度;I(I=bh3/12)为定子的截面惯性矩;Ωv和Ωav分别为无量纲自转角速度和公转角速度。
CN202011377707.6A 2020-11-30 2020-11-30 一种偏心旋转环状结构内力分析及自由振动建模方法 Active CN112347591B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011377707.6A CN112347591B (zh) 2020-11-30 2020-11-30 一种偏心旋转环状结构内力分析及自由振动建模方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011377707.6A CN112347591B (zh) 2020-11-30 2020-11-30 一种偏心旋转环状结构内力分析及自由振动建模方法

Publications (2)

Publication Number Publication Date
CN112347591A true CN112347591A (zh) 2021-02-09
CN112347591B CN112347591B (zh) 2022-07-05

Family

ID=74366221

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011377707.6A Active CN112347591B (zh) 2020-11-30 2020-11-30 一种偏心旋转环状结构内力分析及自由振动建模方法

Country Status (1)

Country Link
CN (1) CN112347591B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113051718A (zh) * 2021-03-07 2021-06-29 天津大学 一种有延展假设分组拓扑径向受载圆环静力学分析方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106528959A (zh) * 2016-10-19 2017-03-22 天津大学 一种旋转对称结构固有频率和稳定性的简化分析方法
CN106547957A (zh) * 2016-10-19 2017-03-29 天津大学 一种旋转环状周期结构参激弹性振动分析方法
CN110457740A (zh) * 2019-06-18 2019-11-15 东北大学 一种机械结构在基础激励下的响应特性分析方法
CN110569560A (zh) * 2019-08-16 2019-12-13 天津大学 一种镜像拓扑切向受载圆环应力叠加的方法
CN110580383A (zh) * 2019-08-16 2019-12-17 天津大学 一种分组拓扑径向受载圆环应力叠加的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106528959A (zh) * 2016-10-19 2017-03-22 天津大学 一种旋转对称结构固有频率和稳定性的简化分析方法
CN106547957A (zh) * 2016-10-19 2017-03-29 天津大学 一种旋转环状周期结构参激弹性振动分析方法
CN110457740A (zh) * 2019-06-18 2019-11-15 东北大学 一种机械结构在基础激励下的响应特性分析方法
CN110569560A (zh) * 2019-08-16 2019-12-13 天津大学 一种镜像拓扑切向受载圆环应力叠加的方法
CN110580383A (zh) * 2019-08-16 2019-12-17 天津大学 一种分组拓扑径向受载圆环应力叠加的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
杨实如: "圆环和轮缘的变形及内力计算", 《成都大学学报》 *
杨实如: "圆环和轮缘的变形及内力计算", 《成都大学学报》, 31 December 1995 (1995-12-31), pages 1 - 8 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113051718A (zh) * 2021-03-07 2021-06-29 天津大学 一种有延展假设分组拓扑径向受载圆环静力学分析方法
CN113051718B (zh) * 2021-03-07 2023-01-03 天津大学 一种有延展假设分组拓扑径向受载圆环静力学分析方法

Also Published As

Publication number Publication date
CN112347591B (zh) 2022-07-05

Similar Documents

Publication Publication Date Title
Tiwari et al. Dynamic response of an unbalanced rotor supported on ball bearings
Jin et al. Nonlinear dynamic analysis of a complex dual rotor-bearing system based on a novel model reduction method
Yu et al. The dynamic coupling behaviour of a cylindrical geared rotor system subjected to gear eccentricities
Sun et al. Vibration studies of rotating cylindrical shells with arbitrary edges using characteristic orthogonal polynomials in the Rayleigh–Ritz method
Tian et al. Dynamic behaviours of a full floating ring bearing supported turbocharger rotor with engine excitation
Khanlo et al. The effects of lateral–torsional coupling on the nonlinear dynamic behavior of a rotating continuous flexible shaft–disk system with rub–impact
Han et al. Dynamic behaviors of a geared rotor system under time-periodic base angular motions
CN110119532B (zh) 一种旋转环状周期结构的弹性振动计算方法
Rashidi et al. Bifurcation and nonlinear dynamic analysis of a rigid rotor supported by two-lobe noncircular gas-lubricated journal bearing system
Li et al. Numerical and experimental analysis of the effect of eccentric phase difference in a rotor-bearing system with bolted-disk joint
CN106528959B (zh) 一种旋转对称结构固有频率和稳定性的简化分析方法
CN112347591B (zh) 一种偏心旋转环状结构内力分析及自由振动建模方法
Xu et al. Dynamic behaviors and contact characteristics of ball bearings in a multi-supported rotor system under the effects of 3D clearance fit
Zhang et al. Modeling and stability analysis of a flexible rotor based on the Timoshenko beam theory
CholUk et al. Nonlinear dynamics simulation analysis of rotor-disc-bearing system with transverse crack
CN103292958A (zh) 一种基于模型的转子无试重失衡参数辨识方法
Shen et al. Numerical analysis of a rub-impact rotor-bearing system with mass unbalance
Pan et al. Coupled dynamic modeling and analysis of the single gimbal control moment gyroscope driven by ultrasonic motor
Chao et al. Dynamic analysis of the optical disk drives equipped with an automatic ball balancer with consideration of torsional motions
Ding et al. Numerical and experimental investigations on flexible multi-bearing rotor dynamics
Fang et al. Modelling, synthesis and dynamic analysis of complex flexible rotor systems
Taplak et al. Passive balancing of a rotating mechanical system using genetic algorithm
CN112270065B (zh) 一种偏心旋转环状周期结构动力稳定性预测方法
CN113378323A (zh) 应用于耦合故障转子-轴承系统的瞬态本征正交分解方法
Brand et al. Results on active damping control of a thin-walled rotating cylinder with piezoelectric patch actuation and sensing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant