CN112304213A - 单自由度位移测量的法布里珀罗光栅干涉仪及其测量方法 - Google Patents

单自由度位移测量的法布里珀罗光栅干涉仪及其测量方法 Download PDF

Info

Publication number
CN112304213A
CN112304213A CN201910712531.6A CN201910712531A CN112304213A CN 112304213 A CN112304213 A CN 112304213A CN 201910712531 A CN201910712531 A CN 201910712531A CN 112304213 A CN112304213 A CN 112304213A
Authority
CN
China
Prior art keywords
grating
cavity
interferometer
generating device
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910712531.6A
Other languages
English (en)
Other versions
CN112304213B (zh
Inventor
胡鹏程
常笛
王嘉宁
谭久彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201910712531.6A priority Critical patent/CN112304213B/zh
Publication of CN112304213A publication Critical patent/CN112304213A/zh
Application granted granted Critical
Publication of CN112304213B publication Critical patent/CN112304213B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02015Interferometers characterised by the beam path configuration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35309Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
    • G01D5/35312Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Fabry Perot
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/36Forming the light into pulses
    • G01D5/38Forming the light into pulses by diffraction gratings

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明提出单自由度位移测量的法布里珀罗光栅干涉仪及其测量方法,所述干涉仪包括激光光源、光栅、位移发生装置、用于形成F‑P腔部分具有透射表面的光学器件、光电探测模块和信号处理模块;激光光源与光栅按Littrow角放置,光栅固定在所述位移发生装置上且与位移发生装置的运动方向平行设置,所述光栅在所述位移发生装置的驱动下在垂直于光栅刻线的方向上运动,所述光栅表面和部分透射表面之间形成F‑P腔,光电探测模块用于接收部分透射表面透过的多光束干涉光,所述信号处理模块对所述光电探测模块得到的干涉信号进行处理和解算。本发明提出的法布里珀罗光栅干涉仪,融合了光栅干涉和法布里珀罗干涉技术,可以实现光栅面内的位移测量。

Description

单自由度位移测量的法布里珀罗光栅干涉仪及其测量方法
技术领域
本发明属于激光干涉测量技术领域,特别是涉及一种单自由度位移测量的法布里珀罗光栅干涉仪及其测量方法。
背景技术
光栅干涉仪是一种常用的精密位移测量仪器,和传统的双光束干涉仪如迈克尔逊干涉相比,光栅干涉仪最大的特点在于以光栅栅距为基准,能够测量光栅平面内的位移,且光栅具有对空气折射率不敏感的特性,适用于更为苛刻的测量环境。
法布里珀罗(Fabry-Perot,F-P)干涉仪:是一种由两块平行的玻璃板组成的多光束干涉仪,其中两块玻璃板相对的内表面都具有高反射率。法布里珀罗(Fabry-Perot)干涉仪是一种经典的多光束干涉仪,用于位移测量时,其测量基准为激光波长,通过探测F-P腔长的改变反映被测位移。F-P腔通常是由两个部分反射表面构成,通常由高反镜、特殊镀膜的镜组等多种光学器件实现。根据光栅在Littrow入射角下的衍射特性,光栅也可以用作F-P腔的分光器件。1998年,K.-X.Sun和R.L.Byer提出了一种利用光栅分光的F-P干涉仪,其F-P腔由一个高反镜和一个按Littrow角安装的光栅实现,这一结构也被应用在LISA的引力参考传感器(gravitational reference sensor,GRS)和一种Littrow腔位移传感器当中。
在上述提到的各基于光栅Littrow结构的F-P干涉仪中,用于构成F-P腔的光栅都仅仅作为分光器件使用,即,光栅都是固定于计量框架之上的。这一方面限制了这种F-P干涉仪仅能测量F-P腔长的变化,同时,也将光栅平移误差引入了测量系统当中。
发明内容
本发明目的是为了解决现有技术中的问题,提出了单自由度位移测量的法布里珀罗光栅干涉仪及其测量方法。
本发明是通过以下技术方案实现的,本发明提出单自由度位移测量的法布里珀罗光栅干涉仪,所述干涉仪包括激光光源、光栅、位移发生装置、用于形成F-P腔部分透射表面的光学器件、光电探测模块和信号处理模块;所述激光光源与光栅按Littrow角放置用于向光栅投射光束,所述光栅固定在所述位移发生装置上且与位移发生装置的运动方向平行设置,所述光栅在所述位移发生装置的驱动下在垂直于光栅刻线的方向上运动,所述光栅表面和部分透射表面之间形成F-P腔,所述光电探测模块用于接收从部分透射表面处透射离开F-P腔内的光束所形成的多光束干涉光强,所述信号处理模块与所述光电探测模块连接。
进一步地,所述Littrow角是光束和光栅的安装夹角,在所述夹角角度下,入射光从激光光源沿Littrow角入射光栅,0级衍射光按照反射定律向着部分透射表面方向传播;1级衍射光沿入射的反方向向着激光光源处传播。
进一步地,所述激光光源为稳频或调制光源。
进一步地,所述位移发生装置为导轨、压电位移台或其它可移动装置。
进一步地,所述用于形成F-P腔部分透射表面的光学器件为分光镜、衰减片或光栅。
本发明还提出一种单自由度位移测量的法布里珀罗光栅干涉仪的测量方法,光束自激光光源发出,按Littrow角入射光栅发生第一次衍射产生多个级次衍射光,其中,0级衍射光进入F-P腔,入射部分透射表面并被分成两部分,反射部分在F-P腔中原路返回,再次入射光栅发生第二次衍射,第二次衍射的+1或-1级衍射光回到F-P腔中,并第二次入射部分透射表面,依此类推,光束在F-P腔中往返,将有n个光束从部分透射表面处透射离开腔内,形成多光束干涉光强被光电探测模块所接收,所述光电探测模块对多光束干涉光强进行处理形成干涉信号,并将所述干涉信号传输至信号处理模块进行后续处理与位移信息的解算。
进一步地,当光栅在位移发生装置的驱动下产生运动时,由光电探测模块采集到的多光束干涉光强,在无光学细分的情况下,干涉光强变化周期与光栅周期一致。
本发明的有益效果为:
本发明提出的法布里珀罗光栅干涉仪,融合了光栅干涉和法布里珀罗干涉技术,可以实现法布里珀罗干涉在光栅面内的位移测量,本发明提出的法布里珀罗光栅干涉仪,即构成F-P腔的光栅作为可动的被测目标,基于光栅多普勒频移,利用多光束干涉原理测量光栅平面内的位移,既是为光栅干涉提供一种多光束干涉的方案;也是为法布里珀罗干涉仪提供一种拓展自由度的方案。
附图说明
图1为本发明所述的单自由度位移测量的法布里珀罗光栅干涉仪结构框图;
图2为位移发生装置内置的电容传感器探测结果示意图;
图3为光电探测器输出的光电信号示意图。
具体实施方式
下面将结合本发明实施例中的附图对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
结合图1,本发明提出单自由度位移测量的法布里珀罗光栅干涉仪,所述干涉仪包括激光光源、光栅、位移发生装置、用于形成F-P腔部分透射表面的光学分光器件、光电探测模块和信号处理模块;所述激光光源与光栅按Littrow角放置用于向光栅投射光束,所述光栅固定在所述位移发生装置上且与位移发生装置的运动方向平行设置,所述光栅在所述位移发生装置的驱动下在垂直于光栅刻线的方向上运动,所述光栅表面和部分透射表面之间形成F-P腔,所述光电探测模块用于接收从部分透射表面处透射离开F-P腔内的光束所形成的多光束干涉光强,所述信号处理模块与所述光电探测模块连接。所述光电探测模块作为光束的末端,通过导线将信号传输到信号处理模块。
所述Littrow角是光束和光栅的安装夹角,在所述夹角角度下,入射光从激光光源沿Littrow角入射光栅,0级衍射光按照反射定律向着部分透射表面方向传播;1级衍射光沿入射的反方向向着激光光源处传播。
所述激光光源为稳频或调制光源,相应的光电探测模块和信号处理模块也应随之符合光源的特性。
所述位移发生装置为导轨、压电位移台或其它可移动装置。
所述用于形成F-P腔部分透射表面的光学分光器件为分光镜、衰减片或光栅等任意可行的分光器件。
本发明还提出一种单自由度位移测量的法布里珀罗光栅干涉仪的测量方法,光束自激光光源发出,按Littrow角入射光栅发生第一次衍射产生多个级次衍射光,其中,0级衍射光进入F-P腔,入射部分透射表面并被分成两部分,反射部分在F-P腔中原路返回,再次入射光栅发生第二次衍射,第二次衍射的+1或-1级衍射光回到F-P腔中,并第二次入射部分透射表面,依此类推,光束在F-P腔中往返,将有n个光束从部分透射表面处透射离开腔内,形成多光束干涉光强被光电探测模块所接收,所述光电探测模块对多光束干涉光强进行处理形成干涉信号,并将所述干涉信号传输至信号处理模块进行后续处理与位移信息的解算。
当光栅在位移发生装置的驱动下产生运动时,由光电探测模块采集到的多光束干涉光强,在无光学细分的情况下,干涉光强变化周期与光栅周期一致。
利用位移发生装置驱动光栅产生微米级运动,将位移发生装置内置的电容传感器探测结果(如图2所示)和光电探测模块中的光电探测器输出的光电信号(如图3所示)进行对比。由对比可知,信号各个尖峰的间距在0.824微米至0.858微米之间,符合所用的光栅栅距0.833微米。
以上对本发明所提出的单自由度位移测量的法布里珀罗光栅干涉仪及其测量方法,进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (7)

1.单自由度位移测量的法布里珀罗光栅干涉仪,其特征在于:所述干涉仪包括激光光源、光栅、位移发生装置、用于形成F-P腔部分透射表面的光学器件、光电探测模块和信号处理模块;所述激光光源与光栅按Littrow角放置用于向光栅投射光束,所述光栅固定在所述位移发生装置上且与位移发生装置的运动方向平行设置,所述光栅在所述位移发生装置的驱动下在垂直于光栅刻线的方向上运动,所述光栅表面和部分透射表面之间形成F-P腔,所述光电探测模块用于接收从部分透射表面处透射离开F-P腔内的光束所形成的多光束干涉条纹,所述信号处理模块与所述光电探测模块连接。
2.根据权利要求1所述的干涉仪,其特征在于:所述Littrow角是光束和光栅的安装夹角,在所述夹角角度下,入射光从激光光源沿Littrow角入射光栅,0级衍射光按照反射定律向着部分透射表面方向传播;1级衍射光沿入射的反方向向着激光光源处传播。
3.根据权利要求1所述的干涉仪,其特征在于:所述激光光源为稳频或调制光源。
4.根据权利要求1所述的干涉仪,其特征在于:所述位移发生装置为导轨、压电位移台或其它可移动装置。
5.根据权利要求1所述的干涉仪,其特征在于:所述用于形成F-P腔部分透射表面的光学器件为分光镜、衰减片或光栅等任意可行的分光器件。
6.一种如权利要求1-5中任一项所述的单自由度位移测量的法布里珀罗光栅干涉仪的测量方法,其特征在于:光束自激光光源发出,按Littrow角入射光栅发生第一次衍射产生多个级次衍射光,其中,0级衍射光进入F-P腔,入射部分透射表面并被分成两部分,反射部分在F-P腔中原路返回,再次入射光栅发生第二次衍射,第二次衍射的+1或-1级衍射光回到F-P腔中,并第二次入射部分透射表面,依此类推,光束在F-P腔中往返,将有n个光束从部分透射表面处透射离开腔内,形成多光束干涉条纹被光电探测模块所接收,所述光电探测模块对多光束干涉条纹进行处理形成干涉信号,并将所述干涉信号传输至信号处理模块进行后续处理与位移信息的解算。
7.根据权利要求6所述的测量方法,其特征在于:当光栅在位移发生装置的驱动下产生运动时,由光电探测模块采集到的多光束干涉条纹,在无光学细分的情况下,干涉条纹周期与光栅周期一致。
CN201910712531.6A 2019-08-02 2019-08-02 单自由度位移测量的法布里珀罗光栅干涉仪及其测量方法 Active CN112304213B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910712531.6A CN112304213B (zh) 2019-08-02 2019-08-02 单自由度位移测量的法布里珀罗光栅干涉仪及其测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910712531.6A CN112304213B (zh) 2019-08-02 2019-08-02 单自由度位移测量的法布里珀罗光栅干涉仪及其测量方法

Publications (2)

Publication Number Publication Date
CN112304213A true CN112304213A (zh) 2021-02-02
CN112304213B CN112304213B (zh) 2022-06-14

Family

ID=74486606

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910712531.6A Active CN112304213B (zh) 2019-08-02 2019-08-02 单自由度位移测量的法布里珀罗光栅干涉仪及其测量方法

Country Status (1)

Country Link
CN (1) CN112304213B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113566714A (zh) * 2021-07-29 2021-10-29 同济大学 一种自溯源型光栅干涉精密位移测量系统
CN116255910A (zh) * 2022-12-15 2023-06-13 同济大学 基于自溯源光栅的自混合计量型位移测量装置和方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5682237A (en) * 1995-05-26 1997-10-28 McDonnell Douglas Fiber strain sensor and system including one intrinsic and one extrinsic fabry-perot interferometer
CA2291495A1 (fr) * 1998-12-04 2000-06-04 Photonetics Source multi-longueur d'onde
US20030112838A1 (en) * 2001-12-15 2003-06-19 Oh Kwang Ryong Wavelength tunable external resonator laser using optical deflector
WO2003060422A2 (de) * 2002-01-21 2003-07-24 Scinex Ag Interferometrische optische anordnung
US20060290943A1 (en) * 2005-05-06 2006-12-28 Ke-Xun Sun High precision interferometer apparatus employing a grating beamsplitter
CN101482432A (zh) * 2008-01-09 2009-07-15 中国科学院电子学研究所 时间分辨的双光栅干涉仪
WO2009097740A1 (zh) * 2008-02-04 2009-08-13 National Institute Of Metrology P.R.China 单块折叠f-p腔及采用该f-p腔的半导体激光器
CN101592472A (zh) * 2008-05-28 2009-12-02 中国科学院电子学研究所 时间分辨的单光栅干涉仪
CN104019910A (zh) * 2014-06-23 2014-09-03 山东科技大学 基于闪耀光栅的法布里-珀罗THz波长测量仪及其测量方法
CN104266593A (zh) * 2014-10-22 2015-01-07 中国航空工业集团公司北京长城计量测试技术研究所 采用双可调光源法布里-珀罗干涉仪的微位移测量系统
CN104713473A (zh) * 2015-03-17 2015-06-17 南京师范大学 激光自混合光栅干涉仪及其测量方法
CN106289068A (zh) * 2016-07-22 2017-01-04 清华大学 一种二自由度外差光栅干涉仪位移测量方法
CN107024176A (zh) * 2016-02-01 2017-08-08 上海微电子装备有限公司 基于衍射光栅的位移测量系统及方法
US20180109069A1 (en) * 2016-10-13 2018-04-19 Mark C. Phillips Method for scanning wavelength of external cavity laser

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5682237A (en) * 1995-05-26 1997-10-28 McDonnell Douglas Fiber strain sensor and system including one intrinsic and one extrinsic fabry-perot interferometer
CA2291495A1 (fr) * 1998-12-04 2000-06-04 Photonetics Source multi-longueur d'onde
US20030112838A1 (en) * 2001-12-15 2003-06-19 Oh Kwang Ryong Wavelength tunable external resonator laser using optical deflector
WO2003060422A2 (de) * 2002-01-21 2003-07-24 Scinex Ag Interferometrische optische anordnung
US20060290943A1 (en) * 2005-05-06 2006-12-28 Ke-Xun Sun High precision interferometer apparatus employing a grating beamsplitter
CN101482432A (zh) * 2008-01-09 2009-07-15 中国科学院电子学研究所 时间分辨的双光栅干涉仪
WO2009097740A1 (zh) * 2008-02-04 2009-08-13 National Institute Of Metrology P.R.China 单块折叠f-p腔及采用该f-p腔的半导体激光器
CN101592472A (zh) * 2008-05-28 2009-12-02 中国科学院电子学研究所 时间分辨的单光栅干涉仪
CN104019910A (zh) * 2014-06-23 2014-09-03 山东科技大学 基于闪耀光栅的法布里-珀罗THz波长测量仪及其测量方法
CN104266593A (zh) * 2014-10-22 2015-01-07 中国航空工业集团公司北京长城计量测试技术研究所 采用双可调光源法布里-珀罗干涉仪的微位移测量系统
CN104713473A (zh) * 2015-03-17 2015-06-17 南京师范大学 激光自混合光栅干涉仪及其测量方法
CN107024176A (zh) * 2016-02-01 2017-08-08 上海微电子装备有限公司 基于衍射光栅的位移测量系统及方法
CN106289068A (zh) * 2016-07-22 2017-01-04 清华大学 一种二自由度外差光栅干涉仪位移测量方法
US20180109069A1 (en) * 2016-10-13 2018-04-19 Mark C. Phillips Method for scanning wavelength of external cavity laser

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BAI, XD: "Improvement on the Multi-Mode Beams Divergence of OAM Array by Using Fabry-Perot Cavity", 《2017 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION & USNC/URSI NATIONAL RADIO SCIENCE MEETING》 *
刘卫东: "TFBG的Fabry-Perot干涉型纵向微位移传感研究", 《中国计量学院学报》 *
郭海平: "光栅反馈外腔半导体激光器特性研究", 《中国优秀博硕士学位论文全文数据库(硕士)信息科技辑》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113566714A (zh) * 2021-07-29 2021-10-29 同济大学 一种自溯源型光栅干涉精密位移测量系统
CN113566714B (zh) * 2021-07-29 2022-09-20 同济大学 一种自溯源型光栅干涉精密位移测量系统
CN116255910A (zh) * 2022-12-15 2023-06-13 同济大学 基于自溯源光栅的自混合计量型位移测量装置和方法

Also Published As

Publication number Publication date
CN112304213B (zh) 2022-06-14

Similar Documents

Publication Publication Date Title
US10234346B2 (en) Serial weak FBG interrogator using pulses of differing wavelengths
CN112444194B (zh) 二自由度位移测量的法布里珀罗光栅干涉仪及其测量方法和六自由度干涉仪
US20200249075A1 (en) Method and apparatus for distributed sensing
JP2716207B2 (ja) 干渉計センサ及び干渉計装置における該センサの使用
CN102564317A (zh) 一种基于光纤复合干涉的高精度远程绝对位移测量系统
US20110122417A1 (en) Self-Referenced Optical Fiber Sensor with Stimulated Brillouin Scattering
US5187546A (en) Displacement measurement apparatus with dual wedge interferometers
JP2002513919A (ja) 干渉計形測定装置
KR101566383B1 (ko) 기하학적 두께와 굴절률 측정을 위한 반사형 광섬유 간섭 장치
CN112304213B (zh) 单自由度位移测量的法布里珀罗光栅干涉仪及其测量方法
CN102564318A (zh) 一种基于光纤复合干涉的高精度绝对位移测量系统
US5394240A (en) High-accuracy air refractometer utilizing two nonlinear optical crystal producing 1st and 2nd second-harmonic-waves
CN108387251A (zh) 一种光纤光栅解调仪器及方法
CN115876090A (zh) 反射式法布里珀罗光栅干涉位移测量方法及系统
CN104634370A (zh) 一种基于激光器的传感器
CN106680536A (zh) 一种高灵敏度的单保偏光纤干涉式加速度传感系统
RU2307318C1 (ru) Интерферометрическое измерительное устройство (варианты)
WO2019092422A1 (en) A fibre optic sensing device
JP6082313B2 (ja) 光軸調整用の距離測定装置及び方法
Imran et al. Measurement of the group-delay dispersion of femtosecond optics using white-light interferometry
JP2007121232A (ja) 波長モニタ
GB2281618A (en) Method and apparatus for measuring a characteristic of an optical fibre
Kersey Monitoring structural performance with optical TDR techniques
CN100427905C (zh) 全光纤光谱测量方法
KR100292809B1 (ko) 파장 분할 다중된 광신호의 파장과 광 세기와 광신호 대 잡음비를 측정하는 장치

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant