CN112305432B - 一种大型储能系统电池的soc校准方法 - Google Patents

一种大型储能系统电池的soc校准方法 Download PDF

Info

Publication number
CN112305432B
CN112305432B CN202010988409.4A CN202010988409A CN112305432B CN 112305432 B CN112305432 B CN 112305432B CN 202010988409 A CN202010988409 A CN 202010988409A CN 112305432 B CN112305432 B CN 112305432B
Authority
CN
China
Prior art keywords
soc
battery
voltage
calibration
internal resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010988409.4A
Other languages
English (en)
Other versions
CN112305432A (zh
Inventor
尚德华
杨泽乾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Lianzhisheng New Energy Technology Co.,Ltd.
Original Assignee
Aopu Shanghai New Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aopu Shanghai New Energy Co Ltd filed Critical Aopu Shanghai New Energy Co Ltd
Priority to CN202010988409.4A priority Critical patent/CN112305432B/zh
Publication of CN112305432A publication Critical patent/CN112305432A/zh
Application granted granted Critical
Publication of CN112305432B publication Critical patent/CN112305432B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明公开了一种大型储能系统电池的SOC校准方法,包括电池管理系统、校准模块、信息发送模块、充放电控制装置和多个并联的电池簇,所述电池管理系统获取实时测量信息;所述校准模块接收信息,并进行电池SOC校准;所述信息发送模块将信息发送至校准模块和充放电控制装置;所述充放电控制装置控制电池簇充放电,本发明的有益效果在于:可实时的对SOC的计算值进行修正并检验,无论电池簇在工作状态还是静置状态,都可避免停机引起储能系统离线带来的损失,利用静置状态的校准重新计算充放电量,利用在线状态的校准,更新内阻值及SOH状态,循环更新,确保校准后的SOC值准确可靠,使得系统能够更加合理的进行充放电管理和状态预测。

Description

一种大型储能系统电池的SOC校准方法
技术领域
本发明涉及化学储能技术领域,具体为一种大型储能系统电池的SOC校准方法。
背景技术
目前在化学储能领域,锂离子电池因其绿色环保、循环寿命长等优异特性成为大型储能的首选,广泛应用于风力、光伏等可再生能源的发电储能配套和电厂的调频调峰,大型储能设备,电池数量庞大,对荷电状态的准确度要求也越来越高,目前使用的SOC估算方法主要是安时积分法、开路电压法、卡尔曼滤波法和神经网络法。
然而现有技术仍存在诸多不足,SOC的估算方法虽然有很多,但是目前储能系统仍普遍使用安时积分法,并辅以一定的修正或定期校准来计算SOC,安时积分法的计算精度取决于初始状态和瞬时电流的检测精度,而系统中各电池簇之间的电芯并不是完全一致,所以各簇之间都会存在差异,各个电池簇之间得到的SOC值会存在偏差,长时间使用,偏差不断累加,所以需要定期校准,而现有的SOC校准方法,在校准期间,储能系统需要脱离正常工作状态,无法在电池工作状态完成校准,也就无法避免停机而引起的储能系统离线带来的损失,更不能确保校准后的SOC值准确可靠。
基于以上问题,亟待提出一种大型储能系统电池的SOC校准方法,在安时积分法的基础上,可实时的对SOC的计算值进行修正并检验,无论电池簇在工作状态还是静置状态,可避免停机引起储能系统离线带来的损失,利用静置状态的校准重新计算充放电量,利用在线状态的校准,更新内阻值及SOH状态,循环更新,确保校准后的SOC值准确可靠,使得系统能够更加合理的进行充放电管理和状态预测。
发明内容
本发明的目的在于提供一种大型储能系统电池的SOC校准方法,以解决上述背景技术中提出的问题。
为了解决上述技术问题,本发明提供如下技术方案:
一种大型储能系统电池的SOC校准方法,包括以下步骤:
步骤S1:在储能系统中电池组成pack包之前,抽取样品,在25℃环境下,进行各个阶段SOC的HPPC测试,计算得到每个SOC对应的电池内阻,设电池个数为n,则电池内阻为R1、R2、...、Rn,记录在SOC-R表格中,同时将SOH作为内阻R的函数,后续每次更新内阻时,根据SOH与内阻R的函数关系,同步更新SOH,其中,SOH为电池健康状态;
步骤S2:首先对电池簇中的电池pack包进行电压检测,当高压pack包数量大于或等于低压pack包时,执行SOC校准程序,否则结束,因为当高压pack包数量多时会有过充风险,需要对SOC校准,过充危害高于过放危害,其中,高压pack包为电压≥电压阈值的电池pack包,低压pack包为电压<电压阈值的电池pack包,电压阈值为48V;
步骤S3:区分SOC校准的电池簇的工作状态,当电池簇静置时,保持静置状态并执行静置SOC校准程序,转步骤S4;当电池簇工作时,则执行在线SOC校准程序,转步骤S5;
步骤S4:所述静置SOC校准程序包括以下步骤:
S41:使电池处于工作状态并从电池管理系统中读取电池温度,且将检测周期调至预设值,预设值≤100ms,因为100ms内测得的内阻接近直流电阻,可减弱浓差扩散等的干扰;
S42:将测得的电压经测得的温度修正至25℃时的电压Ufixed,对电压Ufixed-时间作图,并用一次线性函数递推,由当前时间至少向后递推30min,因为30min之后电压才趋于稳定,30min之前波动大,当30min内推导出的电压最小值与最大值之差的绝对值小于0.1mV时结束递推,设当前静置时的电压为U1,并将以后10min内的电压平均值作为当前静置时的电压U1,此时的电压U1可等同于开路电压,静置时,此时无负载或电流极小,两者可近似相等;
S43:查询开路电压与SOC关系图,即可得到与开路电压对应的SOC1,以对当前SOC进行校准。
步骤S5:所述在线SOC校准程序包括以下步骤:
S51:在线读取需要校准的电池簇中各电池的电压U、电流I以及温度T;
S52:根据当前电池的工作状态,判断当前SOC区间,然后调入下一个SOC区间的内阻,计算得到VSOC,此时VSOC等同于开路电压,其中0%-10%为第一SOC区间,10%-20%为第二SOC区间,20%-30%为第三SOC区间,...,90%-100%为第十SOC区间;
S53:查询开路电压与SOC关系图,根据此时的VSOC,查询到相应的SOC值并对当前的SOC进行校准;
S54:在所在区间完成完整的放电之后,重新计算内阻,存入之前的存储位置,将之前的内阻数据覆盖,更新内阻的同时更新SOH。
进一步的,所述HPPC测试包括以下步骤:
S1:电池满充满放,进行3次完整的容量测试,并计算电池的容量;
S2:电池充满电,搁置1h,将电池用1C倍率放电10%DOD,搁置1h;
S3:对电池进行3C放电10s,休眠30s,以3C充电10s,搁置1h,计算直流内阻R1;
S4:以1C倍率放电调整至20%DOD,搁置1h;
S5:对电池进行3C放电10s,休眠30s,以3C充电10s,搁置1h,计算直流内阻R2;
S6:重复步骤S24、S25直至电池放电至90%DOD;
S7:将电池以1C倍率放电至100%DOD,测试结束,并将结果记录在SOC-R表格中,
其中,DOD即电池每次放出的容量,
进一步的,所述步骤S1中电池内阻和SOH的函数关系如下:
Figure GDA0003911612970000041
其中,REOL为电池寿命终止时的内阻,Rnew为出厂时的内阻,R为当前内阻。进一步的,所述在线SOC校准程序的步骤S52中VSOC计算式如下:
VSOC=U1+IR
其中,U1为步骤S42中结束递推后10min内的电压平均值,I为电池管理系统测得的实时电流,R为当前电阻,
所述在线SOC校准程序的步骤S54中某时刻t的实时内阻重新计算的计算式如下:
Figure GDA0003911612970000042
Figure GDA0003911612970000043
Vsoc(t)=f(SOC(t)T)
联立方程组中Vsoc(t)为SOC(t)和温度T的函数,SOC0为初始SOC,KT为温度补偿系数,η为库伦效率,QN为此次校准的额定容量,I为此刻电流,Ut为此刻的端电压。
进一步的,当电池簇超过两个月未进行SOC校准时,需停机对其进行静置SOC校准,进行充/放电容量更新,所述充/放电容量更新的过程如下:
执行静置SOC校准程序,进行一次校准后,以一定电流充/放电,使SOC变化,通过SOC变化,使内阻有明显变化即可,此时计算充/放电电量△Q,然后进入第二次SOC静置校准程序,得到电池SOC2,计算出电池满充/放电容量并更新,
进一步的,电池满充/放电容量计算式如下:
Q充/放=△Q/(SOC2-SOC1)
其中ΔQ为充/放电电量,SOC2为第二次执行SOC静置校准程序所得,SOC1为步骤S43中根据开路电压与SOC关系图所得。
进一步的,实现所述大型储能系统电池的SOC校准方法的大型储能系统,包括电池管理系统、校准模块、信息发送模块、充放电控制装置以及多个并联的电池簇,所述电池管理系统实时获取电池电压、电流、温度、电池充放电容量、SOC以及工作状态的测试信息;所述校准模块获取每个电池簇电芯的充放电容量,接收从信息发送模块发送的信息,对电池SOC进行校准后得到校准后的SOC;所述信息发送模块将电池管理系统所获取的信息发送至校准模块,并将校准模块校准后的SOC发送至充放电控制装置;所述充放电控制装置对电池簇充放电进行控制和管理。
与现有技术相比,本发明所达到的有益效果是:本发明可实时的对SOC的计算值进行修正并检验,无论电池簇在工作状态还是静置状态,都可避免停机引起储能系统离线带来的损失,利用静置状态的校准重新计算充放电量,利用在线状态的校准,更新内阻值及SOH状态,循环更新,确保校准后的SOC值准确可靠,使得系统能够更加合理的进行充放电管理和状态预测。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。在附图中:
图1是本发明一种大型储能系统电池的SOC校准方法逻辑示意图;
图2是本发明一种大型储能系统电池的SOC校准方法开路电压与SOC关系示意图;
图3是本发明一种大型储能系统电池的SOC校准方法静置SOC校准程序流程图;
图4是本发明一种大型储能系统电池的SOC校准方法在线SOC校准程序流程图;
图5是本发明一种大型储能系统电池的SOC校准方法HPPC测试流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1-5,本发明提供技术方案:
以5MWh大型储能系统为例,该大型储能系统由60个电池簇组成,对电池簇进行编号,编号为1~60,每个电池簇由18个pack包组成,每个pack包由12个120Ah的电池串联组成,则电池簇的总电压为691.2V,能量为82.94KWh,本发明提供的一种大型储能系统电池的SOC校准方法,包括以下步骤:
步骤S1:在该大型储能系统中电池组成pack包之前,抽取样品,在25℃环境下,进行各个阶段SOC的HPPC测试,计算得到每个SOC对应的电池内阻,取电池个数为12,则电池内阻为R1、R3、...、R12,记录在SOC-R表格中,同时将SOH作为内阻R的函数,后续每次更新内阻时,根据SOH与内阻R的函数关系,同步更新SOH,其中,SOH为电池健康状态,
所述HPPC测试包括以下步骤:
S11:电池满充满放,进行3次完整的容量测试,并计算电池的容量;
S12:电池充满电,搁置1h,将电池用1C倍率放电10%DOD,搁置1h;
S13:对电池进行3C放电10s,休眠30s,以3C充电10s,搁置1h,计算直流内阻R1;
S14:以1C倍率放电调整至20%DOD,搁置1h;
S15:对电池进行3C放电10s,休眠30s,以3C充电10s,搁置1h,计算直流内阻R2;
S16:重复步骤S24、S25直至电池放电至90%DOD;
S17:将电池以1C倍率放电至100%DOD,测试结束,并将结果记录在如下SOC-R表格中,
Figure GDA0003911612970000071
其中,DOD即电池每次放出的容量,
电池内阻和SOH的函数关系如下:
Figure GDA0003911612970000072
其中,REOL为电池寿命终止时的内阻,Rnew为出厂时的内阻,R为当前内阻;
步骤S2:首先对电池簇中的电池pack包进行电压检测,当高压pack包数量大于或等于低压pack包时,执行SOC校准程序,否则结束;
步骤S3:区分SOC校准的电池簇的工作状态,取静置的编号为1、5、8的电池簇,工作的编号为13、19、41的电池簇,则编号为1、5、8的电池簇执行步骤S4,编号为13、19、41的电池簇执行步骤S5;
步骤S4:静置SOC校准程序包括以下步骤:
S41:使电池处于工作状态并从电池管理系统中读取电池温度,且将检测周期调至预设值,预设值为100ms;
S42:将测得的电压经测得的温度修正至25℃时的电压Ufixed,对电压Ufixed-时间作图,并用一次线性函数递推,由当前时间至少向后递推60min,当60min内推导出的电压最小值与最大值之差的绝对值小于0.1mV时结束递推,设当前静置时的电压为U1,并将以后10min内的电压平均值作为当前静置时的电压U1,此时的电压U1可等同于开路电压,静置时,此时无负载或电流极小,两者可近似相等;
S43:查询开路电压与SOC关系图,即可得到与开路电压对应的SOC1,以对当前SOC进行校准。
步骤S5:在线SOC校准程序包括以下步骤:
S51:在线读取需要校准的电池簇中各电池的电压U、电流I以及温度T;
S52:根据当前电池的工作状态,判断当前SOC区间,然后调入下一个SOC区间的内阻,计算得到VSOC,此时VSOC等同于开路电压,其中0%-10%为第一SOC区间,10%-20%为第二SOC区间,20%-30%为第三SOC区间,...,90%-100%为第十SOC区间,
其中,VSOC的计算式如下:
VSOC=Ut+IR
其中,Ut为此时的端电压,I为电池管理系统测得的实时电流,R为当前电阻。
S53:查询开路电压与SOC关系图,根据此时的VSOC,查询到相应的SOC值并对当前的SOC进行校准;
S54:在所在区间完成完整的放电之后,重新计算内阻,存入之前的存储位置,将之前的内阻数据覆盖,更新内阻的同时更新SOH,
重新计算内阻的计算式如下:
Figure GDA0003911612970000081
Figure GDA0003911612970000082
Vsoc(t)=f(SOC(t)T)
联立方程组中Vsoc(t)为SOC(t)和温度T的函数,SOC0为初始SOC,KT为温度补偿系数,η为库伦效率,QN为此次校准的额定容量,I为此刻电流,Ut为此刻的端电压。
SOC校准完成后对超过两个月未进行SOC校准的电池簇,停机对其进行静置SOC校准,进行充/放电容量更新,充/放电容量更新的过程如下:
执行静置SOC校准程序,进行一次校准后,以一定电流充/放电,使SOC变化,通过SOC变化,使内阻有明显变化即可,此时计算充/放电电量△Q,然后进入第二次SOC静置校准程序,得到电池SOC2,计算出电池满充/放电容量并更新,电池满充/放电容量计算式如下:
Q充/放=△Q/(SOC2-SOC1)
其中ΔQ为充/放电电量,SOC2为第二次执行SOC静置校准程序所得,SOC1为步骤S43中根据开路电压与SOC关系图所得。
实现所述大型储能系统电池的SOC校准方法的大型储能系统,包括电池管理系统、校准模块、信息发送模块、充放电控制装置以及多个并联的电池簇,所述电池管理系统实时获取电池电压、电流、温度、电池充放电容量、SOC以及工作状态的测试信息;所述校准模块获取每个电池簇电芯的充放电容量,接收从信息发送模块发送的信息,对电池SOC进行校准后得到校准后的SOC;所述信息发送模块将电池管理系统所获取的信息发送至校准模块,并将校准模块校准后的SOC发送至充放电控制装置;所述充放电控制装置对电池簇充放电进行控制和管理。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种大型储能系统电池的SOC校准方法,其特征在于:包括以下步骤:
步骤S1:在储能系统中电池组成pack包之前,抽取样品,在一定温度环境下,进行各个阶段SOC的HPPC测试,计算得到每个SOC对应的电池内阻,设电池个数为n,则电池内阻为R1、R2、...、Rn,记录在SOC-R表格中,同时将SOH作为内阻R的函数,后续每次更新内阻时,根据SOH与内阻R的函数关系,同步更新SOH,其中,SOH为电池健康状态;
步骤S2:首先对电池簇中的电池pack包进行电压检测,当高压pack包数量大于或等于低压pack包时,执行SOC校准程序,否则结束,其中,高压pack包为电压≥电压阈值的电池pack包,低压pack包为电压<电压阈值的电池pack包;
步骤S3:区分SOC校准的电池簇的工作状态,当电池簇静置时,保持静置状态并执行静置SOC校准程序,转步骤S4;当电池簇工作时,则执行在线SOC校准程序,转步骤S5;
步骤S4:所述静置SOC校准程序包括以下步骤:
S41:使电池处于工作状态并从电池管理系统中读取电池温度,且将检测周期调至预设值;
S42:将测得的电压经测得的温度修正至指定温度时的电压Ufixed,对电压Ufixed-时间作图,并用一次线性函数递推,由当前时间至少向后递推30min,当30min内推导出的电压最小值与最大值之差的绝对值小于0.1mV时结束递推,设当前静置时的电压为U1,并将以后10min内的电压平均值作为当前静置时的电压U1,此时的电压U1可等同于开路电压;
S43:查询开路电压与SOC关系图,即可得到与开路电压对应的SOC1,以对当前SOC进行校准,
步骤S5:所述在线SOC校准程序包括以下步骤:
S51:在线读取需要校准的电池簇中各电池的电压U、电流I以及温度T;
S52:根据当前电池的工作状态,判断当前SOC区间,然后调入下一个SOC区间的内阻,计算得到电压VSOC,此时VSOC等同于开路电压,其中0%-10%为第一SOC区间,10%-20%为第二SOC区间,20%-30%为第三SOC区间,...,90%-100%为第十SOC区间;
S53:查询开路电压与SOC关系图,根据此时的VSOC,查询到相应的SOC值并对当前的SOC进行校准;
S54:在所在区间完成完整的放电之后,重新计算内阻,存入之前的存储位置,将之前的内阻数据覆盖,更新内阻的同时更新SOH;
所述步骤S1中电池内阻和SOH的函数关系如下:
Figure FDA0003920847370000021
其中,REOL为电池寿命终止时的内阻,Rnew为出厂时的内阻,R为当前内阻;
所述在线SOC校准程序的步骤S52中VSOC计算式如下:
VSOC=U1+IR
其中,U1为步骤S42中结束递推后10min内的电压平均值,I为电池管理系统测得的实时电流,R为当前电阻。
2.根据权利要求1所述的一种大型储能系统电池的SOC校准方法,其特征在于:所述HPPC测试包括以下步骤:
S21:电池满充满放,进行若干次完整的容量测试,并计算电池的容量;
S22:电池充满电,搁置1h,将电池用1C倍率放电10%DOD,搁置1h;
S23:对电池进行3C放电10s,休眠30s,以3C充电10s,搁置1h,计算直流内阻R1;
S24:以1C倍率放电调整至20%DOD,搁置1h;
S25:对电池进行3C放电10s,休眠30s,以3C充电10s,搁置1h,计算直流内阻R2;
S26:重复步骤S24、S25直至电池放电至90%DOD;
S27:将电池以1C倍率放电至100%DOD,测试结束,并将结果记录在SOC-R表格中,
其中,DOD即电池每次放出的容量。
3.根据权利要求1所述的一种大型储能系统电池的SOC校准方法,其特征在于:所述在线SOC校准程序的步骤S54中某时刻t的实时内阻重新计算的计算式如下:
Figure FDA0003920847370000031
Figure FDA0003920847370000032
Vsoc(t)=f(SOC(t)T)
联立方程组中Vsoc(t)为SOC(t)和温度T的函数,SOC0为初始SOC,KT为温度补偿系数,η为库伦效率,QN为此次校准的额定容量,I为此刻电流,Ut为此刻的端电压。
4.根据权利要求1所述的一种大型储能系统电池的SOC校准方法,其特征在于:当电池簇超过两个月未进行SOC校准时,需停机对其进行静置SOC校准,进行充/放电容量更新。
5.根据权利要求4所述的一种大型储能系统电池的SOC校准方法,其特征在于:所述充/放电容量更新的过程如下:
执行静置SOC校准程序,进行一次校准后,以一定电流充/放电,使SOC变化,通过SOC变化,使内阻有明显变化即可,此时计算充/放电电量△Q,然后进入第二次SOC静置校准程序,得到电池SOC2,计算出电池满充/放电容量并更新。
6.根据权利要求5所述的一种大型储能系统电池的SOC校准方法,其特征在于:所述充/放电容量更新的电池满充/放电容量计算式如下:
Q充/放=△Q/(SOC2-SOC1)
其中ΔQ为充/放电电量,SCO2为第二次执行SOC静置校准程序所得,SOC1为步骤S43中根据开路电压与SOC关系图所得。
7.一种用于实现权利要求1至权利要求6中任一项所述大型储能系统电池的SOC校准方法的大型储能系统,包括电池管理系统、校准模块、信息发送模块、充放电控制装置以及多个并联的电池簇,所述电池管理系统实时获取电池电压、电流、温度、电池充放电容量、SOC以及工作状态的测试信息;所述校准模块获取每个电池簇电芯的充放电容量,接收从信息发送模块发送的信息,对电池SOC进行校准后得到校准后的SOC;所述信息发送模块将电池管理系统所获取的信息发送至校准模块,并将校准模块校准后的SOC发送至充放电控制装置;所述充放电控制装置对电池簇充放电进行控制和管理。
CN202010988409.4A 2020-09-18 2020-09-18 一种大型储能系统电池的soc校准方法 Active CN112305432B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010988409.4A CN112305432B (zh) 2020-09-18 2020-09-18 一种大型储能系统电池的soc校准方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010988409.4A CN112305432B (zh) 2020-09-18 2020-09-18 一种大型储能系统电池的soc校准方法

Publications (2)

Publication Number Publication Date
CN112305432A CN112305432A (zh) 2021-02-02
CN112305432B true CN112305432B (zh) 2022-12-16

Family

ID=74483519

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010988409.4A Active CN112305432B (zh) 2020-09-18 2020-09-18 一种大型储能系统电池的soc校准方法

Country Status (1)

Country Link
CN (1) CN112305432B (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113138343B (zh) * 2021-04-09 2023-12-26 阳光储能技术有限公司 电池系统的容量校准方法、电池系统及可读存储介质
CN113258645B (zh) * 2021-06-07 2024-02-27 深圳羽衡科技有限公司 一种电动车电池监测智能系统
CN113567862A (zh) * 2021-07-13 2021-10-29 珠海朗尔电气有限公司 锂电池备电系统soh估算方法及装置
CN113759258B (zh) * 2021-08-30 2023-08-08 重庆长安汽车股份有限公司 一种动力电池soc估计方法、装置及纯电动汽车
CN113933731B (zh) * 2021-10-13 2024-03-05 威胜能源技术股份有限公司 一种电池健康度的精准测量方法
CN113884931B (zh) * 2021-10-28 2023-06-23 傲普(上海)新能源有限公司 一种bms系统的时间漂移补偿方法
CN113900029A (zh) * 2021-10-30 2022-01-07 杭州鹏成新能源科技有限公司 一种锂电池长期静态放置soc修正方法及其测试方法
CN115079026B (zh) * 2022-06-02 2023-12-05 国网江苏省电力有限公司电力科学研究院 一种适用于高压储能系统的soc自动标定方法及装置
CN115395545A (zh) * 2022-08-29 2022-11-25 三沙供电局有限责任公司 考虑环境修正模型参数的磷酸铁锂电池参与电网调频方法
CN116345648B (zh) * 2023-05-31 2023-08-01 苏州精控能源科技有限公司 大型储能系统电池簇soc平衡方法、设备和存储介质
CN116470623B (zh) * 2023-06-01 2023-08-29 苏州精控能源科技有限公司 大型储能系统充放电功率状态预测方法、电子设备及介质
CN116526641B (zh) * 2023-07-05 2023-09-19 合肥华思系统有限公司 一种集中式储能系统的满充soc校准方法、介质和设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108928245A (zh) * 2018-05-17 2018-12-04 四川野马汽车股份有限公司 一种电动汽车动力电池soc的动态校准方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107664751A (zh) * 2016-07-28 2018-02-06 中兴通讯股份有限公司 一种蓄电池实时荷电状态的测算方法及测算装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108928245A (zh) * 2018-05-17 2018-12-04 四川野马汽车股份有限公司 一种电动汽车动力电池soc的动态校准方法

Also Published As

Publication number Publication date
CN112305432A (zh) 2021-02-02

Similar Documents

Publication Publication Date Title
CN112305432B (zh) 一种大型储能系统电池的soc校准方法
CN107196371B (zh) 电池充电方法、装置、设备和存储介质
CN108445422B (zh) 基于极化电压恢复特性的电池荷电状态估算方法
CN111458650B (zh) 一种锂离子动力电池系统峰值功率估算的方法
CN110320472B (zh) 一种用于矿用锂电池的自修正soc估计方法
CN107817448B (zh) 一种适用于复杂工况的在线实时监测电池电量的方法
CN112305426B (zh) 一种多约束条件下的锂离子电池功率状态估计系统
CN111239629A (zh) 一种退役锂电池的梯次利用状态区间划分方法
CN113777501A (zh) 一种电池模组的soh的估算方法
WO2021155539A1 (zh) 充电方法、电子装置以及存储介质
CN108090244B (zh) 一种并联型锂离子电池系统建模方法
CN112379280B (zh) 基于恒压恒流充电曲线的电池模型参数与ocv-soc关系确定方法
CN113933728A (zh) 一种磷酸铁锂电池soc-ocv曲线校准静态soc的方法
CN111337838B (zh) 一种低温下三元锂离子电池充电过程soc-ocv测试方法
CN113156316A (zh) 盐水电池soc估算算法
CN110927585A (zh) 一种基于自循环校正的锂电池soh估算系统及方法
CN115902653A (zh) 确定电池老化程度的方法、装置、存储介质与电子设备
CN113761716B (zh) 一种锂离子电池循环寿命预测方法及其应用
CN113495221B (zh) 一种电池直流阻抗的测试方法
CN114545266A (zh) 基于改进型模型预测控制的锂电池剩余电量计量方法、系统及电量计
WO2021062844A1 (zh) 一种用于确定电池的极化电压的装置、方法及相关设备
JP2021022455A (ja) 判定装置、判定装置を備える電力供給システムおよび判定方法
CN114167294B (zh) 一种锂电池储能系统的soc校准方法
Wang et al. SOC Estimation of Lithium-ion Batteries Based on Extended Kalman Filter
Li et al. Cascade Storage Power Station Lithium Battery SOC Estimation Based on PID-EKF Algorithm

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230531

Address after: Room 1803, Building 1, No. 500 Ruby Road, Changning District, Shanghai, 200336

Patentee after: Shanghai Lianzhisheng New Energy Technology Co.,Ltd.

Address before: Room 8050, 8 / F, 1033 Changning Road, Changning District, Shanghai 200042

Patentee before: Aopu (Shanghai) new energy Co.,Ltd.