CN112342311A - 一种验证水稻粒形和粒重的qtl的方法 - Google Patents

一种验证水稻粒形和粒重的qtl的方法 Download PDF

Info

Publication number
CN112342311A
CN112342311A CN202011367665.8A CN202011367665A CN112342311A CN 112342311 A CN112342311 A CN 112342311A CN 202011367665 A CN202011367665 A CN 202011367665A CN 112342311 A CN112342311 A CN 112342311A
Authority
CN
China
Prior art keywords
grain
population
qtl
rice
nil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011367665.8A
Other languages
English (en)
Inventor
冯跃
李若思
魏兴华
杨窑龙
袁筱萍
徐群
余汉勇
王一平
杨莹莹
李振
王珊
孙燕飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China National Rice Research Institute
Original Assignee
China National Rice Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China National Rice Research Institute filed Critical China National Rice Research Institute
Priority to CN202011367665.8A priority Critical patent/CN112342311A/zh
Publication of CN112342311A publication Critical patent/CN112342311A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/02Methods or apparatus for hybridisation; Artificial pollination ; Fertility
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/04Processes of selection involving genotypic or phenotypic markers; Methods of using phenotypic markers for selection
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/13Plant traits
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Abstract

本发明公开了一种验证水稻粒形和粒重的QTL的方法,通过本发明的验证方法鉴定出一个渗入系IL188,其籽粒大小和粒重均有所增加。利用IL188与日本晴杂交并自交衍生的F2和F2:3群体,共检测到了5个粒形性状包括粒长、粒宽、长宽比、粒厚和千粒重相关的12个QTLs。其中一个QTL‑qGL7被定位在7号染色体长臂上标记Y7‑12–Y7‑38之间约261kb的范围内。qGL7通过调节细胞扩张来增加籽粒大小和重量。这些结果不仅有助于了解水稻粒形性状的遗传基础,而且有助于在水稻育种中通过分子标记辅助选择(MAS)增加水稻籽粒的大小和重量。

Description

一种验证水稻粒形和粒重的QTL的方法
技术领域
本发明涉及水稻技术领域,尤其涉及一种验证水稻粒形和粒重的QTL的方法。
背景技术
水稻是亚洲最重要的粮食作物之一,也是世界上大多数人口的主食。随着世界人口的日益增长,水稻高产育种对于满足粮食需求至关重要。水稻产量由三个主要因素决定:有效穗数、每穗实粒数和千粒重。其中,表现最为稳定的性状是粒重,粒重很大程度上由籽粒的大小决定,而籽粒的大小则由三个要素(长、宽、厚)和籽粒充实度决定。粒重是决定水稻产量的重要因素,受多个数量性状位点(QTLs)控制。迄今为止,已鉴定出分布在水稻的12条染色体上的400多个控制粒形和粒重的QTLs。然而,只有少数几个主要的QTL包括GS3、qSW5、GW2、qGL3/GL3.1、GW8、GL7/GW7、TGW6和GS9等已经通过图位克隆的方法分离出来。这些基因的分离丰富了我们对调控粒形和粒重的分子调节机制的认识。
菲律宾和巴布亚新几内亚特有的小粒野生稻(2n=48,BBCC)是一种异源四倍体野生种。隶属于稻属药用野生稻复合体,含有抗稻瘟病、白叶枯病、褐飞虱和纹枯病等优良基因。然而,严重的种间生殖隔离限制了野生稻向栽培品种的QTL转移。根据Tanksley和Nelson提出的高代回交数量性状基因座(AB-QTL)分析方法的可行性,已有多项研究被报道,在鉴定控制产量和品质相关性状的QTLs的同时,也将其从野生种转移到了栽培种中。然而,很少有人尝试从小粒野生稻中鉴定和分离产量相关性状的QTL到栽培品种中。因此,解决这一类的问题显得尤为重要。
发明内容
针对上述问题,本发明提供了一种验证水稻粒形和粒重的QTL的方法,利用来自栽培稻和小粒野生稻杂交、回交构建的渗入系,鉴定并验证7号染色体上一个影响粒形和粒重的新QTL。
为了实现上述技术方案,本发明提供了一种验证水稻粒形和粒重的QTL的方法,包括以下验证步骤:
步骤一:准备材料
渗入系IL188来源于粳稻品种日本晴和从国际水稻研究所(IRRI)种质资源中心收集的小粒野生稻W303之间的种间杂交,再以日本晴为轮回亲本回交三代,并借助胚拯救技术,随后自交四代。IL188与轮回亲本日本晴相比,粒长显著变长,粒重显著增加。为了阐明粒形和粒重变异的遗传基础,由母本IL188和父本日本晴之间杂交的F1自交构建由166个株系组成的F2群体,F2:3群体来源于F2各株系的自交获得;
步骤二:根据QTL分析的初步结果,利用分子标记从F2:3群体中筛选4个剩余杂合体,顺序杂合片段分布在RM500–RM429区间;自交构建4个NIL-F2群体:共180株、184株、184株和195株,分别命名为R1、R2、R3和R4群体;
步骤三:从连续杂合区段为Y7-3–Y7-4的R3群体中进一步选择4个单株;自交构建4个NIL-F2群体:共有130株、144株、146株和140株,分别命名为R5、R6、R7和R8群体;然后在R6和R8群体中进一步鉴定非重组纯合植株并进行自交,建立两组NILs,每组由20个IL188纯合基因型株系和20个日本晴纯合基因型株系组成;
步骤四:F2和F2:3群体于2014年夏、冬季分别在中国水稻研究所杭州试验基地(N30°32′,E 120°12′)和中国水稻研究所海南陵水试验基地(N 18°48′,E 110°02′)种植;NIL-F2群体和两套NILs分别于2015年、2016年和2017年夏季在中国水稻研究所杭州实验基地种植;F2和NIL-F2群体的植株间距为20cm,行间距为30cm;F2:3群体和2套NILs采用完全随机区组设计,重复两次,每小区5行,每行8株,每行株间距20cm,行间距30cm;田间管理方式按照常规栽培要求实施;
步骤五:粒形性状评价
对于F2群体和NIL-F2群体,单株收获进行性状评价,对于F2:3群体、NILs-qGL7Nip和NILs-qGL7IL188,每个株系收获10株进行性状评价,并在每个群体中对5个粒形性状进行评价;对于粒长、粒宽和粒厚,随机选择20粒饱满的稻谷,用电子数显游标卡尺单独测量,并取20粒的平均值用于数据分析。千粒重通过从每个F2单株中随机选择200粒饱满的籽粒称重来进行评估;F2:3群体、NIL-F2群体和NILs的表型评价与上述F2植株的表型评价相同;
步骤六:用扫描电镜观察NIL-qGL7Nip和NIL-qGL7IL188在成熟期的小穗
将样品在FAA溶液中4℃固定24h,然后用乙醇分级脱水,用临界点干燥法进行干燥,最后样品在扫描电镜下观察,并应用image J软件测定小穗表皮细胞大小;
步骤七:DNA提取和分子标记分析
采用CTAB法从新鲜叶片样本中提取DNA,利用512个具有良好基因组覆盖率的SSR标记来检测亲本W303和日本晴之间的多态性,其中分布在12条染色体上的185个标记在两个亲本之间具有多态性;同时利用IL188和日本晴之间的30个多态性标记对F2和F2:3群体进行基因型分析,进一步利用16个SSR和InDel标记用于精细定位;
步骤八:连锁图谱的构建及数据分析
利用MAPMAKER/EXP version 3.0构建遗传连锁图谱,利用Kosambi映射函数将重组频率转换为cM,使用Windows QTL Cartographer 2.5进行复合区间作图分析,以LOD阈值为2.5检测可能存在的QTL;并对QTL进行命名,利用t测验比较IL188和日本晴以及NIL群体中两个纯合基因型之间的表型差异,采用SPSS软件进行粒形性状的相关分析。
步骤九:最后得出鉴定结果。
进一步改进在于:在步骤六中,溶液配比为福尔马林:冰醋酸:乙醇,体积比1:1:18。
本发明的有益效果是:通过本发明的验证方法鉴定出一个渗入系IL188,其籽粒大小和粒重均有所增加。利用IL188与日本晴杂交衍生的F2和F2:3群体,共检测到了5个籽粒性状相关的12个QTLs。其中一个QTL-qGL7被定在7号染色体长臂上标记Y7-12–Y7-38之间约261kb的范围内。qGL7通过调节细胞扩张来增加籽粒大小和重量。这些结果不仅有助于了解水稻粒形性状的遗传基础,而且有助于在水稻育种中通过分子标记辅助选择(MAS)增加水稻籽粒的大小和重量。
附图说明
图1为本发明的IL188和日本晴植株及籽粒的表型比较图。
图2为本发明的F2和F2:3群体检测到的粒形QTL在染色体上的位置的示意图。
图3为本发明的F2和F2:3群体5个粒形性状的频率分布图。
图4为本发明的目标区域近等基因系群体的基因型比较图。
图5为本发明的近等基因系qGL7IL188和qGL7Nip籽粒及小穗内外表皮细胞的比较图。
具体实施方式
为了加深对本发明的理解,下面将结合实施例对本发明做进一步详述,本实施例仅用于解释本发明,并不构成对本发明保护范围的限定。
根据图1-图5所示,本实施例提供了一种验证水稻粒形和粒重的QTL的方法,包括以下验证步骤:
步骤一:准备材料
渗入系IL188来源于粳稻品种日本晴和从国际水稻研究所(IRRI)种质资源中心收集的小粒野生稻W303之间的种间杂交,再以日本晴为轮回亲本回交三代,并借助胚拯救技术,随后自交四代。IL188与轮回亲本日本晴相比,粒长显著变长,粒重显著增加(见图1)。为了阐明粒形和粒重变异的遗传基础,由母本IL188和父本日本晴之间杂交的F1自交构建由166个株系组成的F2群体,F2:3群体来源于F2各株系自交获得;
步骤二:根据QTL分析的初步结果,从F2:3群体中筛选4个剩余杂合体,顺序杂合片段分布在RM500–RM429区间;自交构建4个NIL-F2群体:共180株、184株、184株和195株,分别命名为R1、R2、R3和R4群体;
步骤三:从连续杂合区段为Y7-3–Y7-4的R3群体中进一步选择4个单株;自交构建4个NIL-F2群体:共有130株、144株、146株和140株,分别命名为R5、R6、R7和R8群体;然后在R6和R8群体中进一步鉴定非重组纯合植株并进行自交,建立两组NILs,每组由20个IL188纯合基因型株系和20个日本晴纯合基因型株系组成;
步骤四:F2和F2:3群体于2014年夏、冬季分别种植在中国水稻研究所杭州试验基地(N 30°32′,E 120°12′)和中国水稻研究所海南陵水试验基地(N 18°48′,E 110°02′)种植;NIL-F2群体和两套NILs分别于2015年、2016年和2017年夏季在中国水稻研究所杭州实验基地种植;F2和NIL-F2群体的植株间距为20cm,行间距为30cm;F2:3科和两套NILs采用随机完全小区设计,重复两次,每小区5行,每行8株,每行株间距20cm,行间距30cm;田间管理方式按照常规栽培要求实施;
步骤五:粒形性状评价
对于F2群体和NIL-F2群体,单株收获进行性状评价,对于F2:3群体、NILs-qGL7Nip和NILs-qGL7IL188,每个株系收获10株进行性状评价,并在每个群体中对5个粒形性状进行评价;对于粒长、粒宽和粒厚,随机选择20粒饱满的稻谷,用电子数显游标卡尺单独测量,并取20粒的平均值用于数据分析。千粒重通过从每个F2单株中随机选择200粒饱满的籽粒称重来进行评估;F2:3群体、NIL-F2群体和NIL的表型评价与上述F2植株的表型评价相同;
步骤六:用扫描电镜观察NIL-qGL7Nip和NIL-qGL7IL188在成熟期的小穗
将样品在FAA溶液中4℃固定24h,然后用乙醇分级脱水,用临界点干燥法进行干燥,最后样品在扫描电镜下观察,并应用image J软件测定小穗表皮细胞大小;在步骤六中,溶液配比为福尔马林:冰醋酸:乙醇,体积比1:1:18。
步骤七:DNA提取和分子标记分析
采用CTAB法从新鲜叶片样本中提取DNA,利用512个具有良好基因组覆盖率的SSR标记来检测亲本W303和日本晴之间的多态性,其中分布在12条染色体上的185个标记在两个亲本之间具有多态性;再利用IL188和日本晴之间的30个多态性标记对F2和F2:3群体进行基因型分析,进一步利用16个SSR和InDel标记用于精细定位(如表1所示);
表1用于精细定位的16对引物的序列信息
Figure BDA0002805019390000081
步骤八:连锁图谱的构建及数据分析
利用MAPMAKER/EXP version 3.0构建遗传连锁图谱,利用Kosambi映射函数将重组频率转换为cM,使用Windows QTL Cartographer 2.5进行复合区间作图分析,以LOD阈值为2.5检测可能存在的QTL;并对QTL进行命名,利用t测验比较IL188和日本晴以及NIL群体中两个纯合子系之间的表型差异,采用SPSS软件进行粒形性状的相关分析。
步骤九:最后得出鉴定结果
IL188的遗传背景
利用均匀分布在12条染色体上的512个SSR标记在W303和日本晴之间进行多态性筛选。其中185个标记在亲本间具有多态性。利用这185个多态性标记进一步分析鉴定IL188的基因型。其中30个(16.2%)为W303基因型,覆盖了6条染色体上的11个区域。导入(渗入)的片段分别分布在第1、2(两个)、3、5、6(两个)、7(两个)和8(两个)号染色体上(见图2)。这30个标记进一步用于鉴定日本晴和IL188杂交得到的F2和F2:3群体的基因型。
亲本的5个粒形性状包括粒长、粒宽、粒厚、长宽比、千粒重的表型值见表2。与日本晴相比,IL188的粒长、粒宽、长宽比和千粒重值较高,粒厚值较低。5个粒形性状在F2和F2:3群体中的频率分布如图3所示。这些性状在两个群体中均表现为连续变异,并接近正态分布。
表2 IL188和日本晴5个粒形性状的表型值
Figure BDA0002805019390000091
注:**表示在0.01水平差异显著.GL:grain length;GW:grain width;LWR:ratioof grain length to width;GT:grain thickness;TGW:thousand grain weight.
5个粒形性状的相关分析
F2和F2:3群体5个粒形性状的相关系数见表3。在F2和F2:3群体中,除粒长与粒厚、长宽比与千粒重之间相关性不显著外,其他各成对性状间均存在极显著相关。在两个群体中,粒长与粒宽、长宽比、千粒重呈极显著正相关,粒宽与粒厚、千粒重存在极显著正相关,而长宽比与粒宽、粒厚呈极显著负相关。
表3F2和F2:3群体5个粒形性状间的相关分析
Figure BDA0002805019390000101
注:左下方和右上方分别为F2和F2:3群体各性状间的相关系数;**表示在0.01水平差异显著.GL:grain length;GW:grain width;LWR:ratio of grain length to width;GT:grain thickness;TGW:thousand grain weight.
F2和F2:3群体粒形性状的QTLs
在F2和F2:3群体中,在第1、2、3、6、7和8号染色体上共检测到控制5个粒形性状的12个QTLs(表4),每个QTL解释的表型贡献率介于4.72%~16.30%之间。其中4个染色体区域同时影响着两个性状。1号染色体的RM7341–RM128区间和2号染色体的RM12924–RM5812区间对两个群体粒长和长宽比的影响是一致的。在RM7341-RM128区间,qGL1和qLWR1对表型变异的解释在F2群体中分别为8.77%和7.55%,在F2:3群体中分别为9.13%和7.40%。在RM12924–RM5812区间,qGL2和qLWR2对表型变异的解释在F2群体中分别为8.77%和7.55%,在F2:3群体中分别为9.13%和7.40%。这些QTLs的增效等位基因均来自IL188。7号染色体上的RM500–RM429区间对两个群体粒长和千粒重的影响是一致的。qGL7和qTGW7对表型变异的解释在F2群体中分别为16.30%和9.97%,在F2:3群体中分别为15.09%和6.65%。这两个QTL的增效等位基因也来自IL188。8号染色体上的RM3845–RM6948仅在F2:3群体中对粒厚和长宽比有显著影响。qGT8和qLWR8分别解释了7.41%和4.72%的表型变异,增效等位基因分别来自日本晴和IL188。第2、3、6和8号染色体上的RM6307–RM5807、RM3199–RM3684、RM7158–RM276、RM408–RM3702四个区间各检测到控制一个粒形性状的QTL,贡献率介于4.85%~7.06%之间。
其中7号染色体RM500–RM429区间的QTL对粒长的效应最大,对千粒重的贡献也很稳定。因此,选择该区域进行进一步验证。为便于描述,将该区域检测到的qGL7和qTGW7统一称为qGL7。
qGL7的精细定位和验证
构建了4个在RM500–RM429区间携带顺序杂合片段的NIL-F2群体,包括R1、R2、R3和R4群体。在R2和R3群体中,三个粒形性状均有显著的基因型效应。在两个群体中,粒长的加性效应分别为0.115和0.109,粒宽的加性效应为0.065和0.050,千粒重的加性效应为0.621和0.907,表型变异解释率分别为19.54%和15.46%,21.65%和10.24%,16.09%和16.86%(表5)。增效等位基因来自IL188,与F2和F2:3群体中发现的增强等位基因相同。R2和R3群体的加性效应和贡献率相似,说明qGL7在共同分离区间的两个群体都能被定位到。R1和R4群体对任何性状均无显著影响,说明qGL7位于两个群体的分离区域之外。如图4所示,qGL7位于标记Y7-3和Y7-4之间,对应日本晴基因组约725kb的区域。
表4 F2和F2:3群体中检测到5个粒形性状的QTLs
Figure BDA0002805019390000121
注:GL:grain length;GW:grain width;LWR:ratio of grain length to width;GT:grain thickness;TGW:thousand grain weight.A:Addtive effect;R2:Variation.
在更新目标区域之后,构建了其他四个NIL-F2种群,包括R5、R6、R7和R8群体。在R6和R8群体中检测到显著的基因型效应,而在R5和R7群体中没有。在R6和R8群体中,粒长的加性效应分别为0.129和0.074,粒宽的加性效应为0.026和0.031,千粒重的加性效应为0.595和0.494,表型变异解释率分别为48.52%和18.12%,16.44%和12.77%,25.38%和9.92%(表5)。同样,增效等位基因来自IL188。这些结果表明qGL7位于R6和R8群体的共同分离区域内,而在R5和R7群体的分离区域外。因此,qGL7被定位在标记Y7-12和Y7-38之间一个约261-kb的区域。
表5在R1–R8群体中检测到的粒长、粒宽和千粒重QTLs
Figure BDA0002805019390000131
注:GL:grain length;GW:grain width;LWR:ratio of grain length to width;GT:grain thickness;TGW:thousand grain weight.A:Addtive effect;R2:Variation.
从R6和R8群体中选取了双亲纯和基因型植株。自交构建了两个近等基因系群体。用两个群体进一步验证了qGL7的作用。与NIL-qGL7Nip相比,NIL-qGL7IL188中粒长和粒宽显著增大(如图5所示),从而导致千粒重增大。说明qGL7对粒形性状具有稳定的影响。
此外,利用扫描电镜观察了NIL-qGL7Nip和NIL-qGL7IL188小穗内外表皮细胞的长度和宽度。与NIL-qGL7Nip相比,NIL-qGL7IL188小穗内外表皮细胞的长度和宽度均增加(如图5所示)。这些结果表明qGL7通过促进细胞扩张调节籽粒大小。
在本实施例中,将粳稻品种日本晴和小粒野生稻品种W303进行杂交,并衍生出高代回交渗入系IL188作为供体亲本,来定位水稻粒形性状的QTL。
本实施例从IL188中鉴定与粒形性状相关的新基因组区域;评估了渗入片段对粒形性状的影响;精细定位QTL-qGL7并验证qGL7对7号染色体上的粒形和粒重的影响。
本实施例从栽培稻日本晴和小粒野生稻(2n=48,BBCC,W303)杂交后代中获得了一个渗入系“IL188”。利用IL188和日本晴杂交并自交获得的F2和F2:3群体,对5个粒形性状进行QTL定位。在第1、2、3、6、7和8号染色体上共鉴定出12个QTLs。在F2和F2:3群体中稳定检测到7号染色体上的QTL-qGL7,解释了15.09-16.30%的表型变异。并且为了验证qGL7的效应,通过筛选在目标区域含有顺序杂合片段的4株F2:3和4株F2:4单株进行自交,构建了8个剩余杂合系(RHL)群体。进一步开发目标区间内的SSR和Indel标记,将qGL7定位在Indel标记Y7-12和SSR标记Y7-38之间约261kb的区域,且qGL7对粒宽和千粒重也有显著影响。对颖壳表皮细胞的扫描电镜分析表明,NIL-qGL7IL188的细胞长度和宽度均大于NIL-qGL7Nip,表明qGL7通过调节细胞扩张而使籽粒大小和重量增加。本发明从粳稻品种日本晴和小粒野生稻W303杂交的渗入系IL188中检测到了12个调控粒形和粒重的QTLs。在这些基因座中,确认并将qGL7定位在约261kb的范围内。这些结果为qGL7基因的图位克隆提供了基础,也为稻米品质改良过程中的分子标记辅助选择提供了有用的信息。
本实施例,在前期从以日本晴为背景的小粒野生稻BC3F4群体中筛选到一份籽粒明显变大的渗入系IL188,利用IL188与日本晴杂交并自交衍生的F2和F2:3群体对水稻粒长、粒宽、粒厚、长宽比和千粒重进行了QTL定位,在第7号染色体上RM500–RM429区间稳定检测到一个同时控制粒长和千粒重的主效QTL,从F2:3群体中筛选获得4个杂合区间呈交叠的剩余杂合体(RHLs),其杂合区间分别为RM1135–RM11(R1群体),RM11–Y7-2(R2群体),RM11–Y7-2(R3群体)和RM11–Y7-4(R4群体),应用以上4套RHL群体对粒长、粒宽和千粒重进行了QTL分析,结果在R2和R3群体中检测到控制粒长、粒宽和千粒重的QTL,而R1和R4群体中未检测到QTL;因此,将控制粒长、粒宽和千粒重的QTL定位于Y7-3–Y7-4之间725kb的范围内。再从R2群体中筛选获得4个杂合区间呈交叠的剩余杂合体(RHLs),其杂合区间分别为Y7-4–RM21787(R5群体),Y7-4–RM455(R6群体),RM21787–Y7-12(R7群体),RM21787–Y7-13(R8群体),应用以上4套RHL群体对粒长、粒宽和千粒重进行了QTL分析,结果在R6和R8群体中检测到控制粒长、粒宽和千粒重的QTL,而R5和R7群体中未检测到QTL;因此,将控制粒长、粒宽和千粒重的QTL定位于Y7-12–Y7-38之间261kb的范围内。进一步从R6群体中筛选出日本晴基因型近等基因系(NIL-qGL7Nip)和IL188基因型(NIL-qGL7IL188)近等基因系,并对成熟谷粒的内外表面进行了扫描电镜分析,发现NIL-qGL7IL188细胞长度和宽度均显著大于NIL-qGL7Nip,表明qGL7通过细胞扩张来增加籽粒长、宽和千粒重。
以上显示和描述了本发明的基本原理、主要特征和优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (2)

1.一种验证水稻粒形和粒重的QTL的方法,其特征在于,包括以下验证步骤:
步骤一:准备材料
渗入系IL188来源于粳稻品种日本晴和从国际水稻研究所(IRRI)种质资源中心收集的小粒野生稻W303之间的种间杂交,再以日本晴为轮回亲本回交三代,并借助胚拯救技术,随后自交四代,由母本IL188和父本日本晴之间杂交的F1自交构建由166个株系组成的F2群体,F2:3群体来源于F2各株系自交获得;
步骤二:根据QTL分析的初步结果,利用分子标记从F2:3群体中筛选4个剩余杂合体,顺序杂合片段分布在RM500–RM429区间;自交构建4个NIL-F2群体:共180株、184株、184株和195株,分别命名为R1、R2、R3和R4群体;
步骤三:从连续杂合区段为Y7-3–Y7-4的R3群体中进一步筛选4个单株;自交构建4个NIL-F2群体:共有130株、144株、146株和140株,分别命名为R5、R6、R7和R8群体;然后在R6和R8群体中进一步鉴定非重组纯合植株并进行自交,再建立两组NILs,每组由20个IL188纯合基因型株系和20个日本晴纯合基因型株系组成;
步骤四:F2和F2:3群体于2014年夏、冬季分别在中国水稻研究所杭州试验基地(N 30°32′,E 120°12′)和中国水稻研究所海南陵水试验基地(N 18°48′,E 110°02′)种植;NIL-F2群体和两套NILs分别于2015年、2016年和2017年夏季在中国水稻研究所杭州实验基地种植;F2和NIL-F2群体的植株间距为20cm,行间距为30cm;F2:3群体和2套NILs采用完全随机区组设计,重复两次,每小区5行,每行8株,每行株间距20cm,行间距30cm;田间管理方式按照常规栽培要求实施;
步骤五:粒形性状评价
对于F2群体和NIL-F2群体,单株收获进行性状评价,对于F2:3群体、NILs-qGL7Nip和NILs-qGL7IL188,每个株系收获10株进行性状评价,并在每个群体中对5个粒形性状进行评价;对于粒长、粒宽和粒厚,随机选择20粒饱满的稻谷,用电子数显游标卡尺单独测量,并取20粒的平均值用于数据分析。千粒重通过从每个F2单株随机选择200粒饱满的籽粒称重来进行评估;F2:3群体、NIL-F2群体和NIL的表型评价与上述F2植株的表型评价相同;
步骤六:用扫描电镜观察NIL-qGL7Nip和NIL-qGL7IL188在成熟期的小穗
将样品在FAA溶液中4℃固定24h,然后用乙醇分级脱水,用临界点干燥法进行干燥,最后样品在扫描电镜下观察,并应用image J软件测定小穗表皮细胞大小;
步骤七:DNA提取和分子标记分析
采用CTAB法从新鲜叶片样本中提取DNA,利用512个具有良好基因组覆盖率的SSR标记来检测亲本W303和日本晴之间的多态性,其中分布在12条染色体上的185个标记在两个亲本之间具有多态性;再利用IL188和日本晴之间的30个多态性标记对F2和F2:3群体进行基因型分析,进一步利用16个SSR和InDel标记用于精细定位;
步骤八:连锁图谱的构建及数据分析
利用MAPMAKER/EXP version 3.0构建遗传连锁图谱,利用Kosambi映射函数将重组频率转换为cM,使用Windows QTL Cartographer 2.5进行复合区间作图分析,以LOD阈值为2.5检测可能存在的QTL;并对QTL进行命名,利用t测验比较IL188和日本晴以及NIL群体中两个纯合基因型之间的表型差异,采用SPSS软件进行粒形性状的相关分析。
步骤九:最后得出鉴定结果。
2.根据权利要求1所述的一种验证水稻粒形和粒重的QTL的方法,其特征在于:在步骤六中,溶液配比为福尔马林:冰醋酸:乙醇,体积比1:1:18。
CN202011367665.8A 2020-11-27 2020-11-27 一种验证水稻粒形和粒重的qtl的方法 Pending CN112342311A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011367665.8A CN112342311A (zh) 2020-11-27 2020-11-27 一种验证水稻粒形和粒重的qtl的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011367665.8A CN112342311A (zh) 2020-11-27 2020-11-27 一种验证水稻粒形和粒重的qtl的方法

Publications (1)

Publication Number Publication Date
CN112342311A true CN112342311A (zh) 2021-02-09

Family

ID=74366141

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011367665.8A Pending CN112342311A (zh) 2020-11-27 2020-11-27 一种验证水稻粒形和粒重的qtl的方法

Country Status (1)

Country Link
CN (1) CN112342311A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113151574A (zh) * 2021-06-04 2021-07-23 中国水稻研究所 一种水稻粒形主效QTL的InDel分子标记GS9-InDel及其检测引物和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104328507A (zh) * 2014-10-11 2015-02-04 中国水稻研究所 一种用于水稻品种鉴定的snp芯片、制备方法及用途
CN107099615A (zh) * 2017-07-04 2017-08-29 中国水稻研究所 一个辅助选择水稻粒长基因qGL7LEYD的分子标记GL7F
CN108103230A (zh) * 2018-01-24 2018-06-01 中国水稻研究所 检测水稻粒形QTLqGL35.1上细长粒等位基因的特异性PCR分子标记
CN108179221A (zh) * 2018-02-28 2018-06-19 中国水稻研究所 检测水稻千粒重QTL qTGW10.2a上高千粒重等位基因的特异性分子标记

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104328507A (zh) * 2014-10-11 2015-02-04 中国水稻研究所 一种用于水稻品种鉴定的snp芯片、制备方法及用途
CN107099615A (zh) * 2017-07-04 2017-08-29 中国水稻研究所 一个辅助选择水稻粒长基因qGL7LEYD的分子标记GL7F
CN108103230A (zh) * 2018-01-24 2018-06-01 中国水稻研究所 检测水稻粒形QTLqGL35.1上细长粒等位基因的特异性PCR分子标记
CN108179221A (zh) * 2018-02-28 2018-06-19 中国水稻研究所 检测水稻千粒重QTL qTGW10.2a上高千粒重等位基因的特异性分子标记

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YUE FENG等: "Validation of a QTL for Grain Size and Weight Using an Introgression Line from a Cross Between Oryza Sativa and Oryza Minuta", 《RESEARCH SQUARE》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113151574A (zh) * 2021-06-04 2021-07-23 中国水稻研究所 一种水稻粒形主效QTL的InDel分子标记GS9-InDel及其检测引物和应用

Similar Documents

Publication Publication Date Title
Bernacchi et al. Advanced backcross QTL analysis of tomato. II. Evaluation of near-isogenic lines carrying single-donor introgressions for desirable wild QTL-alleles derived from Lycopersicon hirsutum and L. pimpinellifolium
Skøt et al. An association mapping approach to identify flowering time genes in natural populations of Lolium perenne (L.)
Xing et al. Fine mapping of a major quantitative trait loci, qSSP7, controlling the number of spikelets per panicle as a single Mendelian factor in rice
Li et al. Construction of a high-density composite map and comparative mapping of segregation distortion regions in barley
Zhu et al. Development of chromosome segment substitution lines derived from backcross between two sequenced rice cultivars, indica recipient 93-11 and japonica donor Nipponbare
Sun et al. The contribution of intersubspecific hybridization to the breeding of super-high-yielding japonica rice in northeast China
CN110692507A (zh) 改良植物品种的方法
CN105695478B (zh) 调节植物株型和产量的基因及其应用
Mi et al. Accelerated molecular breeding of a novel P/TGMS line with broad-spectrum resistance to rice blast and bacterial blight in two-line hybrid rice
Ozdemir et al. Brachypodium genomics
CN107435066B (zh) 水稻柱头外露率主效qtl及其定位方法和应用
Udagawa et al. Genetic analysis of interspecific incompatibility in Brassica rapa
Gan et al. Construction of a high-density genetic linkage map and identification of quantitative trait loci associated with clubroot resistance in radish (Raphanus sativus L.)
Ma et al. Construction of chromosome segment substitution lines of Dongxiang common wild rice (Oryza rufipogon Griff.) in the background of the japonica rice cultivar Nipponbare (Oryza sativa L.)
Tan et al. Quantitative trait loci underlying domestication-and yield-related traits in an Oryza sativa× Oryza rufipogon advanced backcross population
EP3238533A1 (en) Begomovirus-resistant melon plants
Pang et al. Development of a leafy Brassica rapa fixed line collection for genetic diversity and population structure analysis
CN109486994B (zh) 控制玉米穗长qtl位点的分子标记引物及应用
CN110885838B (zh) 水稻OsRR22-7突变型基因及其鉴定方法、鉴定用KASP分型引物及应用
Fujino et al. Translation of continuous artificial selection on phenotype into genotype during rice breeding programs
CN110885837B (zh) 水稻OsRR22-1突变型基因及其鉴定方法、鉴定用KASP分型引物及应用
CN110468229B (zh) 水稻广谱高抗白叶枯病基因Xa45(t)的共分离分子标记Hxjy-1
CN110423838B (zh) 与位于玉米种子耐储性相关主效qtl区段紧密连锁的分子标记及其应用
CN112342311A (zh) 一种验证水稻粒形和粒重的qtl的方法
CN108260522B (zh) 一种高产大豆新品系的分子育种方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination