CN112341622B - 聚吡咯微胶囊制备方法及在制备太阳能电池面板中的应用 - Google Patents

聚吡咯微胶囊制备方法及在制备太阳能电池面板中的应用 Download PDF

Info

Publication number
CN112341622B
CN112341622B CN202011119976.2A CN202011119976A CN112341622B CN 112341622 B CN112341622 B CN 112341622B CN 202011119976 A CN202011119976 A CN 202011119976A CN 112341622 B CN112341622 B CN 112341622B
Authority
CN
China
Prior art keywords
polypyrrole
cyclodextrin
beta
glass
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011119976.2A
Other languages
English (en)
Other versions
CN112341622A (zh
Inventor
刘宾虹
马赛男
李洲鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202011119976.2A priority Critical patent/CN112341622B/zh
Publication of CN112341622A publication Critical patent/CN112341622A/zh
Application granted granted Critical
Publication of CN112341622B publication Critical patent/CN112341622B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0605Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0611Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only one nitrogen atom in the ring, e.g. polypyrroles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/001General methods for coating; Devices therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/32Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with synthetic or natural resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0488Double glass encapsulation, e.g. photovoltaic cells arranged between front and rear glass sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/29Mixtures
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及太阳能电池技术,旨在提供一种聚吡咯微胶囊制备方法及在制备太阳能电池面板中的应用。该制备方法包括:将十二烷基苯磺酸钠水溶液加入β‑环糊精溶液中,搅拌均匀后得到β‑环糊精的十二烷基苯磺酸钠包合物;在氮气氛和搅拌条件下,逐滴加入吡咯,搅拌分散得到吡咯微胶囊溶液;逐滴加入双氧水,搅拌均匀后冷却到室温,得到聚吡咯微胶囊溶液;喷雾进入液氮闪冻,冷冻干燥,得到聚吡咯微胶囊。本发明基于吡咯微胶囊的亲水环糊精,利用其分子外壁丰富的羟基,能够实现玻片与太阳能电池片之间的粘结功能,通过原位合成聚吡咯网络,利用聚吡咯网络的高透光性和导电性,得到全新概念的聚吡咯导电玻璃。其加工温度低,成本低廉,易于大规模生产。

Description

聚吡咯微胶囊制备方法及在制备太阳能电池面板中的应用
技术领域
本发明是关于太阳能电池技术领域,特别涉及一种聚吡咯微胶囊制备方法及在制备太阳能电池面板中的应用。
背景技术
太阳能电池离不开透明导电玻璃,传统的导电玻璃通过涂敷氧化铟锡(ITO)或者掺杂氟的SnO2导电玻璃(SnO2:F)(FTO)作为导电层。ITO膜是以锡和氧空位为施主的n型简并半导体,在常温下有很好的导电性,其本征吸收在紫外区,对可见光透过率影响不大。SnO2是一种对可见光透明的宽带隙氧化物半导体,禁带宽度3.7-4.0eV,具有正四面体金红石结构。在掺了氟之后,SnO2薄膜提高了可见光透光性和紫外吸收、降低了电阻率低,改善了化学性能稳定以及室温下抗酸碱能力。用于制备ITO、FTO薄膜的方法主要包括气相沉积法(CVD)、溅射、热蒸发法、溶胶凝胶法。目前镀膜玻璃生产方式主要有两种:化学气相沉积法(APCVD)和磁控溅射法(PVD),化学气相沉积法又分为在线化学气相沉积法和离线化学气相沉积法及低压化学气相沉积法(LPCVD),磁控溅射法是目前最热门的研究方向。
然而,目前现有技术制造的导电玻璃的可见光平均透光率达到只有80%,无论是沉积法还是溅射法都难以克服材料粒子的漫反射带来的透光率下降。在高透光率低方阻透明导电膜的研究领域里,需要提出新的设计思路和开发新的技术。石墨烯导电玻璃是应运而生的一种新概念,可见光直接透过石墨烯碳环,从而获得很高的透光率。在玻璃上覆盖石墨烯的方法主要是将在金属表面上通过化学气相沉积(CVD)技术生长的石墨烯薄膜,通过刻蚀、保护、转移、清洗的一系列过程,转移到玻璃(包括其他绝缘材料)表面上。由于石墨烯是憎水性的,与亲水的玻璃表面亲和性差,且工序复杂,石墨烯涂覆层易开裂和褶皱,造成严重缺陷,影响产品性能。在玻璃等绝缘材料的表面上直接生长石墨烯层或通过催化石墨化在硅片上得到石墨烯层的方法都存在技术要求高、规模化生产困难的缺点。
发明内容
本发明要解决的技术问题是,克服现有技术中的不足,提供一种聚吡咯微胶囊制备方法及在制备太阳能电池面板中的应用。
为解决上述技术问题,本发明的解决方案是:
提供一种聚吡咯微胶囊的制备方法,具体包括下述步骤:
(1)在90℃温度下,取100mL的去离子水溶解10g的β-环糊精,得到β-环糊精溶液;取10mL去离子水溶解1~2g十二烷基苯磺酸钠,超声振动分散5分钟后加入上述β-环糊精溶液,搅拌均匀后得到β-环糊精的十二烷基苯磺酸钠包合物;
(2)在氮气氛和搅拌条件下,向β-环糊精的十二烷基苯磺酸钠包合物中逐滴加入20g吡咯,搅拌分散30分钟得到吡咯微胶囊溶液;然后逐滴加入30wt%的双氧水2~10mL,搅拌均匀后冷却到室温,得到聚吡咯微胶囊溶液;将上述微胶囊溶液喷雾进入液氮闪冻,移至冷冻干燥器中冷冻干燥12h,得到聚吡咯微胶囊。
本发明中,所述步骤(2)中,超声振动的频率为40kHz。
本发明进一步提供了所述聚吡咯微胶囊在制备导电玻璃中的应用,包括:
取聚吡咯微胶囊1g,溶解于10~20mL去离子水,超声分散后涂敷于洁净玻璃的表面;晾干后,置于氧分压为0.1~0.5atm的N2/O2混合气氛中,在60℃条件下聚合5~10h后,玻璃表面形成二维聚吡咯网络;得到导电玻璃。
本发明进一步提供了所述聚吡咯微胶囊在制备太阳能电池面板中的应用,包括以下步骤:
(1)取聚吡咯微胶囊1g,溶解于10~20mL去离子水,超声分散后分别涂敷于两片洁净玻璃的表面;
(2)将两片导电玻璃以其涂覆表面贴合于太阳能电池片的两侧,晾干;然后置于氧分压为0.1~0.5atm的N2/O2混合气氛中,在60℃条件下聚合5~10h,玻璃涂覆表面和电池片之间的界面处形成二维聚吡咯网络;得到太阳能电池面板。
本发明中,所述玻璃是透明的有机玻璃、无机玻璃或有机-无机复合玻璃;其中,有机玻璃是指以聚甲基丙烯酸甲酯或聚碳酸酯为基材有机玻璃;无机玻璃是指包含硅酸盐复盐的透明玻璃或钢化玻璃。
本发明进一步提供了所述聚吡咯微胶囊制备柔性太阳能电池面板中的应用,包括:取聚吡咯微胶囊1g,溶解于10~20mL去离子水,超声分散后得到聚吡咯微胶囊分散液;将太阳能电池片分割成圆形或块状的微电池片,排列粘附于涂敷了聚吡咯微胶囊分散液的聚甲基丙烯酸甲酯薄膜或聚碳酸酯薄膜的表面,晾干;在微电池片表面涂敷聚吡咯微胶囊分散液,再覆盖一片聚甲基丙烯酸甲酯薄膜或聚碳酸酯薄膜,晾干;置于氧分压为0.5atm的N2/O2混合气氛中,60℃温度下聚合5h,形成柔性太阳能电池面板。7、根据权利要求6所述的方法,其特征在于,所述微电池片的尺寸小于5×5mm。
本发明中,所述太阳能电池片具有单层或多层结构,包含下述任意一种或多种电池片:单晶硅、多晶硅或非晶体硅材质的硅基太阳能电池片;砷化镓、碲化镉或铜铟镓硒材质的薄膜电池片;双层膜异质结型有机太阳能电池片。
本发明进一步提供了所述聚吡咯微胶囊在制备双层膜异质结有机太阳能电池面板中的应用,包括:取聚吡咯微胶囊1g,溶解于10mL去离子水,超声分散后涂敷于聚甲基丙烯酸甲酯薄膜表面;静电喷涂酞菁钴粉末,晾干后,再静电喷涂纳米锐钛矿TiO2;最后覆盖一层同样涂敷有聚吡咯微胶囊的聚甲基丙烯酸甲酯薄膜,聚吡咯微胶囊层朝向锐钛矿TiO2层;晾干后,60℃温度下置于氧分压为0.5atm的N2/O2混合气氛中,聚合10h,使酞菁钴和锐钛矿TiO2颗粒形成异质结,得到双层膜异质结有机太阳能电池面板。
发明原理描述:
为克服现有技术的缺陷,本发明提出一种可控的吡咯聚合方法,首先通过环糊精空腔的限域作用,形成小分子聚吡咯贯穿于环糊精空腔,然后加大吡咯含量形成吡咯胶囊。吡咯胶囊的芯材为吡咯,壁材为环糊精聚吡咯包合物。吡咯胶囊在需要的时候,释放吡咯,吡咯被可控释放和氧化聚合,从而达到吡咯可控聚合,可控生长的目的。将这种聚吡咯的可控生长运用于透明材料的表面涂敷,由于聚吡咯的导电性则可以形成透明导电玻璃技术,应用于太阳能电池。为此,本发明提出一种新概念聚吡咯导电玻璃,通过控制吡咯聚合及聚吡咯的生长,实现聚吡咯的二维网络架构的构筑,克服漫反射导致的透光率下降,形成了一种新型导电玻璃及其制备方法。
吡咯单体常温下呈现无色油状液体,是一种C,N五元杂环分子。聚吡咯是一种常见的导电聚合物,为杂环共轭型导电高分子,通常为无定型黑色固体,是一种稳定性好,易于电化学聚合成膜的导电聚合物,不溶不熔,其电导率和力学强度等性质与电解液阴离子、溶剂、pH值和温度等聚合条件密切相关。以吡咯为单体,经氧化聚合制成,氧化剂通常为三氯化铁、过硫酸铵、双氧水等。导电聚吡咯具有共轭链氧化、对应阴离子掺杂结构,其电导率可达102~103S/cm,拉伸强度可达50~100MPa及很好的电化学氧化-还原可逆性。聚吡咯结构有碳碳单键和碳碳双键交替排列成的共轭结构,双键是由σ电子和π电子构成的,σ电子被固定住无法自由移动,在碳原子间形成共价键。共轭双键中的2个π电子并没有固定在某个碳原子上,它们可以从一个碳原子转位到另一个碳原子上,即具有在整个分子链上延伸的倾向。即分子内的π电子云的重叠产生了整个分子共有的能带,π电子类似于金属导体中的自由电子。以大阴离子型表面活性剂掺杂的聚吡咯,有助于实现电子在聚吡咯共轭π键的沿着分子链移动,使得聚吡咯具有电子传导能力。在聚合物中,吡咯结构单元之间主要以α位相互联接。但是传统的吡咯溶液聚合导致聚吡咯生长迅速,极易团聚形成颗粒,难以进行聚吡咯的可控生长。
环糊精是直链淀粉在由芽孢杆菌产生的环糊精葡萄糖基转移酶作用下生成的一系列环状低聚糖的总称,通常含有6~12个D-吡喃葡萄糖单元。其中研究得较多并且具有重要实际意义的是含有6、7、8个葡萄糖单元的分子,分别称为α-、β-和γ-环糊精,构成环糊精分子的每个D(+)-吡喃葡萄糖都是椅式构象。各葡萄糖单元均以1,4-糖苷键结合成环。由于连接葡萄糖单元的糖苷键不能自由旋转,环糊精分子是略呈锥形的圆环空洞结构。其外侧上端(较大开口端)由C2和C3的仲羟基构成,下端(较小开口端)由C6的伯羟基构成,具有亲水性,而空腔内由于受到C-H键的屏蔽作用形成了疏水区。在碱性介质中很稳定,但强酸可以使之裂解;加热到约200℃开始分解;它的疏水性空洞内可嵌入各种有机化合物,形成包接复合物,并改变被包络物的物理和化学性质;可以在环糊精分子上交链许多官能团或将环糊精交链于聚合物上,进行化学改性或者以环糊精为单体进行聚合。其中,β-环糊精分子的截锥圆筒腔穴,能够包络各种客体分子,被人们用来作为药物的缓释剂,使药物的有效成份包络在β-环糊精分子的腔穴中,让药物慢慢地释放出来,提高药效。这种包络作用还可以应用于包络单分子吡咯、吡咯双聚分子等吡咯聚合小分子,以控制吡咯的释放。
吡咯亲水性较差,若直接加入双氧水于吡咯溶液,无法控制吡咯聚合速度,易形成聚吡咯颗粒。当十二烷基苯磺酸钠加入环糊精溶液形成β-环糊精的十二烷基苯磺酸钠包合物,十二烷基进入环糊精分子空腔,当吡咯逐滴加入上述包合物溶液,吡咯液滴被包合物的十二烷基所包裹,形成吡咯胶囊。由于吡咯液滴和水溶液存在十二烷基苯磺酸钠的浓度差,部分环糊精分子空腔中的十二烷基苯磺酸钠进入吡咯液滴,腾空的环糊精分子空腔则被吡咯占据,完成十二烷基苯磺酸钠和吡咯分子的交换。加入双氧水后,将自由基传递于环糊精分子空腔中的吡咯,发生聚合,形成聚吡咯,穿插于环糊精分子空腔,形成疏水端,深入吡咯液滴。胶囊壁由亲水基团环糊精构成。控制十二烷基苯磺酸钠和双氧水(自由基引发剂)的量是有效形成稳定吡咯胶囊的关键因素,引发剂过量或环糊精释放吡咯过快将导致吡咯胶囊稳定稳定性下降,导致芯材泄漏长大形成聚吡咯颗粒。
当玻片与太阳能电池片之间的聚吡咯微胶囊液膜晾干后完成玻片与电池片的粘结,60℃温度下置于N2/O2混合气氛中,微胶囊受热膨胀,渗流出吡咯,在氧气分下聚合形成聚吡咯网络,形成表面或界面导电膜。
与现有技术相比,本发明的有益效果是:
1、本发明基于吡咯微胶囊的亲水环糊精,利用其分子外壁丰富的羟基,实现玻片与太阳能电池片之间的粘结功能;通过原位合成聚吡咯网络,利用聚吡咯网络的高透光性和导电性,得到一种全新概念聚吡咯导电玻璃。
2、通过控制吡咯聚合及聚吡咯的生长,实现了聚吡咯的二维网络架构构筑,克服漫反射导致的透光率下降。这种新型导电玻璃加工温度低,可以用于有机玻璃基材和形成柔性太阳能电池面板,成本低廉,易于大规模生产。
3、本发明中,聚吡咯的二维网络不仅可以用于玻璃和太阳能电池片之间的粘结和导电,还可以用于不同薄膜电池片的连接;能够极其简单地实现多叠层太阳能电池的制造,在有效提高光吸收系数的同时,不增加光反射。
附图说明
图1为实施例9中多层柔性太阳能电池的光谱响应曲线。
图中的附图标记为:1非晶硅电池的响应曲线,2砷化镓电池的响应曲线,3叠层电池的响应曲线。
具体实施方式
下面结合附图与具体实施方式对本发明作进一步详细描述。实施例可以使本专业的专业技术人员更全面地理解本发明,但不以任何方式限制本发明。
实施例1β-环糊精的十二烷基苯磺酸钠包合物
在90℃温度下,取100mL的去离子水溶解10g的β-环糊精,取10mL去离子水溶解1g十二烷基苯磺酸钠,超声振动(超声频率40kHz)分散5分钟后加入上述β-环糊精溶液,搅拌均匀后得到β-环糊精的十二烷基苯磺酸钠包合物。
实施例2吡咯微胶囊溶液
在90℃温度下,取100mL的去离子水溶解10g的β-环糊精,取10mL去离子水溶解1.5g十二烷基苯磺酸钠,超声振动(超声频率40kHz)分散5分钟后加入上述β-环糊精溶液,搅拌均匀后得到β-环糊精的十二烷基苯磺酸钠包合物;在氮气氛条件下边搅拌边逐滴加入20g吡咯,搅拌分散30分钟得到吡咯微胶囊溶液。
实施例3聚吡咯微胶囊溶液
在90℃温度下,取100mL的去离子水溶解10g的β-环糊精,取10mL去离子水溶解2g十二烷基苯磺酸钠,超声振动(超声频率40kHz)分散5分钟后加入上述β-环糊精溶液,搅拌均匀后得到β-环糊精的十二烷基苯磺酸钠包合物。在氮气氛条件下边搅拌边逐滴加入20g吡咯,搅拌分散30分钟得到吡咯微胶囊溶液。逐滴加入30wt%的双氧水6mL,搅拌均匀后冷却到室温得到聚吡咯微胶囊溶液。
实施例4聚吡咯微胶囊
在90℃温度下,取100mL的去离子水溶解10g的β-环糊精,取10mL去离子水溶解2g十二烷基苯磺酸钠,超声振动(超声频率40kHz)分散5分钟后加入上述β-环糊精溶液,搅拌均匀后得到-环糊精的十二烷基苯磺酸钠包合物,在氮气氛条件下边搅拌边逐滴加入20g吡咯,搅拌分散30分钟得到吡咯微胶囊溶液。逐滴加入30wt%的双氧水2mL,搅拌均匀后冷却到室温得到聚吡咯微胶囊溶液。将上述微胶囊溶液喷雾进入液氮闪冻,移至冷冻干燥器中冷冻干燥12h,得到聚吡咯微胶囊。
实施例5导电玻璃
在90℃温度下,取100mL的去离子水溶解10g的β-环糊精,取10mL去离子水溶解2g十二烷基苯磺酸钠,超声振动(超声频率40kHz)分散5分钟后加入上述β-环糊精溶液,搅拌均匀后得到β-环糊精的十二烷基苯磺酸钠包合物,在氮气氛条件下边搅拌边逐滴加入20g吡咯,搅拌分散30分钟得到吡咯微胶囊溶液。逐滴加入30wt%的双氧水6mL,搅拌均匀后冷却到室温得到聚吡咯微胶囊溶液。将上述微胶囊溶液喷雾进入液氮闪冻,移至冷冻干燥器中冷冻干燥12h,得到聚吡咯微胶囊。
取上述聚吡咯微胶囊1g,溶解于10mL去离子水,超声分散后涂敷于洁净钢化玻璃表面;晾干后,60℃温度下置于氧分压为0.1atm的N2/O2混合气氛中,聚合5h,在玻璃表面形成二维聚吡咯网络,得到导电玻璃。
实施例6太阳能电池面板
在90℃温度下,取100mL的去离子水溶解10g的β-环糊精,取10mL去离子水溶解2g十二烷基苯磺酸钠,超声振动(超声频率40kHz)分散5分钟后加入上述β-环糊精溶液,搅拌均匀后得到-环糊精的十二烷基苯磺酸钠包合物,在氮气氛条件下边搅拌边逐滴加入20g吡咯,搅拌分散30分钟得到吡咯微胶囊溶液。逐滴加入30wt%的双氧水10mL,搅拌均匀后冷却到室温得到聚吡咯微胶囊溶液。将上述微胶囊溶液喷雾进入液氮闪冻,移至冷冻干燥器中冷冻干燥12h,得到聚吡咯微胶囊。
取上述聚吡咯微胶囊1g,溶解于15mL去离子水,超声分散后涂敷于2块50x50cm的洁净钢化玻璃表面;然后分别贴敷于市贩单晶硅电池片两侧,晾干后,60℃温度下置于氧分压为0.3atm的N2/O2混合气氛中,聚合7.5h,在钢化玻璃和单晶硅电池片界面形成二维聚吡咯网络,得到太阳能电池面板。
实施例7基于聚甲基丙烯酸甲酯薄膜的柔性太阳能电池面板
取实施例4得到的聚吡咯微胶囊1g,溶解于10mL去离子水,超声分散后涂敷于市贩5x5 mm的多晶硅电池片一侧,然后彼此间隔1mm排列贴敷于聚甲基丙烯酸甲酯薄膜表面;晾干后,再在多晶硅电池片的另一侧涂覆聚吡咯微胶囊,再覆盖一层聚甲基丙烯酸甲酯薄膜,晾干后,60℃温度下置于氧分压为0.5atm的N2/O2混合气氛中,聚合10h,在聚甲基丙烯酸甲酯薄膜和多晶硅电池片界面形成二维聚吡咯网络,得到柔性太阳能电池面板。
实施例8基于聚碳酸酯薄膜的柔性太阳能电池面板
取实施例4得到的聚吡咯微胶囊1g,溶解于15mL去离子水,超声分散后涂敷于市贩直径3mm的铜铟镓硒薄膜电池圆片,间隔1mm贴敷于涂有聚吡咯微胶囊的聚碳酸酯薄膜表面;晾干后,再在铜铟镓硒薄膜电池的另一侧涂覆聚吡咯微胶囊,再覆盖一层聚碳酸酯薄膜,晾干后,60℃温度下置于氧分压为0.5atm的N2/O2混合气氛中,聚合5h,在聚碳酸酯薄膜和铜铟镓硒电池片界面形成二维聚吡咯网络,得到柔性太阳能电池面板。
实施例9多层柔性太阳能电池面板
取实施例4得到的聚吡咯微胶囊1g,溶解于20mL去离子水,超声分散后涂敷于市贩直径2mm的非晶硅薄膜电池圆片,间隔1mm贴敷于涂有聚吡咯微胶囊的聚碳酸酯薄膜表面;晾干后,再在非晶硅薄膜电池圆片的另一侧涂覆聚吡咯微胶囊,再覆盖一层砷化镓薄膜电池圆片,使得非晶硅薄膜电池和砷化镓薄膜电池呈串接状态,即非晶硅薄膜电池和砷化镓薄膜电池为正负极相接,晾干后,再覆盖一层聚碳酸酯薄膜,晾干后,60℃温度下置于氧分压为0.5atm的N2/O2混合气氛中,聚合7.5h,在聚碳酸酯薄膜和非晶硅薄膜电池、非晶硅薄膜电池与砷化镓薄膜电池、砷化镓薄膜电池与聚碳酸酯薄膜之间的界面处都形成二维聚吡咯网络,得到多层柔性太阳能电池面板;该多层柔性太阳能电池的光谱响应曲线如图1所示。
实施例10双层膜异质结有机太阳能电池面板
取实施例4得到的聚吡咯微胶囊1g,溶解于10mL去离子水,超声分散后涂敷于市贩聚甲基丙烯酸甲酯薄膜表面(50x100 cm);静电喷涂市贩酞菁钴粉末,晾干后,再静电喷涂纳米锐钛矿TiO2,最后覆盖一层同样涂敷有聚吡咯微胶囊的聚甲基丙烯酸甲酯薄膜,聚吡咯微胶囊层朝向锐钛矿TiO2层,晾干后,60℃温度下置于氧分压为0.5atm的N2/O2混合气氛中,聚合10h,酞菁钴和锐钛矿TiO2颗粒形成异质结,由此得到双层膜异质结有机太阳能电池面板。
最后,需要注意的是,以上列举的仅是本发明的具体实施例。显然,本发明不限于以上实施例,还可以有很多变形。本领域的普通技术人员能从本发明公开的内容中直接导出或联想到的所有变形,均应认为是本发明的保护范围。

Claims (9)

1.一种聚吡咯微胶囊在制备导电玻璃中的应用方法,其特征在于,包括以下步骤:
(1)在90℃温度下,取 100 mL的去离子水溶解10 g的β-环糊精,得到β-环糊精溶液;取10 mL 去离子水溶解1~2 g十二烷基苯磺酸钠,以40 kHz的超声振动分散5分钟后加入上述β-环糊精溶液,搅拌均匀后得到β-环糊精的十二烷基苯磺酸钠包合物;
(2)在氮气氛和搅拌条件下,向β-环糊精的十二烷基苯磺酸钠包合物中逐滴加入20 g吡咯,搅拌分散30分钟得到吡咯微胶囊溶液;然后逐滴加入30wt%的双氧水2~10 mL,搅拌均匀后冷却到室温,得到聚吡咯微胶囊溶液;将上述微胶囊溶液喷雾进入液氮闪冻,移至冷冻干燥器中冷冻干燥12 h,得到聚吡咯微胶囊;
(3)取聚吡咯微胶囊1 g,溶解于10~20 mL去离子水,超声分散后涂敷于洁净玻璃的表面;晾干后,置于氧分压为0.1~0.5 atm的N2/O2混合气氛中,在60℃条件下聚合5~10 h后,玻璃表面形成二维聚吡咯网络;得到导电玻璃。
2.根据权利要求1所述的应用方法,其特征在于,所述玻璃是透明的有机玻璃、无机玻璃或有机-无机复合玻璃;其中,有机玻璃是指以聚甲基丙烯酸甲酯或聚碳酸酯为基材有机玻璃;无机玻璃是指包含硅酸盐复盐的透明玻璃或钢化玻璃。
3.一种聚吡咯微胶囊在制备太阳能电池面板中的应用方法,其特征在于,包括以下步骤:
(1)在90℃温度下,取 100 mL的去离子水溶解10 g的β-环糊精,得到β-环糊精溶液;取10 mL 去离子水溶解1~2 g十二烷基苯磺酸钠,以40 kHz的超声振动分散5分钟后加入上述β-环糊精溶液,搅拌均匀后得到β-环糊精的十二烷基苯磺酸钠包合物;
(2)在氮气氛和搅拌条件下,向β-环糊精的十二烷基苯磺酸钠包合物中逐滴加入20 g吡咯,搅拌分散30分钟得到吡咯微胶囊溶液;然后逐滴加入30wt%的双氧水2~10 mL,搅拌均匀后冷却到室温,得到聚吡咯微胶囊溶液;将上述微胶囊溶液喷雾进入液氮闪冻,移至冷冻干燥器中冷冻干燥12 h,得到聚吡咯微胶囊;
(3)取聚吡咯微胶囊1 g,溶解于10~20 mL去离子水,超声分散后分别涂敷于两片洁净玻璃的表面;
(4)将两片玻璃以其涂覆表面贴合于太阳能电池片的两侧,晾干;然后置于氧分压为0.1~0.5 atm的N2/O2混合气氛中,在60℃条件下聚合5~10 h,玻璃涂覆表面和电池片之间的界面处形成二维聚吡咯网络;得到太阳能电池面板。
4.根据权利要求3所述的应用方法,其特征在于,所述玻璃是透明的有机玻璃、无机玻璃或有机-无机复合玻璃;其中,有机玻璃是指以聚甲基丙烯酸甲酯或聚碳酸酯为基材有机玻璃;无机玻璃是指包含硅酸盐复盐的透明玻璃或钢化玻璃。
5.根据权利要求3所述的应用方法,其特征在于,所述太阳能电池片具有单层或多层结构,包含下述任意一种或多种电池片:单晶硅、多晶硅或非晶体硅材质的硅基太阳能电池片;砷化镓、碲化镉或铜铟镓硒材质的薄膜电池片;双层膜异质结型有机太阳能电池片。
6.一种聚吡咯微胶囊在制备柔性太阳能电池面板中的应用方法,其特征在于,包括以下步骤:
(1)在90℃温度下,取 100 mL的去离子水溶解10 g的β-环糊精,得到β-环糊精溶液;取10 mL 去离子水溶解1~2 g十二烷基苯磺酸钠,以40 kHz的超声振动分散5分钟后加入上述β-环糊精溶液,搅拌均匀后得到β-环糊精的十二烷基苯磺酸钠包合物;
(2)在氮气氛和搅拌条件下,向β-环糊精的十二烷基苯磺酸钠包合物中逐滴加入20 g吡咯,搅拌分散30分钟得到吡咯微胶囊溶液;然后逐滴加入30wt%的双氧水2~10 mL,搅拌均匀后冷却到室温,得到聚吡咯微胶囊溶液;将上述微胶囊溶液喷雾进入液氮闪冻,移至冷冻干燥器中冷冻干燥12 h,得到聚吡咯微胶囊;
(3)取聚吡咯微胶囊1 g,溶解于10~20 mL去离子水,超声分散后得到聚吡咯微胶囊分散液;将太阳能电池片分割成圆形或块状的微电池片,排列粘附于涂敷了聚吡咯微胶囊分散液的聚甲基丙烯酸甲酯薄膜或聚碳酸酯薄膜的表面,晾干;在微电池片表面涂敷聚吡咯微胶囊分散液,再覆盖一片聚甲基丙烯酸甲酯薄膜或聚碳酸酯薄膜,晾干;置于氧分压为0.5 atm的N2/O2混合气氛中,60℃温度下聚合5 h,形成柔性太阳能电池面板。
7.根据权利要求6所述的应用方法,其特征在于,所述微电池片的尺寸小于5×5 mm。
8.根据权利要求6所述的应用方法,其特征在于,所述太阳能电池片具有单层或多层结构,包含下述任意一种或多种电池片:单晶硅、多晶硅或非晶体硅材质的硅基太阳能电池片;砷化镓、碲化镉或铜铟镓硒材质的薄膜电池片;双层膜异质结型有机太阳能电池片。
9.一种聚吡咯微胶囊在制备双层膜异质结有机太阳能电池面板中的应用方法,其特征在于,包括以下步骤:
(1)在90℃温度下,取 100 mL的去离子水溶解10 g的β-环糊精,得到β-环糊精溶液;取10 mL 去离子水溶解1~2 g十二烷基苯磺酸钠,以40 kHz的超声振动分散5分钟后加入上述β-环糊精溶液,搅拌均匀后得到β-环糊精的十二烷基苯磺酸钠包合物;
(2)在氮气氛和搅拌条件下,向β-环糊精的十二烷基苯磺酸钠包合物中逐滴加入20 g吡咯,搅拌分散30分钟得到吡咯微胶囊溶液;然后逐滴加入30wt%的双氧水2~10 mL,搅拌均匀后冷却到室温,得到聚吡咯微胶囊溶液;将上述微胶囊溶液喷雾进入液氮闪冻,移至冷冻干燥器中冷冻干燥12 h,得到聚吡咯微胶囊;
(3)取聚吡咯微胶囊1 g,溶解于10 mL去离子水,超声分散后涂敷于聚甲基丙烯酸甲酯薄膜表面;静电喷涂酞菁钴粉末,晾干后,再静电喷涂纳米锐钛矿TiO2;最后覆盖一层同样涂敷有聚吡咯微胶囊的聚甲基丙烯酸甲酯薄膜,聚吡咯微胶囊层朝向锐钛矿TiO2层;晾干后,60℃温度下置于氧分压为0. 5 atm的N2/O2混合气氛中,聚合10 h,使酞菁钴和锐钛矿TiO2颗粒形成异质结,得到双层膜异质结有机太阳能电池面板。
CN202011119976.2A 2020-10-19 2020-10-19 聚吡咯微胶囊制备方法及在制备太阳能电池面板中的应用 Active CN112341622B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011119976.2A CN112341622B (zh) 2020-10-19 2020-10-19 聚吡咯微胶囊制备方法及在制备太阳能电池面板中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011119976.2A CN112341622B (zh) 2020-10-19 2020-10-19 聚吡咯微胶囊制备方法及在制备太阳能电池面板中的应用

Publications (2)

Publication Number Publication Date
CN112341622A CN112341622A (zh) 2021-02-09
CN112341622B true CN112341622B (zh) 2021-10-12

Family

ID=74362221

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011119976.2A Active CN112341622B (zh) 2020-10-19 2020-10-19 聚吡咯微胶囊制备方法及在制备太阳能电池面板中的应用

Country Status (1)

Country Link
CN (1) CN112341622B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113249095B (zh) * 2021-05-10 2022-05-10 上海儒熵新能源科技有限公司 一种具有储能及防腐功能的双层壳体纳米微胶囊制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4568819B2 (ja) * 2005-03-10 2010-10-27 国立大学法人大阪大学 金属ナノクラスターの製造方法
CN101101973A (zh) * 2007-07-17 2008-01-09 华侨大学 染料敏化纳米晶太阳能电池用导电聚合物对电极及其制备方法
CN110707324A (zh) * 2019-10-13 2020-01-17 浙江大学 导电粘结剂的制备及在电池电极中的应用
CN111082155A (zh) * 2020-01-04 2020-04-28 浙江大学 一种高能量长寿命锂硫电池的制造方法

Also Published As

Publication number Publication date
CN112341622A (zh) 2021-02-09

Similar Documents

Publication Publication Date Title
Das et al. Substrate‐free and shapeless planar micro‐supercapacitors
TWI274424B (en) Electrode, photoelectric conversion element, and dye-sensitized solar cell
Li et al. Conducting polymer nanomaterials: electrosynthesis and applications
Zhao et al. Polyaniline electrochromic devices with transparent graphene electrodes
Ge et al. Transparent and flexible electrodes and supercapacitors using polyaniline/single-walled carbon nanotube composite thin films
CN103956430B (zh) 一种倒结构聚合物太阳电池及其制备方法
CN101704958A (zh) 一种柔性聚(3,4-乙烯二氧噻吩)复合导电薄膜的制备方法
CN107591485B (zh) 一种可动态调控透明度的有机太阳能电池及其制备方法和应用
CN112341622B (zh) 聚吡咯微胶囊制备方法及在制备太阳能电池面板中的应用
JP2002093476A (ja) 色素増感型太陽電池セルおよびそれを用いた色素増感型太陽電池モジュール、およびそれらの製造方法
CN107946467A (zh) 一种基于多重陷光结构的聚合物太阳能电池及其制备方法
CN104465993A (zh) 一种碳基复合透明电极及制备方法
Li et al. Recent advances in inorganic electrochromic materials from synthesis to applications: critical review on functional chemistry and structure engineering
CN206040711U (zh) 一种太阳能电池
CN112599683B (zh) 一种制备叠层太阳能电池的层压工艺
CN108091415A (zh) 一种三重陷光结构透明导电薄膜及其制备
CN102931354B (zh) 复合透明电极、聚合物太阳能电池及它们的制备方法
CN103280528B (zh) 一种聚合物太阳能电池
CN108399964A (zh) 基于纳米微晶纤维素衬底的石墨烯导电薄膜的制备方法
CN104610575A (zh) 一种锌铝-层状双氢氧化物包覆碳纳米管复合粉体及其制备方法
CN108383981B (zh) 导电高分子共聚物纳米管及其电致变色层与电致变色器件的制备方法
CN103545444B (zh) 一种柔性有机太阳能电池器件及其制备方法
CN109524170A (zh) 一种石墨烯和氟共掺杂氧化锡透明导电薄膜的制备方法
JP2002305041A (ja) 太陽電池
Yang et al. High optical contrast and radiant heat blocking properties of hierarchically structured electrodes for electrochromic windows

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant