CN112304897B - 一种用于燃烧场二维重建的光谱选择方法和系统 - Google Patents

一种用于燃烧场二维重建的光谱选择方法和系统 Download PDF

Info

Publication number
CN112304897B
CN112304897B CN202010997043.7A CN202010997043A CN112304897B CN 112304897 B CN112304897 B CN 112304897B CN 202010997043 A CN202010997043 A CN 202010997043A CN 112304897 B CN112304897 B CN 112304897B
Authority
CN
China
Prior art keywords
spectrum
candidate
preset condition
spectrum set
spectrums
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010997043.7A
Other languages
English (en)
Other versions
CN112304897A (zh
Inventor
饶伟
宋俊玲
洪延姬
辛明原
冯高平
王殿恺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peoples Liberation Army Strategic Support Force Aerospace Engineering University
Original Assignee
Peoples Liberation Army Strategic Support Force Aerospace Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peoples Liberation Army Strategic Support Force Aerospace Engineering University filed Critical Peoples Liberation Army Strategic Support Force Aerospace Engineering University
Publication of CN112304897A publication Critical patent/CN112304897A/zh
Application granted granted Critical
Publication of CN112304897B publication Critical patent/CN112304897B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/39Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明公开了一种用于燃烧场二维重建的光谱选择方法,包括确定候选光谱集,候选光谱集中包括I条候选光谱;从候选光谱集中确定n条候选光谱的所有组合,计算每一个组合中,每一条候选光谱的谱线强度与剩余的n‑1条候选光谱的谱线强度之间的线性相关性指数,其中n=2~I;将所有组合中,满足第一预设条件的线性相关性指数对应的候选光谱作为重建光谱。本申请利用线性相关性指数的方法选取的光谱组合重建结果优于未优化选取谱线的重建结果,采用本申请提出的光谱选择方法,可以有效避免谱线冗余,节约实验成本。

Description

一种用于燃烧场二维重建的光谱选择方法和系统
技术领域
本申请涉及一种用于燃烧场二维重建的光谱选择方法和系统,属于燃烧场二维重建技术领域。
背景技术
基于激光吸收光谱技术的燃烧场测量方法,相比于传统的侵入式测量方法具有灵敏度高、响应速度快、不干扰流场的优势。将激光吸收光谱方法与CT技术相结合,成为激光吸收光谱层析技术(TAS),可以实现对燃烧流场参数的二维分布测量。多光谱重建方法是属于非线性TAS技术,通过增加光谱数量的方式增加测量信息,进而实现利用较少的光线数目实现对流场的重建。
多光谱重建中光谱组合对重建质量影响较大,不合适的组合会降低重建精度。目前的研究给出了一些光谱选择的方法:
1、Zhou等人提出了光谱选择的原则,给出实验中光谱吸光度的峰值应该在0.001至0.8之间,但是不能回答如何选择用于多光谱重建的光谱组合的问题。(MeasurementScience and Technology,2003,14(8):1459)
2、Ma等人提出重建双区流场选择最优光谱组合的方法,该方法遍历所有的光谱组合去重建双区流场,将重建稳定性最好、误差最小的光谱组合作为最优组合,但并没有给出理论推导。(Applied Spectroscopy,2010,64(11):1273-1282)。
发明内容
本申请的目的在于,提供一种用于燃烧场二维重建的光谱选择方法和系统,以解决现有多光谱重建中存在的由于选取的光谱类型和数量不合适,导致的重建精度低技术问题。
本发明的用于燃烧场二维重建的光谱选择方法,包括:
确定候选光谱集,所述候选光谱集中包括I条候选光谱;
从所述候选光谱集中确定n条候选光谱的所有组合,计算每一个组合中,每一条候选光谱的谱线强度与剩余的n-1条候选光谱的谱线强度之间的线性相关性指数,其中n=2~I;
将所有组合中,满足第一预设条件的所述线性相关性指数对应的候选光谱作为重建光谱。
优选地,所述计算每一个组合中,每一条候选光谱的谱线强度与剩余的n-1条候选光谱的谱线强度之间的线性相关性指数,具体为:
根据第一公式确定所述线性相关性指数LCI,所述第一公式为:
LCIi=||Si-Sn-ikLS||2/||Si||2
式中,i=1~n为候选光谱编号、Si表示第i个候选光谱的谱线强度、Sn-i=[S1,S2,…Si-1,Si+1,…Sn]、kLS=[(Sn-i)TSn-i]-1(Sn-i)TSi、上标“T”表示矩阵的转置,上标“_1”表示矩阵求逆;
Si与Sn-i满足第二公式,所述第二公式为:
Figure GDA0002807512900000021
优选地,所述确定候选光谱集,具体为:
根据燃烧场中被测对象吸收光谱的波长范围,从光谱数据库中获取多条候选光谱,构造第一光谱集;
对所述第一光谱集进行预处理,得到候选光谱集。
优选地,所述对所述第一光谱集进行预处理,得到候选光谱集,具体为:
将所述第一光谱集中,满足第二预设条件的多条候选光谱合并为一个候选光谱,剩余光谱不变,得到第二光谱集;
从所述第二光谱集中筛选出吸光度满足第三预设条件的候选光谱,得到候选光谱集。
优选地,在所述得到第二光谱集之后,还包括:
去掉所述第二光谱集中,谱线强度小于第一阈值的候选光谱,得到第三光谱集;
相应地,从所述第二光谱集中筛选出吸光度满足第三预设条件的候选光谱,得到候选光谱集,具体为:
从所述第三光谱集中筛选出吸光度满足第三预设条件的候选光谱,得到候选光谱集。
优选地,在所述得到第三光谱集之后,还包括:
去除所述第三光谱集中,中心波数间隔小于第二阈值的两个候选光谱,得到第四光谱集;
相应地,从所述第三光谱集中筛选出吸光度满足第三预设条件的候选光谱,得到候选光谱集,具体为:
从所述第四光谱集中筛选出吸光度满足第三预设条件的候选光谱,得到候选光谱集。
优选地,所述从所述第四光谱集中筛选出吸光度满足第三预设条件的候选光谱,得到候选光谱集,具体为:
根据燃烧流场的流场参数及激光光程,从所述第四光谱集中筛选出吸光度满足第三预设条件的候选光谱;
去掉所述吸光度满足第三预设条件的候选光谱中,下态能级差小于10的候选光谱,得到候选光谱集。
优选地,所述第一预设条件为:所有组合中,所述线性相关性指数最大。
优选地,所述第二预设条件为:中心波数小于0.01cm-1,下态能级差在10以内;
优选地,所述吸光度根据燃烧流场的流场参数及激光光程确定的。
本申请还公开了一种用于燃烧场二维重建的光谱选择系统,其特征在于,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述方法的步骤。
本发明的用于燃烧场二维重建的光谱选择方法相较于现有技术,具有如下有益效果:
本申请所获得的重建光谱集中为不同光谱数量下的最优光谱组合。本申请利用线性相关性指数的方法选取的光谱组合重建结果优于未优化选取谱线的重建结果,采用本申请提出的光谱选择方法,可以有效避免谱线冗余,节约实验成本。
附图说明
图1为本发明实施例中用于燃烧场二维重建的光谱选择方法的流程图;
图2为本发明实施例中用于燃烧场二维重建的光谱选择方法中,光谱数量为4时最优光谱组合的线强度分布及其线性关系示意图。
具体实施方式
图1为本发明用于燃烧场二维重建的光谱选择方法的流程图。
本发明实施例的用于燃烧场二维重建的光谱选择方法,包括:
步骤1、确定候选光谱集,所述候选光谱集中包括I条候选光谱,具体为:
步骤1.1、根据燃烧场中被测对象吸收光谱的波长范围,从光谱数据库中获取多条候选光谱,构造第一光谱集;具体为:根据被测对象吸收光谱的波长范围,得到波数,然后利用波数从光谱数据库中选择适合实验测量的光谱。本申请中,也可以将已有的激光器可以覆盖的光谱作为候选光谱构造第一光谱集。
步骤1.2、对所述第一光谱集进行预处理,得到候选光谱集,具体为:
步骤1.2.1、将所述第一光谱集中,满足第二预设条件的多条候选光谱合并为一个候选光谱,剩余光谱不变,得到第二光谱集;本申请的实施例中,第二预设条件为中心波数小于0.01cm-1,下态能级差在10以内;
步骤1.2.2、去掉所述第二光谱集中,谱线强度小于第一阈值的候选光谱,得到第三光谱集;本申请的实施例中,第一阈值为0.005;
步骤1.2.3、去除所述第三光谱集中,中心波数间隔小于第二阈值的两个候选光谱,得到第四光谱集;本申请实施例中,第二阈值为0.15cm-1
步骤1.2.4、根据燃烧流场的流场参数及激光光程,从所述第四光谱集中筛选出吸光度满足第三预设条件的候选光谱;本申请的实施例中,第三预设条件为0.03~1.5;
步骤1.2.5、去掉所述吸光度满足第三预设条件的候选光谱中,下态能级差小于10的候选光谱,得到候选光谱集。
步骤2、从所述候选光谱集中确定n条候选光谱的所有组合,计算每一个组合中,每一条候选光谱的谱线强度与剩余的n-1条候选光谱的谱线强度之间的线性相关性指数,其中n=2~I,具体为:
根据第一公式确定所述线性相关性指数LCI,所述第一公式为:
LCIi=||Si-Sn-ikLS||2/||Si||2
式中,i=1~n为候选光谱编号、Si表示第i个候选光谱的谱线强度、Sn-i=[S1,S2,…Si-1,Si+1,…Sn]、kLS=[(Sn-i)TSn-i]-1(Sn-i)TSi、上标“T”表示矩阵的转置,上标“_1”表示矩阵求逆;
Si与Sn-i满足第二公式,所述第二公式为:
Figure GDA0002807512900000051
步骤3、将所有组合中,满足第一预设条件的所述线性相关性指数对应的候选光谱作为重建光谱。本申请的实施例中,第一预设条件为:所有组合中,所述线性相关性指数最大。
本申请的实施例还公开了一种用于燃烧场二维重建的光谱选择系统,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述方法的步骤。
下面结合具体地实施例详述本发明,但本发明并不局限于这些实施例。
步骤1、根据燃烧流场的流场参数及激光光程,确定多条候选光谱,得到候选光谱集。
步骤1.1、近红外波段H2O的吸收光谱主要位于1.3~1.5μm的波长范围内,换算成波数约为6600~7700cm-1,该范围在HITRAN光谱数据库中包含了13722个光谱,该13722个光谱即为候选光谱,有上述候选光谱组成了第一光谱集,现阶段候选光谱数量较多,且并不是所有光谱都适合用于实验测量,因此需要从中选出适合实验测量的候选光谱。
步骤1.2、对所述第一光谱集进行预处理,从而选出适合实验测量的候选光谱,得到候选光谱集,具体为:
步骤1.2.1、将所述第一光谱集中,中心波数小于0.01cm-1,下态能级差在10以内的候选光谱合并为一个候选光谱,合并后的候选光谱的谱线强度是合并前所有候选光谱的谱线强度的和,合并后的候选光谱的其余参数(比如下态能级,展宽系数等)取合并前谱线强度最大的候选光谱的参数。合并完成后,得到第二光谱集。
步骤1.2.2、去掉所述第二光谱集中,谱线强度小于设定阈值的候选光谱,得到第三光谱集;对于候选光谱中谱线强度非常小的光谱,其吸收带来的影响可基本忽略,本实施例中设实验的温度范围是290~3000K,去除在此温度范围内最大谱线强度小于0.005的光谱。
步骤1.2.3、去除所述第三光谱集中,中心波数间隔小于0.15cm-1的两个候选光谱,得到第四光谱集;中心波数间隔小于0.15cm-1的两个候选光谱干扰严重,计算易产生偏差。
步骤1.2.4、根据燃烧流场的流场参数及激光光程,从所述第四光谱集中筛选出吸光度满足设定范围的候选光谱;其中流场参数包括温度参数和分压参数;此步骤的目的为选择出吸光度适中的候选光谱。本实施例中,流场参数范围是:温度700~1600K、分压0.05~0.2;激光穿过流场的距离(激光光程)为11cm;计算候选光谱在上述条件中的吸光度,选出取值在0.03~1.5之间的候选光谱,选出的光谱数量在10~20条谱线。
步骤1.2.5、去掉所述第四光谱集中下态能级差小于10的候选光谱,得到候选光谱集。对于相同下态能级的光谱,保留受周边光谱影响小、吸收强度大的光谱,若选出的光谱集中没有下态能级接近的光谱,则跳过此步骤。
经过以上步骤后筛选出的候选光谱的数量如表1所示。
表1 从HITRAN数据库中筛选H2O光谱的情况
步骤1.1后的光谱总数量 13722
步骤1.2.1后剩余的光谱数量 13222
步骤1.2.2后剩余的光谱数量 423
步骤1.2.3后剩余的光谱数量 322
步骤1.2.4后剩余的光谱数量 16
步骤1.2.5后剩余的光谱数量 15
经过以上步骤后筛选出的候选光谱的参数如表2所示。
表2 在温度700~1600K,分压0.05~0.2,光程11cm的工况下筛选出的15条候选光谱参数
Figure GDA0002807512900000071
表2中,E"表示下态能级,v(cm-1)为中心波数,S(296K)表示在温度为296K条件下,15条候选光谱的光强。
为利用不同候选光谱的谱线强度之间的线性相关性指数筛选出合适数量和合适类型的光谱,本申请限定候选光谱之间的关系需要满足一定的条件,该条件的推导过程如下:
选取某一条光线j的所有光谱的投影方程,表示为
Figure GDA0002807512900000072
其中,被测区域离散成M×N个网格,(m,n)表示m行n列的网格,lj,m,n表示光线j穿过第m行n列网格的长度,Tm,n表示第m行n列网格的温度,χm,n表示第m行n列网格的分压,λi表示谱线i的波长,Aij表示光线j中谱线i测得的吸收面积,S(Tm,ni)表示第m行n列网格内,谱线i的谱线强度。
假设某个光谱i的谱线强度能够由其余光谱的谱线强度的线性组合近似表示,即
Figure GDA0002807512900000081
其中kp为常数。
将公式(2)代入公式(1)可得出
Figure GDA0002807512900000082
由此可知,光谱i的投影可由其余光谱的投影表示,因此i的测量是冗余的。
图2给出了光谱数量为4时最优光谱组合的谱线强度分布及其线性关系,当光谱数量为4时,其组合的LCI值为1.84×10-3,这意味着该光谱组合中存在某一光谱,用剩余光谱的投影表示该光谱的投影时偏差为0.184%,回归方程0.734×S1(T)+4.213×S12(T)-2.549×S15(T)的计算结果用点线表示,它与S3(T)的分布几乎重合,图2下半部分为回归方程与S3(T)的相对偏差,可看出其点偏差最大不超过0.8%,回归方程能够非常精确地表征S3(T),这表明光谱3的测量是冗余的。
步骤2、计算所述候选光谱集中,每一条候选光谱的谱线强度与其他候选光谱的谱线强度之间的线性相关性指数,具体为:
设光谱组合spectrum={λ12,…λn},其线强度为{S(T,λ1),S(T,λ2),…S(T,λn)};对于组合中的光谱λi∈spectrum,构造吸收谱线强度方程组
k1S1+k2S2+…+ki-1Si-1+kiSi+1+…+kn-1Sn=Si (4)
其中ki(i=1,2,..,n-1)是未知数,设k=[k1,k2,…,kn-1]T,将公式(4)改写为矩阵形式:
Sn-ik=Si (5)
即为Si关于Sn-i的线性关系式,若存在一组k满足公式(5),则Si与Sn-i是线性相关的,若不存在k满足公式(5),定义归一化偏差ΔSi如下
ΔSi=||Si-Sn-ik||2/||Si||2 (6)
ΔSi反映了Sn-i基于k的线性相关式与Si的归一化偏差;从定义中可看出,ΔSi≥0;ΔSi越小,表明Sn-ik与Si的偏差越小,也说明Si与Sn-i的线性相关性越强;设kLS是使ΔSi最小的一组k,即
kLS=arg min{k|ΔSi=0} (7)
采用最小二乘方法,求解kLS的表达式为
kLS=[(Sn-i)TSn-i]-1(Sn-i)TSi (8)
其中,下标“i”表示光谱编号,Si=S(T,λi),Sn-i=[S1,S2,…,Si-1,Si+1,…,Sn],上标“T”表示矩阵的转置,上标“-1”表示矩阵求逆;谱线强度Si是用列向量表示的,选取一个温度列向量T,将其代入吸收谱线强度公式即可得出线强度的列向量;
将由公式(8)求解得到的kLS带到方程组(6),即可以计算获得一组谱线的线性相关性指数
LCIi=||Si-Sn-ikLS||2/||Si||2 (9)
计算组合中所有光谱的LCI的最大值
LCIspectrum=max{LCIii∈spectrum} (10)
该最大值对应的的候选光谱即为最优光谱数量下的最优光谱组合。
表3为从候选光谱集中选出的不同数量下的最优光谱组合,及计算的LCI值。
表3 以LCI为标准选出不同数量下的最优光谱组合
Figure GDA0002807512900000091
通过表3可以得出,在不同的光谱数量下的最优光谱组合。
本申请所获得的重建光谱集中为最优光谱数量的最优光谱组合。本申请利用线性相关性指数的方法选取的光谱组合重建结果优于未优化选取谱线的重建结果,采用本申请提出的光谱选择方法,可以有效避免谱线冗余,节约实验成本。
以上所述,仅是本申请的几个实施例,并非对本申请做任何形式的限制,虽然本申请以较佳实施例揭示如上,然而并非用以限制本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。

Claims (10)

1.一种用于燃烧场二维重建的光谱选择方法,其特征在于,包括:
确定候选光谱集,所述候选光谱集中包括I条候选光谱;
从所述候选光谱集中确定n条候选光谱的所有组合,计算每一个组合中,每一条候选光谱的谱线强度与剩余的n-1条候选光谱的谱线强度之间的线性相关性指数,其中n=2~I;
具体为:
根据第一公式确定所述线性相关性指数LCI,所述第一公式为:
LCIi=||Si-Sn-ikLS||2/||Si||2
式中,i=1~n为候选光谱编号、Si表示第i个候选光谱的谱线强度、Sn-i=[S1,S2,…Si-1,Si+1,…Sn]、kLS=[(Sn-i)TSn-i]-1(Sn-i)TSi、上标“T”表示矩阵的转置,上标“-1”表示矩阵求逆;
Si与Sn-i满足第二公式,所述第二公式为:
Figure FDA0003200471270000011
将所有组合中,满足第一预设条件的所述线性相关性指数对应的候选光谱作为重建光谱;
所述第一预设条件为:所有所述组合中,所述线性相关性指数最大。
2.根据权利要求1所述的用于燃烧场二维重建的光谱选择方法,其特征在于,所述确定候选光谱集,具体为:
根据燃烧场中被测对象吸收光谱的波长范围,从光谱数据库中获取多条候选光谱,构造第一光谱集;
对所述第一光谱集进行预处理,得到候选光谱集。
3.根据权利要求2所述的用于燃烧场二维重建的光谱选择方法,其特征在于,所述对所述第一光谱集进行预处理,得到候选光谱集,具体为:
将所述第一光谱集中,满足第二预设条件的多条候选光谱合并为一个候选光谱,剩余光谱不变,得到第二光谱集;
所述第二预设条件为中心波数小于0.01cm-1,下态能级差在10以内;
从所述第二光谱集中筛选出吸光度满足第三预设条件的候选光谱,得到候选光谱集;
所述第三预设条件为0.03~1.5。
4.根据权利要求3所述的用于燃烧场二维重建的光谱选择方法,其特征在于,在所述得到第二光谱集之后,还包括:
去掉所述第二光谱集中,谱线强度小于第一阈值的候选光谱,得到第三光谱集;
相应地,从所述第二光谱集中筛选出吸光度满足第三预设条件的候选光谱,得到候选光谱集,具体为:
从所述第三光谱集中筛选出吸光度满足第三预设条件的候选光谱,得到候选光谱集。
5.根据权利要求4所述的用于燃烧场二维重建的光谱选择方法,其特征在于,在所述得到第三光谱集之后,还包括:
去除所述第三光谱集中,中心波数间隔小于第二阈值的两个候选光谱,得到第四光谱集;
相应地,从所述第三光谱集中筛选出吸光度满足第三预设条件的候选光谱,得到候选光谱集,具体为:
从所述第四光谱集中筛选出吸光度满足第三预设条件的候选光谱,得到候选光谱集。
6.根据权利要求5所述的用于燃烧场二维重建的光谱选择方法,其特征在于,所述从所述第四光谱集中筛选出吸光度满足第三预设条件的候选光谱,得到候选光谱集,具体为:
根据燃烧流场的流场参数及激光光程,从所述第四光谱集中筛选出吸光度满足第三预设条件的候选光谱;
去掉所述吸光度满足第三预设条件的候选光谱中,下态能级差小于10的候选光谱,得到候选光谱集。
7.根据权利要求1所述的用于燃烧场二维重建的光谱选择方法,其特征在于,所述第一预设条件为:所有组合中,所述线性相关性指数最大。
8.根据权利要求3所述的用于燃烧场二维重建的光谱选择方法,其特征在于,所述第二预设条件为:中心波数小于0.01cm-1,下态能级差在10以内。
9.根据权利要求8所述的用于燃烧场二维重建的光谱选择方法,其特征在于,所述吸光度根据燃烧流场的流场参数及激光光程确定的。
10.一种用于燃烧场二维重建的光谱选择系统,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1至9任一项所述方法的步骤。
CN202010997043.7A 2020-09-14 2020-09-21 一种用于燃烧场二维重建的光谱选择方法和系统 Active CN112304897B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010961766 2020-09-14
CN2020109617661 2020-09-14

Publications (2)

Publication Number Publication Date
CN112304897A CN112304897A (zh) 2021-02-02
CN112304897B true CN112304897B (zh) 2021-09-14

Family

ID=74487938

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010997043.7A Active CN112304897B (zh) 2020-09-14 2020-09-21 一种用于燃烧场二维重建的光谱选择方法和系统

Country Status (1)

Country Link
CN (1) CN112304897B (zh)

Citations (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3317862B2 (ja) * 1996-10-31 2002-08-26 日本電子株式会社 Esrイメージング装置
WO2002071088A3 (en) * 2000-11-22 2003-07-03 Koninkl Philips Electronics Nv Two-dimensional phase-conjugate symmetry reconstruction for magnetic resonance imaging
DE10335768A1 (de) * 2003-08-05 2005-03-10 Bayerisches Inst Fuer Angewand Verfahren zur Bestimmung der Dioxinbelastung von Reststoffen aus Verbrennungsanlagen
WO2014081605A1 (en) * 2012-11-20 2014-05-30 Codexis, Inc. Pentose fermentation by a recombinant microorganism
CN103884663A (zh) * 2014-03-19 2014-06-25 中国人民解放军装备学院 基于激光吸收光谱技术的二维重建光线分布优化方法
EP2741225A3 (en) * 2012-11-20 2014-09-24 Thermo Finnigan LLC Automatic reconstruction of MS-2 spectra from all-ions-fragmentation to recognize previously detected compounds
KR20140140028A (ko) * 2012-03-09 2014-12-08 세노 메디컬 인스투르먼츠 인코포레이티드 광음향 이미징 시스템에서의 통계적 매핑
CN104374755A (zh) * 2014-10-23 2015-02-25 哈尔滨工业大学 一种基于双向光路的激光诱导荧光成像技术定量测量湍流燃烧场oh基瞬态浓度分布的方法
CN104568828A (zh) * 2015-01-30 2015-04-29 云南中烟工业有限责任公司 近红外漫反射光谱测定造纸法再造烟叶抗张强度的方法
US9218674B2 (en) * 2011-09-20 2015-12-22 Siemens Aktiengessellschaft Bayesian approach for gas concentration reconstruction based on tunable diode laser absorption spectroscopy
CN105678086A (zh) * 2016-01-12 2016-06-15 东南大学 一种基于光谱吸收的温度场和浓度场重建的交替迭代算法
CN106017725A (zh) * 2016-05-26 2016-10-12 中国人民解放军装备学院 一种适用于燃烧流场气体二维重建的测量装置
CN106053386A (zh) * 2016-05-23 2016-10-26 中国人民解放军装备学院 一种用于吸收光谱测量的无近似Voigt线型拟合方法
CN106290244A (zh) * 2016-07-28 2017-01-04 中国科学院合肥物质科学研究院 实现炉膛内温度和气体浓度二维分布重建的系统及方法
CN106768337A (zh) * 2017-02-27 2017-05-31 中国科学院上海高等研究院 一种二维傅里叶变换电子光谱中的相位重构方法
CN106896191A (zh) * 2017-03-10 2017-06-27 中国人民解放军装备学院 一种用于提高气体二维重建计算效率的正则化方法
CN107036983A (zh) * 2017-03-10 2017-08-11 中国人民解放军装备学院 基于调制光谱实现非均匀燃烧场气体参数定量测量的方法
CN107144503A (zh) * 2017-05-19 2017-09-08 上海理工大学 液体燃料喷雾燃烧液滴与火焰同步测量装置及方法
CN105492878B (zh) * 2013-06-18 2017-10-31 拉莫特艾特特拉维夫大学有限公司 用于快照光谱成像的设备和方法
CN108520488A (zh) * 2018-04-10 2018-09-11 深圳劲嘉集团股份有限公司 一种重构光谱并进行复制的方法以及电子设备
CN108627272A (zh) * 2018-03-22 2018-10-09 北京航空航天大学 一种基于四角度激光吸收光谱的二维温度分布重建方法
CN108645623A (zh) * 2018-05-11 2018-10-12 中国人民解放军战略支援部队航天工程大学 发动机燃烧室燃烧效率测量装置及其测量方法
CN108717718A (zh) * 2018-05-18 2018-10-30 厦门大学 基于层析成像的测量瞬态燃烧场三维结构空间分布的方法
CN108918462A (zh) * 2018-05-18 2018-11-30 中国人民解放军战略支援部队航天工程大学 激光吸收光谱断层重建光线分布优化方法及系统
KR20190014383A (ko) * 2017-08-02 2019-02-12 삼성전자주식회사 스펙트럼 측정 장치 및 방법과, 스펙트럼 측정 장치의 캘리브레이션 방법
CN208636268U (zh) * 2018-08-14 2019-03-22 厦门大学 一种高温燃烧场诊断实验装置
CN109799602A (zh) * 2018-12-24 2019-05-24 清华大学 一种基于线扫描时空聚焦的光显微成像装置及方法
CN110514622A (zh) * 2019-08-23 2019-11-29 北京航空航天大学 一种基于直方图信息的二维温度和浓度重建系统与方法
CN110836864A (zh) * 2019-10-29 2020-02-25 中国人民解放军战略支援部队航天工程大学 一种用于燃烧场气体参数测量的光学测量装置
CN111047539A (zh) * 2019-12-27 2020-04-21 上海工程技术大学 一种基于光谱反射率重建的织物图像颜色校准算法
CN111164415A (zh) * 2017-09-29 2020-05-15 苹果公司 路径解析的光学采样架构
CN111191514A (zh) * 2019-12-04 2020-05-22 中国地质大学(武汉) 一种基于深度学习的高光谱图像波段选择方法
CN111239075A (zh) * 2020-02-18 2020-06-05 华东师范大学重庆研究院 一种基于自适应光纤光梳的燃烧场气体温度和多组分浓度的测量系统
US10718706B2 (en) * 2018-05-04 2020-07-21 The Chinese University Of Hong Kong Laser dispersion spectroscopy for non-intrusive combustion diagnostics
US10732099B2 (en) * 2016-01-06 2020-08-04 Tokushima University Gas analysis device and gas analysis method using laser beam

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7693709B2 (en) * 2005-07-15 2010-04-06 Microsoft Corporation Reordering coefficients for waveform coding or decoding
US7751061B2 (en) * 2006-07-20 2010-07-06 Nanometrics Incorporated Non-contact apparatus and method for measuring a property of a dielectric layer on a wafer
US8770290B2 (en) * 2010-10-28 2014-07-08 Weatherford/Lamb, Inc. Gravel pack assembly for bottom up/toe-to-heel packing
US9332902B2 (en) * 2012-01-20 2016-05-10 Carl Zeiss Meditec, Inc. Line-field holoscopy
US10400254B1 (en) * 2015-03-12 2019-09-03 National Technology & Engineering Solutions Of Sandia, Llc Terpene synthases for biofuel production and methods thereof
CN106815878B (zh) * 2015-12-02 2021-02-05 北京航空航天大学 一种基于多视角多光谱层析成像的图像重建方法
US20180018537A1 (en) * 2016-07-07 2018-01-18 Purdue Research Foundation Non-spectroscopic imaging of plants
CN109100044B (zh) * 2017-06-20 2020-04-24 北京航空航天大学 基于单光路多光谱的气体温度概率密度分布拟合重建方法
KR102289043B1 (ko) * 2017-07-25 2021-08-10 삼성전자주식회사 스펙트럼 측정 장치 및 방법
CN109211806A (zh) * 2018-09-04 2019-01-15 北京航空航天大学 一种用于激光吸收光谱层析成像的谱线选取方法

Patent Citations (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3317862B2 (ja) * 1996-10-31 2002-08-26 日本電子株式会社 Esrイメージング装置
WO2002071088A3 (en) * 2000-11-22 2003-07-03 Koninkl Philips Electronics Nv Two-dimensional phase-conjugate symmetry reconstruction for magnetic resonance imaging
DE10335768A1 (de) * 2003-08-05 2005-03-10 Bayerisches Inst Fuer Angewand Verfahren zur Bestimmung der Dioxinbelastung von Reststoffen aus Verbrennungsanlagen
US9218674B2 (en) * 2011-09-20 2015-12-22 Siemens Aktiengessellschaft Bayesian approach for gas concentration reconstruction based on tunable diode laser absorption spectroscopy
KR20140140028A (ko) * 2012-03-09 2014-12-08 세노 메디컬 인스투르먼츠 인코포레이티드 광음향 이미징 시스템에서의 통계적 매핑
WO2014081605A1 (en) * 2012-11-20 2014-05-30 Codexis, Inc. Pentose fermentation by a recombinant microorganism
EP2741225A3 (en) * 2012-11-20 2014-09-24 Thermo Finnigan LLC Automatic reconstruction of MS-2 spectra from all-ions-fragmentation to recognize previously detected compounds
CN105492878B (zh) * 2013-06-18 2017-10-31 拉莫特艾特特拉维夫大学有限公司 用于快照光谱成像的设备和方法
US10184830B2 (en) * 2013-06-18 2019-01-22 Michael Golub Apparatus and method for snapshot spectral imaging
CN103884663A (zh) * 2014-03-19 2014-06-25 中国人民解放军装备学院 基于激光吸收光谱技术的二维重建光线分布优化方法
CN104374755A (zh) * 2014-10-23 2015-02-25 哈尔滨工业大学 一种基于双向光路的激光诱导荧光成像技术定量测量湍流燃烧场oh基瞬态浓度分布的方法
CN104568828A (zh) * 2015-01-30 2015-04-29 云南中烟工业有限责任公司 近红外漫反射光谱测定造纸法再造烟叶抗张强度的方法
US10732099B2 (en) * 2016-01-06 2020-08-04 Tokushima University Gas analysis device and gas analysis method using laser beam
CN105678086A (zh) * 2016-01-12 2016-06-15 东南大学 一种基于光谱吸收的温度场和浓度场重建的交替迭代算法
CN106053386A (zh) * 2016-05-23 2016-10-26 中国人民解放军装备学院 一种用于吸收光谱测量的无近似Voigt线型拟合方法
CN106017725A (zh) * 2016-05-26 2016-10-12 中国人民解放军装备学院 一种适用于燃烧流场气体二维重建的测量装置
US10260959B2 (en) * 2016-05-26 2019-04-16 Space Engineering University Measurement apparatus applicable to two-dimensional reconstruction of gas in combustion flow field
CN106290244A (zh) * 2016-07-28 2017-01-04 中国科学院合肥物质科学研究院 实现炉膛内温度和气体浓度二维分布重建的系统及方法
CN106290244B (zh) * 2016-07-28 2019-01-22 中国科学院合肥物质科学研究院 实现炉膛内温度和气体浓度二维分布重建的系统
CN106768337A (zh) * 2017-02-27 2017-05-31 中国科学院上海高等研究院 一种二维傅里叶变换电子光谱中的相位重构方法
CN106896191A (zh) * 2017-03-10 2017-06-27 中国人民解放军装备学院 一种用于提高气体二维重建计算效率的正则化方法
CN107036983A (zh) * 2017-03-10 2017-08-11 中国人民解放军装备学院 基于调制光谱实现非均匀燃烧场气体参数定量测量的方法
CN107144503A (zh) * 2017-05-19 2017-09-08 上海理工大学 液体燃料喷雾燃烧液滴与火焰同步测量装置及方法
KR20190014383A (ko) * 2017-08-02 2019-02-12 삼성전자주식회사 스펙트럼 측정 장치 및 방법과, 스펙트럼 측정 장치의 캘리브레이션 방법
CN111164415A (zh) * 2017-09-29 2020-05-15 苹果公司 路径解析的光学采样架构
CN108627272A (zh) * 2018-03-22 2018-10-09 北京航空航天大学 一种基于四角度激光吸收光谱的二维温度分布重建方法
CN108520488A (zh) * 2018-04-10 2018-09-11 深圳劲嘉集团股份有限公司 一种重构光谱并进行复制的方法以及电子设备
US10718706B2 (en) * 2018-05-04 2020-07-21 The Chinese University Of Hong Kong Laser dispersion spectroscopy for non-intrusive combustion diagnostics
CN108645623A (zh) * 2018-05-11 2018-10-12 中国人民解放军战略支援部队航天工程大学 发动机燃烧室燃烧效率测量装置及其测量方法
CN108717718A (zh) * 2018-05-18 2018-10-30 厦门大学 基于层析成像的测量瞬态燃烧场三维结构空间分布的方法
CN108918462A (zh) * 2018-05-18 2018-11-30 中国人民解放军战略支援部队航天工程大学 激光吸收光谱断层重建光线分布优化方法及系统
CN208636268U (zh) * 2018-08-14 2019-03-22 厦门大学 一种高温燃烧场诊断实验装置
CN109799602A (zh) * 2018-12-24 2019-05-24 清华大学 一种基于线扫描时空聚焦的光显微成像装置及方法
CN110514622A (zh) * 2019-08-23 2019-11-29 北京航空航天大学 一种基于直方图信息的二维温度和浓度重建系统与方法
CN110836864A (zh) * 2019-10-29 2020-02-25 中国人民解放军战略支援部队航天工程大学 一种用于燃烧场气体参数测量的光学测量装置
CN111191514A (zh) * 2019-12-04 2020-05-22 中国地质大学(武汉) 一种基于深度学习的高光谱图像波段选择方法
CN111047539A (zh) * 2019-12-27 2020-04-21 上海工程技术大学 一种基于光谱反射率重建的织物图像颜色校准算法
CN111239075A (zh) * 2020-02-18 2020-06-05 华东师范大学重庆研究院 一种基于自适应光纤光梳的燃烧场气体温度和多组分浓度的测量系统

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
A Study of Two Dimensional Tomography Reconstruction of Temperature and Gas Concentration in a Combustion Field Using TDLAS;Pengshuai Sun.et;《Applied Sciences》;20171231;第990卷(第7期);第1-13页 *
Beam arrangement on two-dimensional temperature reconstruction based on laser absorption spectroscopy;Junling Song.et;《International Symposium on Photoelectronic Detection and Imaging 2013》;20131231;第8907卷;第89070K-1-9页 *
Development of a sensor for temperature and water concentration in combustion gases using a single tunable diode laser;Xin Zhou.et;《MEASUREMENT SCIENCE AND TECHNOLOGY》;20031231;第14卷;第1459-1468页 *
Modeling of Correlation between Fossil Fuel Combustion Products and Atmospheric Environmental Pollution;Juan Xu;《Ekoloji》;20191231;第107卷(第28期);第2255-2263页 *
Tomography system for measurement of gas properties in combustion flow field;Junling SONG.et;《Chinese Society of Aeronautics and Astronautics & Beihang University》;20171231;第30卷(第5期);第1697-1707页 *
基于TDLAS技术的燃烧火焰场分布二维重建研究;夏晖晖;《中国博士学位论文全文数据库工程科技∣辑》;20171115;第B014-168页 *
基于激光吸收光谱技术的燃烧场气体温度和浓度二维分布重建研究;宋俊玲等;《物理学报》;20121231;第61卷(第24期);第240702-1-9页 *
燃烧流场温度二维重建多吸收谱线重建方法;宋俊玲等;《红外与激光工程》;20190331;第48卷(第3期);第0306004-1-7页 *

Also Published As

Publication number Publication date
CN112304897A (zh) 2021-02-02

Similar Documents

Publication Publication Date Title
CN106815878B (zh) 一种基于多视角多光谱层析成像的图像重建方法
Nagle Solving complex photocycle kinetics. Theory and direct method
Sun et al. Classification of jet fuels by fuzzy rule-building expert systems applied to three-way data by fast gas chromatography—fast scanning quadrupole ion trap mass spectrometry
Fan et al. Signal‐to‐noise ratio enhancement for Raman spectra based on optimized Raman spectrometer and convolutional denoising autoencoder
CN105372198B (zh) 基于集成l1正则化的红外光谱波长选择方法
Pan et al. Simultaneous and rapid measurement of main compositions in black tea infusion using a developed spectroscopy system combined with multivariate calibration
CN109409350B (zh) 一种基于pca建模反馈式载荷加权的波长选择方法
CN112098358B (zh) 基于四元数卷积神经网络的近红外光谱并行融合定量检测方法
CN110503156B (zh) 一种基于最小相关系数的多变量校正特征波长选择方法
CN105158200A (zh) 一种提高近红外光谱定性分析准确度的建模方法
Pérez-Cova et al. Untangling comprehensive two-dimensional liquid chromatography data sets using regions of interest and multivariate curve resolution approaches
CN110455726A (zh) 一种实时预测土壤水分和全氮含量的方法
CN112304897B (zh) 一种用于燃烧场二维重建的光谱选择方法和系统
Zheng et al. Effective band selection of hyperspectral image by an attention mechanism-based convolutional network
Xie et al. Rapid and accurate determination of prohibited components in pesticides based on near infrared spectroscopy
CN113030012B (zh) 基于多级偏最小二乘算法的光谱分析方法及系统
Bogdal et al. Recognition of gasoline in fire debris using machine learning: Part II, application of a neural network
CN109883990A (zh) 一种药用真菌近红外光谱分析方法
Wang et al. Peanut origin traceability: A hybrid neural network combining an electronic nose system and a hyperspectral system
Wang et al. A multi-kernel channel attention combined with convolutional neural network to identify spectral information for tracing the origins of rice samples
Chen et al. Representative subset selection in modified iterative predictor weighting (mIPW)—PLS models for parsimonious multivariate calibration
CN115561193A (zh) 一种傅里叶红外光谱仪数据处理和分析系统
CN111104876A (zh) 一种基于神经网络的红外光谱反卷积方法
CN111398200B (zh) 非相干宽带腔增强吸收光谱最优反演波段确定方法
CN111208081A (zh) 一种基于多级阶梯微反射镜的ifts的图谱处理方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant