CN112322608A - 一种提高多铜氧化酶稳定性和降解生物胺能力的方法 - Google Patents

一种提高多铜氧化酶稳定性和降解生物胺能力的方法 Download PDF

Info

Publication number
CN112322608A
CN112322608A CN202011238475.6A CN202011238475A CN112322608A CN 112322608 A CN112322608 A CN 112322608A CN 202011238475 A CN202011238475 A CN 202011238475A CN 112322608 A CN112322608 A CN 112322608A
Authority
CN
China
Prior art keywords
asp
gly
ala
leu
val
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011238475.6A
Other languages
English (en)
Other versions
CN112322608B (zh
Inventor
方芳
倪秀梅
陈坚
堵国成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN202011238475.6A priority Critical patent/CN112322608B/zh
Publication of CN112322608A publication Critical patent/CN112322608A/zh
Application granted granted Critical
Publication of CN112322608B publication Critical patent/CN112322608B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/96Stabilising an enzyme by forming an adduct or a composition; Forming enzyme conjugates
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • A23L5/20Removal of unwanted matter, e.g. deodorisation or detoxification
    • A23L5/25Removal of unwanted matter, e.g. deodorisation or detoxification using enzymes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • A23L5/20Removal of unwanted matter, e.g. deodorisation or detoxification
    • A23L5/28Removal of unwanted matter, e.g. deodorisation or detoxification using microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0014Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4)
    • C12N9/0022Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4) with oxygen as acceptor (1.4.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0065Oxidoreductases (1.) acting on hydrogen peroxide as acceptor (1.11)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y104/00Oxidoreductases acting on the CH-NH2 group of donors (1.4)
    • C12Y104/03Oxidoreductases acting on the CH-NH2 group of donors (1.4) with oxygen as acceptor (1.4.3)
    • C12Y104/03006Amine oxidase (copper-containing)(1.4.3.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y111/00Oxidoreductases acting on a peroxide as acceptor (1.11)
    • C12Y111/01Peroxidases (1.11.1)
    • C12Y111/01006Catalase (1.11.1.6)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Nutrition Science (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

本发明公开了一种提高多铜氧化酶稳定性和降解生物胺能力的方法,属于生物工程技术领域。本发明将过氧化氢酶CAT与多铜氧化酶MCOF按顺序连接,利用大肠杆菌表达系统BL21(DE3)/pET28a,成功实现了多铜氧化酶与过氧化氢酶的融合表达,所获得的融合酶可使多铜氧化酶稳定性提高51%~68%。将融合酶用于生物胺的降解,可使多铜氧化酶对不同生物胺的降解能力有不同程度的提高。在24~48h时间内,相较于未融合CAT的多铜氧化酶MCOF,融合酶CAT&MCOF降解生物胺的能力提高了38.9~132%。

Description

一种提高多铜氧化酶稳定性和降解生物胺能力的方法
技术领域
本发明涉及一种提高多铜氧化酶稳定性和降解生物胺能力的方法,属于生物工程技术领域。
背景技术
生物胺是生物体内产生的一类低分子量含氮有机化合物的总称,是发酵食品卫生标准中的一个限制性指标。适量的生物胺可以促进人体正常的生理活动,但通过食物摄入过量生物胺则会引起偏头痛,头痛,胃和肠道问题以及假性过敏反应等不良反应,严重时可能危及生命。因此,需要将其在发酵食品中的含量降至合适的浓度。
目前用于控制和减少发酵食品中生物胺的措施主要可分为三种:1、源头减控。对生产原料进行优化,减少原料中的蛋白质,控制游离氨基酸的数量,这种方法可以减少生物胺的生成。其弊端在于这种方法极大可能会对产品风味和品质造成较大影响。其它方法如减少发酵体系中产胺的微生物一般仅适用于封闭的单菌体系发酵,对于混菌体系或者开放体系(易染菌)效果不大。2、过程减控。这涉及到改进食品加工方法,对发酵条件(如发酵温度、发酵时间、pH等条件)进行优化以及添加外源抑制剂等来减少因菌株代谢及酶促反应而生成的胺前体物质,从而达到抑制胺产生的目的。但即使改变发酵条件,依然会有生物胺生成,且产品的加工温度和盐度等因素多由食物特性决定,而低温贮藏会提高设备和能耗费用。3、末端减控,也称为酶法减控。这种方法可以消除已生成的生物胺,且基本不用调整和改变食品发酵工艺,对食品营养和风味的影响也较小,是目前最具有应用前景的方法。
多铜氧化酶是一种含铜的氧化酶,目前发现多铜氧化酶类中的某些酶可以降解生物胺,但在降解生物胺时因其稳定性不高,对生物胺的降解率低而在实际应用中受到限制。
发明内容
技术问题:
本发明的目的在于克服现有技术中的不足,提供一种能够提高多铜氧化酶稳定性和降解生物胺能力的方法。
技术方案:
本发明的第一个目的是提供一种多铜氧化酶与过氧化氢酶的融合酶,含有SEQ IDNO.5所示氨基酸序列。
本发明的第二个目的是提供编码所述融合酶的基因。
在一种实施方式中,所述基因含有SEQ ID NO.6所示序列。
本发明的第三个目的是提供携带所述基因的表达载体。
在一种实施方式中,所述表达载体为pET28a。
本发明的第四个目的是提供表达所述融合酶的微生物细胞。
在一种实施方式中,所述微生物细胞为重组大肠杆菌。
在一种实施方式中,所述重组大肠杆菌以E.coli BL21(DE3)为宿主细胞。
本发明的第五个目的是提供一种提高多铜氧化酶活性和/或稳定性的方法,所述方法是将过氧化氢酶与多铜氧化酶融合。
在一种实施方式中,所述提高多铜氧化酶活性是指提高多铜氧化酶降解生物胺的活性。
在一种实施方式中,所述过氧化氢酶的氨基酸序列如SEQ ID NO.3所示;所述多铜氧化酶的氨基酸序列如SEQ ID NO.1所示。
在一种实施方式中,所述融合是将所述多铜氧化酶的氨基酸N端与过氧化氢酶的C端连接。
本发明的第六个目的是提供一种降解生物胺的方法,是将所述融合酶加入至含生物胺的环境中,于35~40℃反应至少8h。
在一种实施方式中,所述方法是将所述融合酶加入至生物胺含量为50~100mg/L的反应体系中,于37℃反应8~48h。
在一种实施方式中,所述生物胺包括但不限于组胺、尸胺或腐胺。
本发明还要求保护所述融合酶或表达所述融合酶的重组微生物细胞在食品领域降解生物胺方面的应用。
有益效果:
本发明通过对多铜氧化酶和过氧化氢酶的融合表达,得到一种稳定性提高的融合酶,该酶的多铜氧化酶稳定性可提高51%~68%;将该融合酶用于降解生物胺,可使多铜氧化酶对不同生物胺的降解能力有不同程度的提高,相比于未融合的酶可以提高38.9~132%。
附图说明
图1为MCOF与CAT融合酶的不同的连接方式;
图2为不同MCOF与CAT融合酶的表达效果;
图3为CAT酶对MCOF酶活的影响;
图4为H2O2对MCOF酶活力的影响;
图5为融合表达CAT对MCOF酶活的影响;A为融合酶的CAT酶活性和MCOF酶活性;B为在含20mmol/L H2O2的环境中多融合酶的多铜氧化酶催化活性;C为融合酶对于H2O2的耐受性;
图6为胺体系中MCOF与CAT酶活力随时间的变化;
图7为融合表达CAT对MCOF降解生物胺的影响;其中,A为融合酶CAT&MCOF对组胺的降解率;B为融合酶CAT&MCOF对腐胺的降解率;C为融合酶CAT&MCOF对尸胺的降解率。
具体实施方式
材料与方法:
LB培养基(g·L-1):蛋白胨10,酵母粉5,NaCl 10。固体培养基加20g·L-1琼脂粉。
TB培养基(g·L-1):蛋白胨12,酵母粉24,甘油5,KH2PO4·3H2O 2.3,K2HPO4·12H2O16.4。
使用的商业化质粒和菌株为:pET28a、E.coli BL21(DE3)
多铜氧化酶酶活的测定方法:采用可见光吸收法,即以2,2′-联氮-双-3-乙基苯并噻唑啉-6-磺酸(ABTS)为底物,通过检测酶氧化ABTS的量计算多铜氧化酶酶活。反应时间为1min,反应体系为50μL酶液、0.95mL含1mmol/L ABTS和1mmol/L CuCl2的柠檬酸钠缓冲液。将每分钟氧化1μmol ABTS所需的酶量定义为一个酶活力单位(U)。
过氧化氢酶的酶活测定方法:
采用可见光吸收法测定多铜氧化酶活力:反应体系为1mL,将50μL待测酶液样品快速加入0.95mL含10mmol/L H2O2的50mmol/L KH2PO4-K2HPO4缓冲液中,用UV-2450型紫外-可见光分光光度计于240nm处测定H2O2的分解速率。将每分钟分解1μmol H2O2所需的酶量为一个酶活单位(U)。
实施例1:MCOF和CAT融合表达的构建与表达
以SEQ ID NO.2所示的多铜氧化酶MCOF的基因和SEQ ID NO.4所示的过氧化氢酶CAT的基因为模板,将两个相应基因以直接的顺序融合和在两个基因之间分别插入不同linker:GGGGS、(GGGGS)2、EAAAK、(EAAAK)2;分别设计构建编码融合酶MCOF、CAT的特异性引物,然后用特异性引物分别対MCOF和CAT的基因进行PCR扩增。按照Primer STAR HS DNAPolymerase(TAKARA)试剂盒说明书配制50μL反应体系,扩增条件:98℃3min1个循坏,98℃10s,55℃15s,72℃1min 30s,30个循坏,72℃5min一个循坏。PCR产物采用1%琼脂糖凝胶电泳进行验证,将获得的条带单一的目的片段进行柱回收,回收方法参照柱回收试剂盒(thermoscientific)说明书进行。将获得的片段与线性化载体pET28a按照Gibson组装方法进行连接,转入宿主感受态细胞E.coli BL21(DE3)中。通过菌落PCR验证,将与目的条带大小符合的重组菌送至无锡天霖测序公司测定核苷酸序列。
表1本发明所用引物
引物名称 引物序列
环p-28a-L 5’-caaagcccgaaaggaagctgag-3’
环p-28a-R 5’-ggtatatctccttcttaaagttaa-3’
28a-MCOF-L 5’-aactttaagaaggagatatacc-ATGAATGAACCAGTTTTCGATTC-3’
28a-MCOF-R 5’-ctcagcttcctttcgggctttg-TTACATGTGCATCCCCATCTTC-3’
28a-CAT-L 5’-aactttaagaaggagatatacc-ATGAGTTCAAATAAACTGACAACTA-3’
28a-CAT-R 5’-ctcagcttcctttcgggctttg-TTAAGAATCTTTTTTAATCGGC-3’
按照上述方法执行,成功构建了重组多铜氧化酶MCOF、重组过氧化氢酶CAT和8种不同方式连接的融合酶并分别命名(图1);重组酶蛋白的表达情况如图2所示。其中,MCOF&CAT表示将MCOF酶和CAT酶的编码基因直接连接,转录翻译后获得的融合酶;MCOF-GGGGS-CAT表示将MCOF酶和CAT酶之间通过GGGGS连接肽连接获得的融合酶;MCOF-(GGGGS)2-CAT表示将MCOF酶和CAT酶之间通过2个GGGGS连接肽连接获得的融合酶;MCOF-EAAAK-CAT表示将MCOF酶和CAT酶之间通过EAAAK连接肽连接获得的融合酶;MCOF-(EAAAK)2--CAT表示将MCOF酶和CAT酶之间通过2个EAAAK连接肽连接获得的融合酶;CAT&MCOF表示将CAT酶和MCOF酶的编码基因直接连接,转录翻译后获得的融合酶;CAT-GGGGS-MCOF表示将CAT酶和MCOF酶之间通过GGGGS连接肽连接获得的融合酶;CAT-(GGGGS)2-MCOF表示将CAT酶和MCOF酶之间通过2个GGGGS连接肽连接获得的融合酶。
实施例2:外源添加过氧化氢酶提高多铜氧化酶的稳定性
设置实验组:分别将不同浓度的过氧化氢酶溶液与多铜氧化酶酶溶液等体积混合,使过氧化氢酶溶液终浓度为200、400、800、1200、1600、3200U/L,然后按照所述多铜氧化酶酶活测定方法测定多铜氧化酶的酶活。对照组将过氧化氢酶溶液换成等体积缓冲液,其余条件相同。结果如图3所示,过氧化氢酶能够提高多铜氧化酶的酶活,且随着过氧化氢酶浓度的增加,多铜氧化酶酶活也在随之逐渐增加(图3)。
由于多铜氧化酶降解生物胺的过程中产生的H2O2可能会影响多铜氧化酶的酶活,因此,向含有1mmol/L ABTS和1mmol/L CuCl2的柠檬酸钠缓冲液中加入不同浓度的H2O2验证其对多铜氧化酶酶活的影响。结果显示,在H2O2存在下,多铜氧化酶的酶活受到严重的抑制,H2O2浓度越高,对反应的抑制效果越明显,而添加过氧化氢酶可以缓解这种抑制作用(图4)。
实施例3:融合表达CAT提高多铜氧化酶MCOF对过氧化氢的耐受性
按照实施例1的方法分别构建不同的CAT-MCOF融合酶,将表达融合酶的重组大肠杆菌在37℃、220rpm条件下于LB培养基中培养12h,再按照2%的接种量转入TB培养基中在37℃、220rpm条件下培养至OD=0.6,加入终浓度为0.1mmol IPTG和1mmol Cu2+在20℃下诱导表达20h。诱导表达结束用PBS洗涤两次后再重新悬浮菌体,破壁离心,收集上清液,即获得MCOF和8种不同方式连接的MCOF-CAT融合酶的粗酶液,用于进行多铜氧化酶和过氧化氢酶的酶活的测定。
测定结果如图5A所示,8种融合酶均显示出多铜氧化酶和过氧化氢酶活性,证明8种融合表达酶体系均成功构建,融合表达后的MCOF酶活和CAT酶活与融合表达前差别不大,这说明融合表达对MCOF与CAT酶活影响不大。
向含有1mmol/L ABTS和1mmol/L CuCl2的柠檬酸钠缓冲液中添加20mmol/L H2O2,以不加H2O2作为对照,分别加入2000U/L的多铜氧化酶MCOF及本实施例3中的方法制备的CAT-MCOF融合酶,再测定各融合酶的多铜氧化酶酶活,测定结果表明(图5B),融合表达CAT对多铜氧化酶MCOF抵御H2O2的能力有明显提高(35%~55%)。
对H2O2耐受性的考察:将酶液在含有20mM H2O2缓冲液中放置2h后测定残余酶活活力,孵育前测定初始酶活,残余酶活比上初始酶活即为相对酶活。结果显示(图5C),融合表达CAT对多铜氧化酶MCOF的耐受性有显著提高,分别可提高51%~68%。
实施例4:融合表达CAT提高多铜氧化酶MCOF降解生物胺的稳定性
将4000U·L-1多铜氧化酶MCOF和实施例3的方法制备的不同的CAT-MCOF融合酶分别加入至终浓度为100mg/L的组胺溶液中,于37℃、pH为4.5的条件下反应,每隔8h对多铜氧化酶进行酶活测定。
结果显示,融合酶CAT&MCOF的多铜氧化酶酶稳定性最好。相较于没有融合CAT的多铜氧化酶MCOF,融合酶CAT&MCOF的多铜氧化酶酶稳定性增加了10~17%(图6)。反应48h时,融合酶CAT&MCOF的多铜氧化酶酶活力依然能保持起始水平的67.4%,此时测得过氧化氢酶残余酶活为35.9%。相较于没有融合CAT的多铜氧化酶MCOF(多铜氧化酶残余酶活力仅保持了起始水平的57.5%),融合酶CAT&MCOF的多铜氧化酶酶稳定性提高了17%。
实施例5:融合表达CAT提高多铜氧化酶MCOF降解生物胺的能力
将融合酶用于生物胺的降解,分别控制反应体系中组胺、腐胺、尸胺起始浓度为50mg/L,在pH为4.5,温度为37℃的条件下应用实施例3制备的CAT-MCOF融合酶进行组胺降解,CAT-MCOF融合酶的添加量为2000U/L。由图可知,组胺的含量随着时间的变化逐渐减少。48h后,添加融合酶CAT&MCOF的组胺降解率为57.8%,添加MCOF的组胺降解率为42.3%,融合酶CAT&MCOF对组胺的降解能力较MCOF提高了38.9%(图7A),对腐胺的降解能力较MCOF提高了132%(图7B),对尸胺的降解能力较MCOF提高了45.7%(图7C)。
虽然本发明已以较佳实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可做各种的改动与修饰,因此本发明的保护范围应该以权利要求书所界定的为准。
SEQUENCE LISTING
<110> 江南大学
<120> 一种提高多铜氧化酶稳定性和降解生物胺能力的方法
<130> BAA201053A
<160> 12
<170> PatentIn version 3.3
<210> 1
<211> 512
<212> PRT
<213> 人工序列
<400> 1
Met Asn Glu Pro Val Phe Asp Ser Tyr Phe Tyr Asp Glu Gln Ala Phe
1 5 10 15
Asn Leu His Asp Ala Ala Tyr Lys Pro Leu Lys Gln Ala Gln Ala Pro
20 25 30
Ala Thr Pro Leu Asn Ile Pro Pro Leu Leu Thr Pro Asp Lys Val Asp
35 40 45
Gly Asp Asp Val Tyr Tyr Thr Val Thr Ala Gln Ala Gly Ala Thr Gln
50 55 60
Leu Leu Pro Gly Glu Lys Thr Lys Thr Trp Gly Phe Asn Ala Ser Met
65 70 75 80
Leu Gly Gln Thr Val Val Phe Glu Arg Gly Lys Thr Tyr His Met His
85 90 95
Leu Val Asn His Leu Pro Glu Val Thr Thr Phe His Trp His Gly Leu
100 105 110
Glu Ile Pro Gly Pro Ile Glu Asp Gly Gly Cys His Ala Pro Val Tyr
115 120 125
Pro Gly Glu Ala Arg Asp Val Thr Phe Lys Ile Ile Gln Pro Ala Ala
130 135 140
Thr Ala Trp Leu His Ala His Pro Cys Pro Glu Thr Ala Tyr Gln Val
145 150 155 160
Trp Gln Gly Leu Ala Thr Met Ala Ile Ile His Asp Gln Glu Glu Ala
165 170 175
Ser Leu Pro Leu Pro His Thr Tyr Gly Val Asp Asp Leu Pro Leu Ile
180 185 190
Leu Gln Asp Arg Asn Phe His Ala Gly Asn Gln Phe Asp Tyr Arg Ala
195 200 205
Asp Tyr Asp Pro Asp Gly Val Gln Gly Asp Thr Ala Val Ile Asn Ala
210 215 220
Thr Val Asn Pro Tyr Phe Asp Val Thr Thr Gln Arg Leu Arg Leu Arg
225 230 235 240
Ile Leu Asn Gly Ser Asn Arg Arg Glu Tyr Arg Leu His Phe Ser Asp
245 250 255
Asp Leu Thr Phe Thr Gln Ile Gly Ser Asp Leu Ser Phe Leu Pro His
260 265 270
Pro Val Lys Leu Lys Lys Leu Met Thr Thr Cys Ala Glu Arg Gln Glu
275 280 285
Ile Val Val Asp Phe Ala Gly Tyr Gln Pro Gly Asp Thr Val Thr Leu
290 295 300
Tyr Ser Asp Asp Ser Pro Leu Val Glu Phe Arg Ile His Glu Phe Thr
305 310 315 320
Pro Ala Gly Glu Glu Leu Pro Thr Thr Leu Thr Lys Ile Asp Tyr Pro
325 330 335
Thr Pro Asp Pro Ser Leu Pro Val Lys Gln Val Val Met Ser Gly Met
340 345 350
Asp Glu Thr Val Met Ile Asp Gly Lys Lys Phe Gln Met Asp Arg Ile
355 360 365
Asp Tyr Thr Met Pro Met Gly Lys Cys Gln Leu Trp Asp Ile Thr Asn
370 375 380
Thr Asn Asp Met Asn Gly Gly Met Ile His Pro Phe His Met His Gly
385 390 395 400
Cys Ala Phe Glu Ile Val Ser Arg Asn Gly Gln Glu Pro Tyr Pro Phe
405 410 415
Glu His Gly Leu Asn Asp Thr Val Ala Val Asn Pro Gly Glu His Val
420 425 430
Ile Ile Lys Val Tyr Phe Gln Val Pro Gly Val Phe Met Tyr His Cys
435 440 445
His Ile Ile Glu His Glu Asp Gly Gly Met Met Ala Gln Leu Lys Val
450 455 460
Val Asp Pro Ala Ala Pro Asp Arg Glu Tyr His Leu Leu Asn His Met
465 470 475 480
Thr Leu Met Glu Ala Phe Ala Lys Glu Arg Gly Val Thr Met Asp Glu
485 490 495
Leu Trp Leu Gly Gly Met Asp Ser Tyr Lys Lys Met Gly Met His Met
500 505 510
<210> 2
<211> 1539
<212> DNA
<213> 人工序列
<400> 2
atgaatgaac cagttttcga ttcctacttt tacgatgagc aagccttcaa ccttcacgat 60
gcggcctaca agccactgaa gcaggctcaa gcacccgcga cgcccctcaa cattccgccc 120
ctgttaaccc cagacaaggt ggacggcgac gacgtgtact acaccgttac cgcccaggcg 180
ggggcaaccc agctattgcc gggggaaaag accaagacct ggggctttaa cgcctcaatg 240
ctggggcaga cggtggtctt tgagcgcggc aagacttacc acatgcacct ggtcaaccac 300
ctaccggaag tgacgacctt ccactggcac ggactagaga ttcccgggcc aattgaagac 360
ggcggctgcc acgccccggt ttacccgggc gaggcccgcg acgtgacctt taagatcatt 420
cagccggccg ccaccgcctg gctccacgcc cacccctgcc cggaaacggc ctaccaggtt 480
tggcagggac tggcgacgat ggcgatcatt cacgaccaag aagaagctag tttgcccctg 540
ccgcacactt acggagttga tgacctgccg ttgatcttgc aggaccgcaa cttccacgcg 600
ggcaaccagt ttgattaccg ggccgattac gaccctgatg gcgtccaggg tgacacggcg 660
gtgattaacg ccaccgtcaa tccttacttt gacgtcacca cccagcgcct gcggttgcga 720
attttaaacg gctctaaccg ccgcgagtac cggctccact tctcggacga cttaaccttc 780
acccaaattg gctcggacct gagctttttg ccccacccgg tcaagttaaa gaagctgatg 840
actacctgtg ccgagcgcca ggagatcgtg gtcgactttg ccggctacca gccgggcgac 900
acggttaccc tgtactccga cgacagtccg ctggtcgagt tccggatcca cgagtttacg 960
ccggcaggag aggagttgcc caccaccctg accaagattg attacccgac cccagacccg 1020
agcctacccg tcaagcaggt ggtgatgtct gggatggacg agacggtgat gattgacggc 1080
aagaagttcc agatggaccg gatcgattac acgatgccga tgggcaagtg ccagctttgg 1140
gacattacca acaccaacga catgaatggc gggatgattc accccttcca catgcacggc 1200
tgcgcctttg agatcgtctc ccgtaacggc caggaaccct acccgtttga acacggactt 1260
aacgacaccg tcgccgttaa cccgggcgaa cacgtcatca tcaaggtcta cttccaagta 1320
ccgggggtct ttatgtacca ttgtcacatt atcgaacacg aagatggcgg gatgatggcc 1380
caactaaagg ttgtcgaccc ggccgccccg gaccgggagt accacttgct caaccatatg 1440
accctgatgg aggcctttgc caaggagcgg ggcgtcacga tggatgaact ctggcttggt 1500
gggatggact cctacaagaa gatggggatg cacatgtaa 1539
<210> 3
<211> 483
<212> PRT
<213> 人工序列
<400> 3
Met Ser Ser Asn Lys Leu Thr Thr Ser Trp Gly Ala Pro Val Gly Asp
1 5 10 15
Asn Gln Asn Ser Met Thr Ala Gly Ser Arg Gly Pro Thr Leu Ile Gln
20 25 30
Asp Val His Leu Leu Glu Lys Leu Ala His Phe Asn Arg Glu Arg Val
35 40 45
Pro Glu Arg Val Val His Ala Lys Gly Ala Gly Ala His Gly Tyr Phe
50 55 60
Glu Val Thr Asn Asp Val Thr Lys Tyr Thr Lys Ala Ala Phe Leu Ser
65 70 75 80
Glu Val Gly Lys Arg Thr Pro Leu Phe Ile Arg Phe Ser Thr Val Ala
85 90 95
Gly Glu Leu Gly Ser Ala Asp Thr Val Arg Asp Pro Arg Gly Phe Ala
100 105 110
Val Lys Phe Tyr Thr Glu Glu Gly Asn Tyr Asp Ile Val Gly Asn Asn
115 120 125
Thr Pro Val Phe Phe Ile Arg Asp Ala Ile Lys Phe Pro Asp Phe Ile
130 135 140
His Thr Gln Lys Arg Asp Pro Lys Thr His Leu Lys Asn Pro Thr Ala
145 150 155 160
Val Trp Asp Phe Trp Ser Leu Ser Pro Glu Ser Leu His Gln Val Thr
165 170 175
Ile Leu Met Ser Asp Arg Gly Ile Pro Ala Thr Leu Arg His Met His
180 185 190
Gly Phe Gly Ser His Thr Phe Lys Trp Thr Asn Ala Glu Gly Glu Gly
195 200 205
Val Trp Ile Lys Tyr His Phe Lys Thr Glu Gln Gly Val Lys Asn Leu
210 215 220
Asp Val Asn Thr Ala Ala Lys Ile Ala Gly Glu Asn Pro Asp Tyr His
225 230 235 240
Thr Glu Asp Leu Phe Asn Ala Ile Glu Asn Gly Asp Tyr Pro Ala Trp
245 250 255
Lys Leu Tyr Val Gln Ile Met Pro Leu Glu Asp Ala Asn Thr Tyr Arg
260 265 270
Phe Asp Pro Phe Asp Val Thr Lys Val Trp Ser Gln Lys Asp Tyr Pro
275 280 285
Leu Ile Glu Val Gly Arg Met Val Leu Asp Arg Asn Pro Glu Asn Tyr
290 295 300
Phe Ala Glu Val Glu Gln Ala Thr Phe Ser Pro Gly Thr Leu Val Pro
305 310 315 320
Gly Ile Asp Val Ser Pro Asp Lys Met Leu Gln Gly Arg Leu Phe Ala
325 330 335
Tyr His Asp Ala His Arg Tyr Arg Val Gly Ala Asn His Gln Ala Leu
340 345 350
Pro Ile Asn Arg Ala Arg Asn Lys Val Asn Asn Tyr Gln Arg Asp Gly
355 360 365
Gln Met Arg Phe Asp Asp Asn Gly Gly Gly Ser Val Tyr Tyr Glu Pro
370 375 380
Asn Ser Phe Gly Gly Pro Lys Glu Ser Pro Glu Asp Lys Gln Ala Ala
385 390 395 400
Tyr Pro Val Gln Gly Ile Ala Asp Ser Val Ser Tyr Asp His Asn Asp
405 410 415
His Tyr Thr Gln Ala Gly Asp Leu Tyr Arg Leu Met Ser Glu Asp Glu
420 425 430
Arg Thr Arg Leu Ile Glu Asn Ile Val Asn Ala Met Lys Pro Val Glu
435 440 445
Lys Glu Glu Ile Lys Leu Arg Gln Ile Glu His Phe Tyr Lys Ala Asp
450 455 460
Pro Glu Tyr Gly Lys Arg Val Ala Glu Gly Leu Gly Leu Pro Ile Lys
465 470 475 480
Lys Asp Ser
<210> 4
<211> 1452
<212> DNA
<213> 人工序列
<400> 4
atgagttcaa ataaactgac aactagctgg ggcgctccgg ttggagataa tcaaaactca 60
atgactgccg gttctcgcgg accaacttta attcaagatg tacatttact cgaaaaattg 120
gcccatttca accgagaacg tgttcctgaa cgtgttgttc acgccaaagg agcaggcgca 180
cacggatatt ttgaagtgac aaacgacgta acaaaataca cgaaagccgc tttcctttct 240
gaagtcggca aacgcacacc gttgttcatc cgtttctcaa cagttgccgg tgaacttggc 300
tctgctgaca cagttcgcga cccgcgcgga tttgctgtta aattttatac tgaagaagga 360
aactacgaca tcgtcggcaa caatacgcct gtattcttta tccgcgatgc gattaagttc 420
cctgatttca tccatacaca aaaaagagat cctaaaacac acctgaaaaa ccctacggct 480
gtatgggatt tctggtcact ttcaccagag tcacttcacc aagtgacaat cctgatgtct 540
gaccgcggaa ttcctgcaac acttcgccac atgcacggct tcggaagcca tacattcaaa 600
tggacaaatg ccgaaggcga aggcgtatgg attaaatatc actttaaaac ggaacaaggc 660
gtgaaaaacc ttgatgtcaa tacggcagca aaaattgccg gtgaaaaccc tgattaccat 720
acagaagacc ttttcaatgc aatcgaaaac ggtgattatc ctgcatggaa actatatgtg 780
caaatcatgc ctttagaaga tgcaaacacg taccgtttcg atccgtttga tgtcacaaaa 840
gtttggtctc aaaaagacta cccgttaatc gaggtcggac gcatggttct agacagaaat 900
ccggaaaact actttgcaga ggtagaacaa gcgacatttt cacctggaac actcgtgcct 960
ggtattgatg tttcaccgga taaaatgctt caaggccgac tgtttgctta tcatgatgca 1020
caccgctacc gtgtcggtgc aaaccatcaa gcgctgccaa tcaaccgtgc ccgcaacaaa 1080
gtaaacaatt atcagcgtga tggacaaatg cgttttgacg ataacggcgg cggatctgtg 1140
tattacgagc ctaacagctt cggcggtcca aaagagtcac ctgaggataa gcaagcagca 1200
tatccggtac aaggcatcgc tgacagcgta agctacgatc acaacgatca ctacactcaa 1260
gccggtgatc tgtatcgttt aatgagtgaa gatgaacgta cccgccttat tgaaaatatt 1320
gttaatgcta tgaagccggt agaaaaagaa gaaatcaagc tgcgccaaat cgagcacttc 1380
tacaaagcgg atcctgaata cggaaaacgc gtggcagaag gccttggatt gccgattaaa 1440
aaagattctt aa 1452
<210> 5
<211> 995
<212> PRT
<213> 人工序列
<400> 5
Met Ser Ser Asn Lys Leu Thr Thr Ser Trp Gly Ala Pro Val Gly Asp
1 5 10 15
Asn Gln Asn Ser Met Thr Ala Gly Ser Arg Gly Pro Thr Leu Ile Gln
20 25 30
Asp Val His Leu Leu Glu Lys Leu Ala His Phe Asn Arg Glu Arg Val
35 40 45
Pro Glu Arg Val Val His Ala Lys Gly Ala Gly Ala His Gly Tyr Phe
50 55 60
Glu Val Thr Asn Asp Val Thr Lys Tyr Thr Lys Ala Ala Phe Leu Ser
65 70 75 80
Glu Val Gly Lys Arg Thr Pro Leu Phe Ile Arg Phe Ser Thr Val Ala
85 90 95
Gly Glu Leu Gly Ser Ala Asp Thr Val Arg Asp Pro Arg Gly Phe Ala
100 105 110
Val Lys Phe Tyr Thr Glu Glu Gly Asn Tyr Asp Ile Val Gly Asn Asn
115 120 125
Thr Pro Val Phe Phe Ile Arg Asp Ala Ile Lys Phe Pro Asp Phe Ile
130 135 140
His Thr Gln Lys Arg Asp Pro Lys Thr His Leu Lys Asn Pro Thr Ala
145 150 155 160
Val Trp Asp Phe Trp Ser Leu Ser Pro Glu Ser Leu His Gln Val Thr
165 170 175
Ile Leu Met Ser Asp Arg Gly Ile Pro Ala Thr Leu Arg His Met His
180 185 190
Gly Phe Gly Ser His Thr Phe Lys Trp Thr Asn Ala Glu Gly Glu Gly
195 200 205
Val Trp Ile Lys Tyr His Phe Lys Thr Glu Gln Gly Val Lys Asn Leu
210 215 220
Asp Val Asn Thr Ala Ala Lys Ile Ala Gly Glu Asn Pro Asp Tyr His
225 230 235 240
Thr Glu Asp Leu Phe Asn Ala Ile Glu Asn Gly Asp Tyr Pro Ala Trp
245 250 255
Lys Leu Tyr Val Gln Ile Met Pro Leu Glu Asp Ala Asn Thr Tyr Arg
260 265 270
Phe Asp Pro Phe Asp Val Thr Lys Val Trp Ser Gln Lys Asp Tyr Pro
275 280 285
Leu Ile Glu Val Gly Arg Met Val Leu Asp Arg Asn Pro Glu Asn Tyr
290 295 300
Phe Ala Glu Val Glu Gln Ala Thr Phe Ser Pro Gly Thr Leu Val Pro
305 310 315 320
Gly Ile Asp Val Ser Pro Asp Lys Met Leu Gln Gly Arg Leu Phe Ala
325 330 335
Tyr His Asp Ala His Arg Tyr Arg Val Gly Ala Asn His Gln Ala Leu
340 345 350
Pro Ile Asn Arg Ala Arg Asn Lys Val Asn Asn Tyr Gln Arg Asp Gly
355 360 365
Gln Met Arg Phe Asp Asp Asn Gly Gly Gly Ser Val Tyr Tyr Glu Pro
370 375 380
Asn Ser Phe Gly Gly Pro Lys Glu Ser Pro Glu Asp Lys Gln Ala Ala
385 390 395 400
Tyr Pro Val Gln Gly Ile Ala Asp Ser Val Ser Tyr Asp His Asn Asp
405 410 415
His Tyr Thr Gln Ala Gly Asp Leu Tyr Arg Leu Met Ser Glu Asp Glu
420 425 430
Arg Thr Arg Leu Ile Glu Asn Ile Val Asn Ala Met Lys Pro Val Glu
435 440 445
Lys Glu Glu Ile Lys Leu Arg Gln Ile Glu His Phe Tyr Lys Ala Asp
450 455 460
Pro Glu Tyr Gly Lys Arg Val Ala Glu Gly Leu Gly Leu Pro Ile Lys
465 470 475 480
Lys Asp Ser Met Asn Glu Pro Val Phe Asp Ser Tyr Phe Tyr Asp Glu
485 490 495
Gln Ala Phe Asn Leu His Asp Ala Ala Tyr Lys Pro Leu Lys Gln Ala
500 505 510
Gln Ala Pro Ala Thr Pro Leu Asn Ile Pro Pro Leu Leu Thr Pro Asp
515 520 525
Lys Val Asp Gly Asp Asp Val Tyr Tyr Thr Val Thr Ala Gln Ala Gly
530 535 540
Ala Thr Gln Leu Leu Pro Gly Glu Lys Thr Lys Thr Trp Gly Phe Asn
545 550 555 560
Ala Ser Met Leu Gly Gln Thr Val Val Phe Glu Arg Gly Lys Thr Tyr
565 570 575
His Met His Leu Val Asn His Leu Pro Glu Val Thr Thr Phe His Trp
580 585 590
His Gly Leu Glu Ile Pro Gly Pro Ile Glu Asp Gly Gly Cys His Ala
595 600 605
Pro Val Tyr Pro Gly Glu Ala Arg Asp Val Thr Phe Lys Ile Ile Gln
610 615 620
Pro Ala Ala Thr Ala Trp Leu His Ala His Pro Cys Pro Glu Thr Ala
625 630 635 640
Tyr Gln Val Trp Gln Gly Leu Ala Thr Met Ala Ile Ile His Asp Gln
645 650 655
Glu Glu Ala Ser Leu Pro Leu Pro His Thr Tyr Gly Val Asp Asp Leu
660 665 670
Pro Leu Ile Leu Gln Asp Arg Asn Phe His Ala Gly Asn Gln Phe Asp
675 680 685
Tyr Arg Ala Asp Tyr Asp Pro Asp Gly Val Gln Gly Asp Thr Ala Val
690 695 700
Ile Asn Ala Thr Val Asn Pro Tyr Phe Asp Val Thr Thr Gln Arg Leu
705 710 715 720
Arg Leu Arg Ile Leu Asn Gly Ser Asn Arg Arg Glu Tyr Arg Leu His
725 730 735
Phe Ser Asp Asp Leu Thr Phe Thr Gln Ile Gly Ser Asp Leu Ser Phe
740 745 750
Leu Pro His Pro Val Lys Leu Lys Lys Leu Met Thr Thr Cys Ala Glu
755 760 765
Arg Gln Glu Ile Val Val Asp Phe Ala Gly Tyr Gln Pro Gly Asp Thr
770 775 780
Val Thr Leu Tyr Ser Asp Asp Ser Pro Leu Val Glu Phe Arg Ile His
785 790 795 800
Glu Phe Thr Pro Ala Gly Glu Glu Leu Pro Thr Thr Leu Thr Lys Ile
805 810 815
Asp Tyr Pro Thr Pro Asp Pro Ser Leu Pro Val Lys Gln Val Val Met
820 825 830
Ser Gly Met Asp Glu Thr Val Met Ile Asp Gly Lys Lys Phe Gln Met
835 840 845
Asp Arg Ile Asp Tyr Thr Met Pro Met Gly Lys Cys Gln Leu Trp Asp
850 855 860
Ile Thr Asn Thr Asn Asp Met Asn Gly Gly Met Ile His Pro Phe His
865 870 875 880
Met His Gly Cys Ala Phe Glu Ile Val Ser Arg Asn Gly Gln Glu Pro
885 890 895
Tyr Pro Phe Glu His Gly Leu Asn Asp Thr Val Ala Val Asn Pro Gly
900 905 910
Glu His Val Ile Ile Lys Val Tyr Phe Gln Val Pro Gly Val Phe Met
915 920 925
Tyr His Cys His Ile Ile Glu His Glu Asp Gly Gly Met Met Ala Gln
930 935 940
Leu Lys Val Val Asp Pro Ala Ala Pro Asp Arg Glu Tyr His Leu Leu
945 950 955 960
Asn His Met Thr Leu Met Glu Ala Phe Ala Lys Glu Arg Gly Val Thr
965 970 975
Met Asp Glu Leu Trp Leu Gly Gly Met Asp Ser Tyr Lys Lys Met Gly
980 985 990
Met His Met
995
<210> 6
<211> 2988
<212> DNA
<213> 人工序列
<400> 6
atgagttcaa ataaactgac aactagctgg ggcgctccgg ttggagataa tcaaaactca 60
atgactgccg gttctcgcgg accaacttta attcaagatg tacatttact cgaaaaattg 120
gcccatttca accgagaacg tgttcctgaa cgtgttgttc acgccaaagg agcaggcgca 180
cacggatatt ttgaagtgac aaacgacgta acaaaataca cgaaagccgc tttcctttct 240
gaagtcggca aacgcacacc gttgttcatc cgtttctcaa cagttgccgg tgaacttggc 300
tctgctgaca cagttcgcga cccgcgcgga tttgctgtta aattttatac tgaagaagga 360
aactacgaca tcgtcggcaa caatacgcct gtattcttta tccgcgatgc gattaagttc 420
cctgatttca tccatacaca aaaaagagat cctaaaacac acctgaaaaa ccctacggct 480
gtatgggatt tctggtcact ttcaccagag tcacttcacc aagtgacaat cctgatgtct 540
gaccgcggaa ttcctgcaac acttcgccac atgcacggct tcggaagcca tacattcaaa 600
tggacaaatg ccgaaggcga aggcgtatgg attaaatatc actttaaaac ggaacaaggc 660
gtgaaaaacc ttgatgtcaa tacggcagca aaaattgccg gtgaaaaccc tgattaccat 720
acagaagacc ttttcaatgc aatcgaaaac ggtgattatc ctgcatggaa actatatgtg 780
caaatcatgc ctttagaaga tgcaaacacg taccgtttcg atccgtttga tgtcacaaaa 840
gtttggtctc aaaaagacta cccgttaatc gaggtcggac gcatggttct agacagaaat 900
ccggaaaact actttgcaga ggtagaacaa gcgacatttt cacctggaac actcgtgcct 960
ggtattgatg tttcaccgga taaaatgctt caaggccgac tgtttgctta tcatgatgca 1020
caccgctacc gtgtcggtgc aaaccatcaa gcgctgccaa tcaaccgtgc ccgcaacaaa 1080
gtaaacaatt atcagcgtga tggacaaatg cgttttgacg ataacggcgg cggatctgtg 1140
tattacgagc ctaacagctt cggcggtcca aaagagtcac ctgaggataa gcaagcagca 1200
tatccggtac aaggcatcgc tgacagcgta agctacgatc acaacgatca ctacactcaa 1260
gccggtgatc tgtatcgttt aatgagtgaa gatgaacgta cccgccttat tgaaaatatt 1320
gttaatgcta tgaagccggt agaaaaagaa gaaatcaagc tgcgccaaat cgagcacttc 1380
tacaaagcgg atcctgaata cggaaaacgc gtggcagaag gccttggatt gccgattaaa 1440
aaagattcta tgaatgaacc agttttcgat tcctactttt acgatgagca agccttcaac 1500
cttcacgatg cggcctacaa gccactgaag caggctcaag cacccgcgac gcccctcaac 1560
attccgcccc tgttaacccc agacaaggtg gacggcgacg acgtgtacta caccgttacc 1620
gcccaggcgg gggcaaccca gctattgccg ggggaaaaga ccaagacctg gggctttaac 1680
gcctcaatgc tggggcagac ggtggtcttt gagcgcggca agacttacca catgcacctg 1740
gtcaaccacc taccggaagt gacgaccttc cactggcacg gactagagat tcccgggcca 1800
attgaagacg gcggctgcca cgccccggtt tacccgggcg aggcccgcga cgtgaccttt 1860
aagatcattc agccggccgc caccgcctgg ctccacgccc acccctgccc ggaaacggcc 1920
taccaggttt ggcagggact ggcgacgatg gcgatcattc acgaccaaga agaagctagt 1980
ttgcccctgc cgcacactta cggagttgat gacctgccgt tgatcttgca ggaccgcaac 2040
ttccacgcgg gcaaccagtt tgattaccgg gccgattacg accctgatgg cgtccagggt 2100
gacacggcgg tgattaacgc caccgtcaat ccttactttg acgtcaccac ccagcgcctg 2160
cggttgcgaa ttttaaacgg ctctaaccgc cgcgagtacc ggctccactt ctcggacgac 2220
ttaaccttca cccaaattgg ctcggacctg agctttttgc cccacccggt caagttaaag 2280
aagctgatga ctacctgtgc cgagcgccag gagatcgtgg tcgactttgc cggctaccag 2340
ccgggcgaca cggttaccct gtactccgac gacagtccgc tggtcgagtt ccggatccac 2400
gagtttacgc cggcaggaga ggagttgccc accaccctga ccaagattga ttacccgacc 2460
ccagacccga gcctacccgt caagcaggtg gtgatgtctg ggatggacga gacggtgatg 2520
attgacggca agaagttcca gatggaccgg atcgattaca cgatgccgat gggcaagtgc 2580
cagctttggg acattaccaa caccaacgac atgaatggcg ggatgattca ccccttccac 2640
atgcacggct gcgcctttga gatcgtctcc cgtaacggcc aggaacccta cccgtttgaa 2700
cacggactta acgacaccgt cgccgttaac ccgggcgaac acgtcatcat caaggtctac 2760
ttccaagtac cgggggtctt tatgtaccat tgtcacatta tcgaacacga agatggcggg 2820
atgatggccc aactaaaggt tgtcgacccg gccgccccgg accgggagta ccacttgctc 2880
aaccatatga ccctgatgga ggcctttgcc aaggagcggg gcgtcacgat ggatgaactc 2940
tggcttggtg ggatggactc ctacaagaag atggggatgc acatgtaa 2988
<210> 7
<211> 22
<212> DNA
<213> 人工序列
<400> 7
caaagcccga aaggaagctg ag 22
<210> 8
<211> 24
<212> DNA
<213> 人工序列
<400> 8
ggtatatctc cttcttaaag ttaa 24
<210> 9
<211> 45
<212> DNA
<213> 人工序列
<400> 9
aactttaaga aggagatata ccatgaatga accagttttc gattc 45
<210> 10
<211> 44
<212> DNA
<213> 人工序列
<400> 10
ctcagcttcc tttcgggctt tgttacatgt gcatccccat cttc 44
<210> 11
<211> 47
<212> DNA
<213> 人工序列
<400> 11
aactttaaga aggagatata ccatgagttc aaataaactg acaacta 47
<210> 12
<211> 44
<212> DNA
<213> 人工序列
<400> 12
ctcagcttcc tttcgggctt tgttaagaat cttttttaat cggc 44

Claims (10)

1.一种融合酶,其特征在于,含有SEQ ID NO.5所示氨基酸序列。
2.编码权利要求1所述融合酶的基因。
3.携带权利要求2所述基因的表达载体。
4.表达权利要求1所述融合酶的微生物细胞。
5.一种重组大肠杆菌,其特征在于,以E.coliBL21(DE3)为宿主细胞,表达权利要求1所述的融合酶。
6.如SEQ ID NO.3所示的过氧化氢酶在提高多铜氧化酶活性和/或稳定性方面的应用。
7.根据权利要求6所述的应用,其特征在于,将SEQ ID NO.3所示的过氧化氢酶与SEQID NO.1所示的多铜氧化酶融合表达,以提高融合酶对生物胺的催化能力。
8.一种降解生物胺的方法,其特征在于,将权利要求1所述的融合酶加入至含生物胺的环境中,于35~40℃反应至少8h。
9.根据权利要求8所述的方法,其特征在于,所述生物胺包括但不限于组胺、腐胺、尸胺中的至少一种。
10.权利要求1所述的融合酶或权利要求5所述的重组大肠杆菌在食品领域降解生物胺方面的应用。
CN202011238475.6A 2020-11-09 2020-11-09 一种提高多铜氧化酶稳定性和降解生物胺能力的方法 Active CN112322608B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011238475.6A CN112322608B (zh) 2020-11-09 2020-11-09 一种提高多铜氧化酶稳定性和降解生物胺能力的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011238475.6A CN112322608B (zh) 2020-11-09 2020-11-09 一种提高多铜氧化酶稳定性和降解生物胺能力的方法

Publications (2)

Publication Number Publication Date
CN112322608A true CN112322608A (zh) 2021-02-05
CN112322608B CN112322608B (zh) 2022-07-01

Family

ID=74315546

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011238475.6A Active CN112322608B (zh) 2020-11-09 2020-11-09 一种提高多铜氧化酶稳定性和降解生物胺能力的方法

Country Status (1)

Country Link
CN (1) CN112322608B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112921010A (zh) * 2021-03-18 2021-06-08 江南大学 一种适用于发酵食品的多铜氧化酶重组酶
CN113249350A (zh) * 2021-06-25 2021-08-13 江南大学 一种霍氏糖多孢菌来源的可降解生物胺的含铜胺氧化酶及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007112792A (ja) * 2005-09-21 2007-05-10 Kanazawa Univ ケラチン繊維染色用組成物及びケラチン繊維の染色方法
US20180282708A1 (en) * 2014-12-02 2018-10-04 Novozymes A/S Laccase variants and polynucleotides encoding same
CN109468288A (zh) * 2018-11-28 2019-03-15 广东珠江桥生物科技股份有限公司 一种高效降解组胺的新多铜氧化酶
CN110218709A (zh) * 2019-06-21 2019-09-10 福州大学 一种耐热漆酶及其基因与应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007112792A (ja) * 2005-09-21 2007-05-10 Kanazawa Univ ケラチン繊維染色用組成物及びケラチン繊維の染色方法
US20180282708A1 (en) * 2014-12-02 2018-10-04 Novozymes A/S Laccase variants and polynucleotides encoding same
CN109468288A (zh) * 2018-11-28 2019-03-15 广东珠江桥生物科技股份有限公司 一种高效降解组胺的新多铜氧化酶
CN110218709A (zh) * 2019-06-21 2019-09-10 福州大学 一种耐热漆酶及其基因与应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KAVLEEN KAUR等: "Multicopper oxidases: Biocatalysts in microbial pathogenesis and stress management", 《MICROBIOGICAL RESEARCH》 *
LOUIS P. CORNACCHIONE等: "Interspecies Inhibition of Porphyromonas gingivalis by Yogurt-Derived Lactobacillus delbrueckii Requires Active Pyruvate Oxidase", 《APPLIED AND ENVIRONMENTAL MICROBIOLOGY》 *
无: "NCBI Reference Sequence: WP_048339862.1", 《GENPEPT》 *
无: "NCBI Reference Sequence: WP_144530594.1", 《GENPEPT》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112921010A (zh) * 2021-03-18 2021-06-08 江南大学 一种适用于发酵食品的多铜氧化酶重组酶
CN113249350A (zh) * 2021-06-25 2021-08-13 江南大学 一种霍氏糖多孢菌来源的可降解生物胺的含铜胺氧化酶及其应用
CN113249350B (zh) * 2021-06-25 2022-08-26 江南大学 一种霍氏糖多孢菌来源的可降解生物胺的含铜胺氧化酶及其应用

Also Published As

Publication number Publication date
CN112322608B (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
Dos Santos et al. Molecular analysis of the trimethylamine N-oxide (TMAO) reductase respiratory system from a Shewanella species
Kerby et al. Genetic and physiological characterization of the Rhodospirillum rubrum carbon monoxide dehydrogenase system
Pollegioni et al. L-amino acid oxidase as biocatalyst: a dream too far?
Arias et al. vanC cluster of vancomycin-resistant Enterococcus gallinarum BM4174
GORDON et al. Identification and characterization of a novel cytochrome c3 from Shewanella frigidimarina that is involved in Fe (III) respiration
CN109825484B (zh) 玉米赤霉烯酮水解酶zhd101突变体及利用该突变体水解玉米赤霉烯酮的方法
RU2504584C2 (ru) СПОСОБ ПОЛУЧЕНИЯ ПИРРОЛОХИНОЛИНОХИНОНА (PQQ) С ИСПОЛЬЗОВАНИЕМ БАКТЕРИИ РОДА Methylobacterium ИЛИ Hyphomicrobium
CN112322608B (zh) 一种提高多铜氧化酶稳定性和降解生物胺能力的方法
Sanchez-Torres et al. Protein engineering of the transcriptional activator FhlA to enhance hydrogen production in Escherichia coli
Hemschemeier et al. Biochemical and physiological characterization of the pyruvate formate-lyase Pfl1 of Chlamydomonas reinhardtii, a typically bacterial enzyme in a eukaryotic alga
Watanabe et al. Identification and characterization of D-hydroxyproline dehydrogenase and Δ1-pyrroline-4-hydroxy-2-carboxylate deaminase involved in novel L-hydroxyproline metabolism of bacteria: metabolic convergent evolution
Tonon et al. The arcABC gene cluster encoding the arginine deiminase pathway of Oenococcus oeni, and arginine induction of a CRP-like gene
Kim et al. 2‐Hydroxyisocaproyl‐CoA dehydratase and its activator from Clostridium difficile
CN107012130A (zh) 一种葡萄糖氧化酶突变体及其编码基因和应用
CN102199578A (zh) 一种谷氨酸脱氢酶的突变体酶及其构建方法
CN110938606B (zh) HpaBC基因、突变体及其应用
Loprasert et al. Characterization and mutagenesis of fur gene from Burkholderia pseudomallei
CN110055233B (zh) 一种热稳定性提高的MTSase突变体及其应用
Klees et al. 2-Hydroxyglutaryl-CoA dehydratase from Fusobacterium nucleatum (subsp. nucleatum): an iron-sulfur flavoprotein
Braune et al. The sodium ion translocating glutaconyl‐CoA decarboxylase from Acidaminococcus fermentans: cloning and function of the genes forming a second operon
Suzuki et al. Purification, characterization, and gene cloning of thermophilic cytochrome cd1 nitrite reductase from Hydrogenobacter thermophilus TK-6
Xu et al. Quantitative analysis on inactivation and reactivation of recombinant glycerol dehydratase from Klebsiella pneumoniae XJPD-Li
Rauh et al. Tungsten‐containing aldehyde oxidoreductase of Eubacterium acidaminophilum: Isolation, characterization and molecular analysis
Osipiuk et al. Cloning, sequencing, and expression of dnaK-operon proteins from the thermophilic bacterium Thermus thermophilus
CN113061593B (zh) 一种l-苹果酸脱氢酶突变体及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant