CN112327397B - 一种飞秒等离子体光栅直写制造大面积体光栅的方法 - Google Patents

一种飞秒等离子体光栅直写制造大面积体光栅的方法 Download PDF

Info

Publication number
CN112327397B
CN112327397B CN202011283167.5A CN202011283167A CN112327397B CN 112327397 B CN112327397 B CN 112327397B CN 202011283167 A CN202011283167 A CN 202011283167A CN 112327397 B CN112327397 B CN 112327397B
Authority
CN
China
Prior art keywords
grating
plasma
glass
laser
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011283167.5A
Other languages
English (en)
Other versions
CN112327397A (zh
Inventor
曾和平
南君义
胡梦云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Langyan Technology Co ltd
East China Normal University
Chongqing Institute of East China Normal University
Shanghai Langyan Optoelectronics Technology Co Ltd
Yunnan Huapu Quantum Material Co Ltd
Chongqing Huapu Intelligent Equipment Co Ltd
Original Assignee
Guangdong Langyan Technology Co ltd
East China Normal University
Chongqing Institute of East China Normal University
Shanghai Langyan Optoelectronics Technology Co Ltd
Yunnan Huapu Quantum Material Co Ltd
Chongqing Huapu Intelligent Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Langyan Technology Co ltd, East China Normal University, Chongqing Institute of East China Normal University, Shanghai Langyan Optoelectronics Technology Co Ltd, Yunnan Huapu Quantum Material Co Ltd, Chongqing Huapu Intelligent Equipment Co Ltd filed Critical Guangdong Langyan Technology Co ltd
Priority to CN202011283167.5A priority Critical patent/CN112327397B/zh
Publication of CN112327397A publication Critical patent/CN112327397A/zh
Priority to US17/528,468 priority patent/US20220152740A1/en
Application granted granted Critical
Publication of CN112327397B publication Critical patent/CN112327397B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • B23K26/0624Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0608Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams in the same heat affected zone [HAZ]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0643Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • B23K26/0673Dividing the beam into multiple beams, e.g. multifocusing into independently operating sub-beams, e.g. beam multiplexing to provide laser beams for several stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • B23K26/0853Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • B23K26/0853Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane
    • B23K26/0861Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane in at least in three axial directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • B23K26/402Removing material taking account of the properties of the material involved involving non-metallic material, e.g. isolators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1847Manufacturing methods
    • G02B5/1857Manufacturing methods using exposure or etching means, e.g. holography, photolithography, exposure to electron or ion beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/54Glass
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/106Beam splitting or combining systems for splitting or combining a plurality of identical beams or images, e.g. image replication

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Laser Beam Processing (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

本发明公开了一种飞秒等离子体光栅直写制造大面积体光栅的方法,其特点在于该方法利用超快激光脉冲先在玻璃内形成等离子体光栅,然后再移动玻璃样品直接刻蚀出局域的预制体光栅,接着改变等离子体光栅刻蚀的位置,并且等离子体光栅中的部分光丝与预制体光栅重合,利用局域体光栅的波导耦合特性,可以无缝、整齐地随着等离子体光栅的刻蚀而直写出大面积体光栅。此方法不仅简化了体光栅制造流程,降低体光栅制备成本,还可以设计不同面积、不同光栅常数的加工方案,制备出光学质量高、米级别的光栅。

Description

一种飞秒等离子体光栅直写制造大面积体光栅的方法
技术领域
本发明设计光学衍射元件制造技术领域,具体是一种飞秒等离子体光栅直写大面积体光栅的制备方法。
背景技术
光栅器件被广泛应用于光谱仪、光通信、激光放大系统等领域中,其中大面积的光栅更是天文光谱分析、激光惯性约束核聚变等前端领域的重要光学器件之一。然而大面积光栅制作难度非常高,技术需求远高于小口径光栅的制造。目前制造大口径光栅的方式有两种:一是将多个小口径光栅拼接而成;二是直接制造更大尺寸的单块大光栅。减小光栅拼接过程中的误差需要控制和考量的因素较多,算法的优化还在试验验证阶段。直接制造大面积光栅的方式有单次全息曝光和机械刻划的方式,长春光机所就曾研发出大面积的中阶梯光栅刻划机,但是机器设备造价和精度都要求极高,对米以上的光栅制造已经难以完成。
超快激光诱导直写光栅技术在设计制造不同光栅规格方面有很好的优势,而且仪器成本低,目前已经应用在制造小尺寸平面光栅、体光栅以及光纤光栅等元件,也有大面积光栅制造技术在研究中。中国专利文献CN 104237989A描述了一种超短脉冲激光诱导材料表面光栅自发生长,然而该技术所涉及的膜层工艺复杂,而且对光源的线偏振性、激光能量的稳定性和刻划的平行度要求很高,生长的周期光栅凹槽的深度非常浅,难以起到光栅衍射的效果。相比于表面光栅而言,体光栅具有抗腐蚀、耐磨损等优势,应用前景广泛,然而目前关于大面积体光栅的制造技术还尚未成熟。
发明内容
本发明目的是针对现有大面积体光栅制备技术的不足而设计的一种飞秒等离子体光栅直写大面积体光栅的制备方法。该方法利用超快激光脉冲先在玻璃内形成等离子体光栅,然后再移动玻璃样品直接刻蚀出局域的预制体光栅,接着改变等离子体光栅刻蚀的位置,并且等离子体光栅中的部分光丝与预制体光栅重合,利用局域体光栅的波导耦合特性,可以无缝、整齐地随着等离子体光栅的刻蚀而直写出大面积体光栅。此方法不仅简化了体光栅制造流程,降低体光栅制备成本,还可以设计不同面积、不同光栅常数的加工方案,制备出光学质量高、米级别的光栅。
本发明的具体技术方案如下:
一种飞秒等离子体光栅直写大面积体光栅的制备方法,该方法包括以下步骤:
(1)将飞秒脉冲激光器的输出光束利用分束模块分成两束或者多束,然后再通过时域同步模块以及汇聚模块后以一定的夹角汇聚在玻璃内,形成等离子体光栅;
(2)玻璃样品固定在三维电控位移平台上,激光脉冲在玻璃内形成等离子体光栅后,在等离子体光栅的垂直平面内线性移动玻璃,刻蚀出截面积与等离子体光栅相当的预制体光栅,接着横向移动玻璃的位置,在玻璃样品内的其他位置形成新的等离子体光栅,并且使预制体光栅的有效光栅截面与新的等离子体光栅截面部分重叠,然后在等离子体光栅的垂直平面内线性移动玻璃,刻蚀出新的预制体光栅,依此方法,利用等离子体光栅在玻璃内重复刻蚀,最终可以制备出任意面积的体光栅。
优选的,所述的脉冲激光器输出的激光束为飞秒脉冲激光或皮秒脉冲激光或飞秒/皮秒脉冲簇。
优选的,所述的分束模块为分束片或微反射镜阵列或衍射分束器件,作用是将一束激光脉冲等功率比例分离成多束。
优选的,所述的同步模块由多块平面反射镜和电控线性平台组成,用于调整分离激光脉冲之间的时域间隔。
优选的,所述的汇聚模块是圆形透镜,配合移动样品平台的位置适用于加工点阵光栅;所述的汇聚模块可以是柱透镜,仅聚焦一个维度的光束适合于加工平面体光栅;所述的汇聚模块可以是锥透镜,锥透镜将高斯光束变换成贝塞尔光束并在石英玻璃内形成更长的光丝,并且减少等离子体光丝分裂的同时,还能增加等离子体光丝中电子密度,适用于加工平面光栅、布拉格体光栅;所述的汇聚模块还可以是微透镜阵列,由于微透镜阵列中的每一个小透镜都能汇聚光束并形成等离子体点阵,调节微透镜焦距和入射光功率,该方法适用于加工点阵光栅、三维体光栅、高低折射率周期分布的光子晶体等。因此可以根据体光栅的设计需要选择不同的汇聚透镜组合。
优选的,所述的夹角,是指两束激光脉冲传播方向之间的夹角θ,在玻璃样品内干涉时形成的等离子体光栅的周期Λ满足公式:Λ=λ/2sin(θ/2)。
优选的,所述的多束干涉,即可以是两束光干涉形成一维等离子体光栅,也可以是三束光或者四束光干涉形成二维等离子体光栅,还可以是5束光干涉形成三维等离子体光栅。
优选的,所述的预制体光栅是由等离子体光栅在玻璃内扫描一次刻蚀而成的,宽度等于等离子体光栅的截面直径w0,长度等于等离子体光栅在玻璃内垂直于传播方向截面上所刻蚀的长度L,深度等于等离子体光栅在玻璃内形成的光丝长度D。
优选的,所述的任意面积的体光栅,是在一种一维拼接方式,即在拼接过程中保持焦点距离玻璃前表面的位置不变,由n个预制体光栅沿着截面直径w0方向排列组合而成,最终所形成体光栅尺寸是:宽度为W=n·w0、长度L、深度D。
优选的,所述的光栅拼接过程,改变焦点距离玻璃前表面的位置可以实现预制体光栅的纵向拼接,结合移动横截面的拼接方式,可以实现玻璃体光栅的二维拼接。
优选的,所述的玻璃体光栅加工,不限于仅加工一维的平面光栅或者体光栅,还可以将加工好的一维平面光栅旋转90°,加工出二维光栅。
优选的,所述的玻璃样品可以是石英玻璃,也可以是其他掺杂玻璃、透光材料。
一种飞秒等离子体光栅直写大面积体光栅的制备方法,该方法将干涉光束作用在加工样品的表面,形成表面等离子体光栅,可以用于加工表面光栅。
优选的,所述的加工表面光栅,选用的激光光源既可以是基波单色场,也可以是基波+二次谐波的双色场。其中基波+二次谐波的双色场作用在材料表面时,由于二次谐波的光子能量更高,相对更容易在材料表面形成电离损伤,产生局域等离子体,基波在有局域等离子体同时作用下发生等离子体共振电离,因此双色场加工材料时电离阈值比单色场更低。
优选的,所述的加工表面光栅,可以在加工过程中在焦点附近添加辅助气体,辅助气体是一种在强场下比空气易电离的气体,在辅助气体的作用下,能极大地增加激光作用处所产生的等离子体密度,增加加工效率,并带走烧蚀产生的微小颗粒,减小加工表面的粗糙度。
优选的,所述的加工表面光栅,可以在焦点附近附加静电场,静电场会对飞秒激光产生的等离子体进行引导和加速,使电子以更大的动能、更多地轰击在烧蚀材料的表面,从而增加激光加工的效率。
优选的,所述的加工表面光栅,在加工之前可以现在样品表面镀一层惰性氧化膜,在激光烧蚀后的区域裸露出来,然后可以使用高温高密度的等离子体对材料表面进行均匀的刻蚀,在等离子体的曝光下,表面光栅的凹槽深度会更深,达到亚微米量级。
本发明与现有技术相比,具有以下优点:
直接采用超快激光脉冲在玻璃材料内直写体光栅,突破了传统体光栅的制造仅限于光敏玻璃这一单一材料的限制,甚至可以在任意透光材质内进行刻蚀。
等离子体光栅由大量的等间隔分布的等离子体光丝组成,而一束等离子体光丝就能在玻璃样品内刻蚀形成单周期折射率调制结构。因此采用等离子体光栅进行刻蚀,极大地增加了体光栅制造速度。
在制造大面积体光栅时,采用了波导耦合及双光束干涉相位调制原理,即光丝刻蚀时所形成的预制体光栅由于存在折射率差,对于入射光束而言是一系列波导阵列。因此在用等离子体光栅与预制体光栅之间进行拼接时,等离子体光栅会自动通过波导耦合作用与体光栅之间无缝拼接,具有极高的精度。这种拼接方式不仅避免了传统光栅拼接过程中的造成的倾斜、错位等误差,还能设计制造出不同光栅周期、不同尺寸大小的体光栅。
等离子体光栅的形成不依赖于激光的偏振形态,因此对光源的偏振态要求不高,加工时也不需要随时维持激光脉冲的偏振面不变,简化了设备精度要求。
在使用锥透镜汇聚光束,形成等离子体光丝时,由于锥透镜将入射的高斯光束变换成了贝塞尔光束,不仅克服了光斑中能量热点分布带来的光丝分裂问题,还增加了光丝的长度,而且光丝长度随着激光能量的增加而增加,此外,由于光丝不易分裂,光丝通道内的等离子体密度也能提升10倍以上,有利于体光栅的加工。
附图说明
图1是本发明超快激光脉冲直写大面积体光栅的装置示意图;
图2是本发明大面积体光栅拼接原理示意图;
图3是本发明超快激光脉冲在玻璃样品内形成的等离子体光栅示意图;
图4是本发明利用等离子体光栅拼接技术制造的体光栅平面示意图。
具体实施方式
为了更好的诠释本发明方法,以下结合附图和实施例作进一步说明,但不限制本发明的权利保护范围。
实施例:
将飞秒脉冲激光器的输出光束利用分束模块分成两束或者多束,然后再通过时域同步模块以及汇聚模块后以一定的夹角汇聚在玻璃内,形成等离子体光栅。大面积体光栅刻蚀。玻璃样品固定在三维电控位移平台上,激光脉冲在玻璃内形成等离子体光栅后,在等离子体光栅的垂直平面内线性移动玻璃,刻蚀出截面积与等离子体光栅相当的预制体光栅。接着横向移动玻璃的位置,在玻璃样品内的其他位置形成新的等离子体光栅,并且使预制体光栅的有效光栅截面与新的等离子体光栅截面部分重叠,然后在等离子体光栅的垂直平面内线性移动玻璃,刻蚀出新的预制体光栅。依此方法,利用等离子体光栅在玻璃内重复刻蚀,最终可以制备出任意面积的体光栅。
等离子体光栅的形成,其过程是由飞秒脉冲激光器100输出的飞秒脉冲激光经过分束镜201之后被分成功率相等的两束。其中透射激光脉冲209经过平面反射镜205、206和207改变传播方向之后,被透镜208汇聚到玻璃样品300里面。反射激光脉冲210进入由平面反射镜202、204和电控位移平台203组成的时域同步模块中,并保持与透射激光脉冲209之间时域同步,最后经过透镜208汇聚后进入玻璃样品300中。透射激光脉冲209与反射激光脉冲210之间时域同步之后,会在玻璃样品300内发生干涉,形成等离子体光栅。其中等离子体光栅的截面如图3所示,等离子体光栅的周期Λ满足公式:Λ=λ/2sin(θ/2)。
大面积体光栅的刻蚀如图2所示。玻璃样品300固定在电控位移平台301上。透射激光脉冲209与反射激光脉冲210之间夹角为θ,形成的等离子体光栅303后,控制电控位移平台301移动玻璃样品300,形成了预制体光栅302。然后横向移动玻璃样品300,使等离子体光栅303与预制体光栅302之间保持部分重合,此时等离子体光栅303中部分光丝会耦合进预制体光栅302中,完成拼接。接着移动玻璃样品300,并在玻璃内等离子体光栅照射的区域会刻蚀出新的光栅结构,实现体光栅的无缝拼接。如此反复改变等离子体光栅302的位置,可以在玻璃样品300内刻蚀出任意尺寸大小、不同光栅周期的大面积体光栅。如图4所示,展示了由等离子体光栅直写体光栅拼接而成的大面积光栅局部结构,拼接处结构非常规则,而且任何位置的光栅周期与等离子体光栅周期Λ大小相同。
以上各实施例只是对本发明做进一步说明,并非用以限制本发明专利,凡为本发明等效实施,均应包含于本发明专利的权利要求范围之内。

Claims (16)

1.一种飞秒等离子体光栅直写大面积体光栅的制备方法,其特征在于,该方法包括以下步骤:
(1)将飞秒脉冲激光器的输出光束利用分束模块分成两束或者多束,然后再通过时域同步模块以及汇聚模块后以一定的夹角汇聚在玻璃内,形成等离子体光栅;
(2)玻璃样品固定在三维电控位移平台上,激光脉冲在玻璃内形成等离子体光栅后,在等离子体光栅的垂直平面内线性移动玻璃,刻蚀出截面积与等离子体光栅相当的预制体光栅,接着横向移动玻璃的位置,在玻璃样品内的其他位置形成新的等离子体光栅,并且使预制体光栅的有效光栅截面与新的等离子体光栅截面部分重叠,然后在等离子体光栅的垂直平面内线性移动玻璃,刻蚀出新的预制体光栅,依此方法,利用等离子体光栅在玻璃内重复刻蚀,最终制备出任意面积的体光栅。
2.根据权利要求1所述一种飞秒等离子体光栅直写大面积体光栅的制备方法,其特征在于,步骤(1)所述的脉冲激光器输出的激光束为飞秒脉冲激光或皮秒脉冲激光或飞秒/皮秒脉冲簇。
3.根据权利要求1所述一种飞秒等离子体光栅直写大面积体光栅的制备方法,其特征在于,步骤(1)所述的分束模块为分束片或微反射镜阵列或衍射分束器件,作用是将一束激光脉冲等功率比例分离成多束。
4.根据权利要求1所述一种飞秒等离子体光栅直写大面积体光栅的制备方法,其特征在于,步骤(1)所述的同步模块由多块平面反射镜和电控线性平台组成,用于调整分离激光脉冲之间的时域间隔。
5.根据权利要求1所述一种飞秒等离子体光栅直写大面积体光栅的制备方法,其特征在于,步骤(1)所述的汇聚模块是圆形透镜,配合移动样品平台的位置适用于加工点阵光栅;
或者,所述的汇聚模块是柱透镜,仅聚焦一个维度的光束适合于加工平面体光栅;
或者,所述的汇聚模块是锥透镜,锥透镜将高斯光束变换成贝塞尔光束并在石英玻璃内形成更长的光丝,并且减少等离子体光丝分裂的同时,还能增加等离子体光丝中电子密度,适用于加工平面光栅、布拉格体光栅;
或者,所述的汇聚模块是微透镜阵列,由于微透镜阵列中的每一个小透镜都能汇聚光束并形成等离子体点阵,调节微透镜焦距和入射光功率,所述汇聚模块是微透镜阵列时适用于加工点阵光栅、三维体光栅和高低折射率周期分布的光子晶体,根据体光栅的设计需要选择不同的汇聚透镜组合。
6.根据权利要求1所述一种飞秒等离子体光栅直写大面积体光栅的制备方法,其特征在于,步骤(1)所述的夹角,是指两束激光脉冲传播方向之间的夹角θ,在玻璃样品内干涉时形成的等离子体光栅的周期Λ满足公式:Λ=λ/2sin(θ/2)。
7.根据权利要求1所述一种飞秒等离子体光栅直写大面积体光栅的制备方法,其特征在于,步骤(1),所述通过时域同步模块以及汇聚模块后以一定的夹角汇聚在玻璃内发生干涉形成等离子体光栅,所述干涉包括两束光干涉形成一维等离子体光栅,三束光或者四束光干涉形成二维等离子体光栅,或者五束光干涉形成三维等离子体光栅。
8.根据权利要求1所述一种飞秒等离子体光栅直写大面积体光栅的制备方法,其特征在于,步骤(2),所述的预制体光栅是由等离子体光栅在玻璃内扫描一次刻蚀而成的,宽度等于等离子体光栅的截面直径w0,长度等于等离子体光栅在玻璃内垂直于传播方向截面上所刻蚀的长度L,深度等于等离子体光栅在玻璃内形成的光丝长度D。
9.根据权利要求1所述一种飞秒等离子体光栅直写大面积体光栅的制备方法,其特征在于,步骤(2)所述的任意面积的体光栅,是一种一维拼接方式,即在拼接过程中保持焦点距离玻璃前表面的位置不变,是由n个预制体光栅沿着等离子体光栅的截面直径w0方向排列组合而成,最终所形成体光栅尺寸是:宽度为W=n·w0、长度L、深度D。
10.根据权利要求1所述一种飞秒等离子体光栅直写大面积体光栅的制备方法,其特征在于,步骤(2)所述使预制体光栅的有效光栅截面与新的等离子体光栅截面部分重叠是光栅拼接过程,所述光栅拼接过程包括改变焦点距离玻璃前表面的位置实现预制体光栅的纵向拼接,结合移动横截面的拼接方式,实现玻璃体光栅的二维拼接。
11.根据权利要求1所述一种飞秒等离子体光栅直写大面积体光栅的制备方法,其特征在于,步骤(2)所述的玻璃样品为石英玻璃、掺杂玻璃或透光材料。
12.根据权利要求1所述一种飞秒等离子体光栅直写大面积体光栅的制备方法,其特征在于,还包括步骤(2)中的激光脉冲在玻璃样品表面形成表面等离子体光栅,用于加工表面光栅。
13.根据权利要求12所述一种飞秒等离子体光栅直写大面积体光栅的制备方法,其特征在于,所述的加工表面光栅,选用的激光光源为基波单色场或基波+二次谐波的双色场;其中基波+二次谐波的双色场作用在材料表面时,由于二次谐波的光子能量更高,相对更容易在材料表面形成电离损伤,产生局域等离子体,基波在有局域等离子体同时作用下发生等离子体共振电离,因此双色场加工材料时电离阈值比单色场更低。
14.根据权利要求12所述一种飞秒等离子体光栅直写大面积体光栅的制备方法,其特征在于,所述的加工表面光栅,在加工过程中在焦点附近添加辅助气体,辅助气体是一种在强场下比空气易电离的气体,在辅助气体的作用下,能极大地增加激光作用处所产生的等离子体密度,增加加工效率,并带走烧蚀产生的微小颗粒,减小加工表面的粗糙度。
15.根据权利要求12所述一种飞秒等离子体光栅直写大面积体光栅的制备方法,其特征在于,所述的加工表面光栅,在焦点附近附加静电场,静电场会对飞秒激光产生的等离子体进行引导和加速,使电子以更大的动能、更多地轰击在烧蚀材料的表面,从而增加激光加工的效率。
16.根据权利要求14所述一种飞秒等离子体光栅直写大面积体光栅的制备方法,其特征在于,所述的加工表面光栅,在加工之前先在样品表面镀一层惰性氧化膜,在激光烧蚀后的区域裸露出来,然后使用高温高密度的等离子体对材料表面进行均匀的刻蚀,在等离子体的曝光下,表面光栅的凹槽深度会更深,达到亚微米量级。
CN202011283167.5A 2020-11-17 2020-11-17 一种飞秒等离子体光栅直写制造大面积体光栅的方法 Active CN112327397B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202011283167.5A CN112327397B (zh) 2020-11-17 2020-11-17 一种飞秒等离子体光栅直写制造大面积体光栅的方法
US17/528,468 US20220152740A1 (en) 2020-11-17 2021-11-17 Method for manufacturing large-area volume grating via plasma grating direct writing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011283167.5A CN112327397B (zh) 2020-11-17 2020-11-17 一种飞秒等离子体光栅直写制造大面积体光栅的方法

Publications (2)

Publication Number Publication Date
CN112327397A CN112327397A (zh) 2021-02-05
CN112327397B true CN112327397B (zh) 2022-11-04

Family

ID=74318494

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011283167.5A Active CN112327397B (zh) 2020-11-17 2020-11-17 一种飞秒等离子体光栅直写制造大面积体光栅的方法

Country Status (2)

Country Link
US (1) US20220152740A1 (zh)
CN (1) CN112327397B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113687460B (zh) * 2021-07-29 2023-06-06 中国工程物理研究院激光聚变研究中心 一种边界快速延伸的声波等离子体光栅产生方法
CN114047174B (zh) * 2021-09-29 2024-05-10 云南华谱量子材料有限公司 一种二维等离子体点阵光栅增强激光诱导击穿光谱检测灵敏度装置
CN113917586B (zh) * 2021-10-18 2022-11-11 浙江大学 一种微型分光元件及其制备方法
CN114690298B (zh) * 2022-03-21 2024-03-26 同济大学 一种基于拼接原子光刻技术的大面积自溯源光栅制备方法
CN115629442B (zh) * 2022-12-01 2023-03-28 武汉光谷航天三江激光产业技术研究院有限公司 长焦深飞秒激光并行直写大芯径光纤光栅的装置及方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4830188B2 (ja) * 2000-08-31 2011-12-07 凸版印刷株式会社 光拡散体およびそれを用いた表示装置
CN105652355B (zh) * 2016-03-11 2018-02-23 华东师范大学 一种基于脉冲偏振旋转的等离子体光栅的制备方法
CN109865939A (zh) * 2019-01-22 2019-06-11 华东师范大学 一种双飞秒激光束柱透镜汇聚干涉制备大面积周期微纳结构的装置
CN111408856B (zh) * 2020-04-15 2022-11-22 华东师范大学重庆研究院 一种飞秒等离子体光栅制造微流控芯片方法及其装置
CN111458776B (zh) * 2020-04-15 2022-05-10 华东师范大学重庆研究院 一种飞秒光丝干涉直写啁啾体光栅制备方法及装置

Also Published As

Publication number Publication date
US20220152740A1 (en) 2022-05-19
CN112327397A (zh) 2021-02-05

Similar Documents

Publication Publication Date Title
CN112327397B (zh) 一种飞秒等离子体光栅直写制造大面积体光栅的方法
US7366378B2 (en) Ultrafast laser machining system and method for forming diffractive structures in optical fibers
Račiukaitis et al. Laser Processing by Using Diffractive Optical Laser Beam Shaping Technique.
US7551359B2 (en) Beam splitter apparatus and system
CN112034628B (zh) 一种可特异性调控的高通量超衍射极限焦斑生成装置
US6884960B2 (en) Methods for creating optical structures in dielectrics using controlled energy deposition
JP2005262290A (ja) レーザ加工装置、レーザ加工方法、及び該加工装置又は加工方法により作製された構造体
EP2069850A1 (en) Optical system suitable for processing multiphoton curable photoreactive compositions
TW202107788A (zh) 用於材料處理的相位陣列波束操縱
TW202106424A (zh) 使用環形渦雷射束在基於玻璃之物體中形成微孔洞的系統及方法
US20010021293A1 (en) Method for modifying refractive index in optical wave-guide device
KR20230130163A (ko) 공작물을 레이저 가공하기 위한 장치 및 방법
US20120268939A1 (en) Method of laser processing
Asano et al. Investigation of a channel-add/drop-filtering device using acceptor-type point defects in a two-dimensional photonic-crystal slab
US20050167410A1 (en) Methods for creating optical structures in dielectrics using controlled energy deposition
Alshamrani et al. A non-mechanical multi-wavelength integrated photonic beam steering system
US20050271349A1 (en) Method for processing transparent material, apparatus for processing the same and optical function device
FR2538916A1 (fr) Dispositif et procede de preparation collective de fibres optiques par un traitement thermique
US20230014077A1 (en) Method for producing a light deflection structure, use of a substrate having such a light deflection structure, and light deflection unit having such a light deflection structure
JP4373163B2 (ja) 光学用構造体の製造方法
Amako et al. Beam delivery system with a non-digitized diffractive beam splitter for laser-drilling of silicon
Yang et al. A Compact Apodized Grating Coupler for Perfectly Vertical Coupling
KR102685763B1 (ko) 광 편향 구조를 생성하기 위한 방법, 이러한 광 편향 구조를 갖는 기판의 용도, 및 이러한 광 편향 구조를 갖는 광 편향 유닛
Šlevas et al. Controllable Spatial Array of Bessel-Like Vortical Optical Needles With Different Topological Charges and Locations in the Transverse Plane
Ishraq Laser Nano-Structuring Deep Inside Silicon Using Bessel Beams

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20220906

Address after: 401123 rooms 1 and 2, floor 1-2, building 1, No.2, Huizhu Road, Yubei District, Chongqing

Applicant after: Chongqing Research Institute of East China Normal University

Applicant after: SHANGHAI LANGYAN OPTOELECTRONICS TECHNOLOGY Co.,Ltd.

Applicant after: EAST CHINA NORMAL University

Applicant after: Chongqing Huapu Scientific Instrument Co.,Ltd.

Applicant after: Chongqing Huapu Intelligent Equipment Co.,Ltd.

Applicant after: Yunnan Huapu quantum Material Co.,Ltd.

Applicant after: GUANGDONG LANGYAN TECHNOLOGY Co.,Ltd.

Address before: 401123 rooms 1 and 2, floor 1-2, building 1, No.2, Huizhu Road, Yubei District, Chongqing

Applicant before: Chongqing Research Institute of East China Normal University

Applicant before: SHANGHAI LANGYAN OPTOELECTRONICS TECHNOLOGY Co.,Ltd.

Applicant before: EAST CHINA NORMAL University

GR01 Patent grant
GR01 Patent grant