CN112301123B - Kit for detecting 50 genetic disease single gene mutations and probe set used by kit - Google Patents

Kit for detecting 50 genetic disease single gene mutations and probe set used by kit Download PDF

Info

Publication number
CN112301123B
CN112301123B CN202011284834.1A CN202011284834A CN112301123B CN 112301123 B CN112301123 B CN 112301123B CN 202011284834 A CN202011284834 A CN 202011284834A CN 112301123 B CN112301123 B CN 112301123B
Authority
CN
China
Prior art keywords
mutation
fetus
mutation site
dna
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011284834.1A
Other languages
Chinese (zh)
Other versions
CN112301123A (en
Inventor
伍建
姬晓雯
王海丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Mygenostics Co ltd
Original Assignee
Beijing Mygenostics Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Mygenostics Co ltd filed Critical Beijing Mygenostics Co ltd
Priority to CN202011284834.1A priority Critical patent/CN112301123B/en
Publication of CN112301123A publication Critical patent/CN112301123A/en
Application granted granted Critical
Publication of CN112301123B publication Critical patent/CN112301123B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6811Selection methods for production or design of target specific oligonucleotides or binding molecules
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/04Libraries containing only organic compounds
    • C40B40/06Libraries containing nucleotides or polynucleotides, or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Abstract

The invention discloses a kit for detecting single gene mutation of 50 genetic diseases and a probe set used by the kit. The probe set consists of 1059 specific probes, and the nucleotide sequences of the 1059 specific probes are shown as SEQ ID NO: 1 to SEQ ID NO: 1059. The inventor of the invention develops a kit based on a liquid phase capture technology through a large number of experiments, greatly reduces sequencing cost, improves sequencing depth and more accurately discovers the genetic variation information of specific regions of 50 monogenic genetic diseases on the premise of ensuring the accuracy of gene screening. The invention has important application value.

Description

Kit for detecting 50 genetic disease single gene mutations and probe set used by kit
Technical Field
The invention belongs to the field of medicine, and particularly relates to a kit for detecting single gene mutation of 50 genetic diseases and a probe set used by the kit.
Background
Genetic diseases refer to diseases caused by alterations in genetic material, such as mutations in genes or chromosomal malformations. To date, the number of established human monogenic genetic diseases reaches more than 4000, and the total number of diseases is very huge
Research shows that 2.8 genetic disease causing mutations are carried by people, most monogenic genetic diseases are recessive inheritance, healthy parents can carry the same causing mutations, and some conventional prenatal examinations (such as imaging detection, karyotyping and the like) cannot judge the condition of a fetus, so that the carrier is screened before pregnancy or in the early stage of pregnancy, the causing mutation sites carried by the parents are screened out, birth defects are prevented in advance, the risk of the sick children is known in advance, the inheritance of the monogenic disease is fundamentally blocked by means of prenatal consultation, diagnosis and other measures, the birth defects of the born children can be effectively reduced, and the good birth and good care can be realized.
For the detection of monogenic genetic diseases, gene diagnosis can be made under the condition that the molecular level even single base changes, and is considered to be a more accurate and reliable method and means. Compared with the next generation of sequencing technology (NGS), the traditional genetic disease gene diagnosis technology (such as Sanger sequencing, fluorescence in situ hybridization, comparative genome hybridization, gene chip and the like) has the problems of small flux, low speed, low accuracy, high cost and the like. However, NGS itself has problems of huge data volume and complicated analysis of genetic information.
Disclosure of Invention
The invention aims to detect whether a person to be detected or a fetus to be detected has the mutation of 50 genetic disease related single genes.
The invention firstly protects a kit for detecting whether a person to be detected or a fetus to be detected has genetic disease single gene mutation, which comprises a probe group;
the probe set may comprise 1059 specific probes; each specific probe may comprise DNA fragment 2;
the DNA fragment 2 is a part of a mutant gene corresponding to a monogenic genetic disease shown in the following table;
the design principle is as follows: obtaining an exon sequence of a mutant gene related to a monogenic genetic disease shown in the following table, extending 50bp back and forth, extending less than 50bp to 50bp after extension, extracting a reference sequence of each region, removing a sequence of a repeated region, intercepting a 78bp sequence from a first base as a probe, moving n bases backwards again, intercepting a 78bp sequence as a probe until the last 78bp sequence; wherein probes are designed separately for the different snp sites on the SMN1 gene and the SMN2 gene, and the probes are supplemented for the 300bp upstream and downstream regions of each exon of the DMD;
Figure BDA0002782009310000011
Figure BDA0002782009310000021
Figure BDA0002782009310000031
the kit may specifically consist of the set of probes.
The probe set specifically comprises 1059 specific probes.
Each specific probe may specifically consist of said DNA fragment 2.
Any of the above-mentioned DNA fragments 2 may be a single-stranded DNA molecule consisting of 60-140 (e.g., 60-80, 80-100, 100-120, 120-140, 60, 80, 100, 120 or 140) nucleotides.
The nucleotide sequence of the DNA fragment 2 of any one of the 1059 specific probes can be shown as SEQ ID NO: 1 from position 16-93 from the 5' end to SEQ ID NO: 1059 is shown at positions 16-93 from the 5' end.
Each specific probe can also comprise a DNA fragment 1 and a DNA fragment 3; the DNA segment 1 is positioned at the 5' end of the DNA segment 2; the DNA segment 3 is located at the 3' end of the DNA segment 2.
Each of the specific probes may specifically consist of the DNA fragment 1, the DNA fragment 2, and the DNA fragment 3.
Any one of the above DNA fragment 1 and any one of the above DNA fragment 3 may be a single-stranded DNA molecule consisting of 10 to 20 (e.g., 10 to 15, 15 to 20, 10, 15, or 20) nucleotides.
Any one of the kits can also comprise a primer pair A; the primer pair A can consist of a primer 1 and a primer 2; the primer 1 comprises the DNA fragment 1; the primer 2 comprises the DNA fragment 3.
Any one of the above kits may specifically consist of the probe set and the primer pair A.
The primer 1 may specifically consist of the DNA fragment 1.
The primer 2 may specifically consist of the DNA fragment 3.
Any of the above primers 1 and/or any of the above primers 2 may have a biotin label.
Any of the above DNA fragments 1 and/or any of the above DNA fragments 3 may have a biotin label.
The nucleotide sequence of any one of the 1059 specific probes can be shown as SEQ ID NO: 1 to SEQ ID NO: 1059.
Any one of the kits described above may further comprise at least one of linker 1, linker 2, primer 3, primer 4, primer 5, and primer 6.
The joint 1 can comprise a DNA fragment a, a DNA fragment b and a DNA fragment c from the 5 'end to the 3' end in sequence; the 3' end of the DNA fragment c may be T.
The linker 1 may specifically consist of the DNA fragment a, the DNA fragment b and the DNA fragment c from the 5 'end to the 3' end.
The adaptor 2 comprises a DNA fragment d and a DNA fragment e from the 5 'end to the 3' end in sequence.
The linker 2 may specifically consist of the DNA fragment d and the DNA fragment e from the 5 'end to the 3' end.
The DNA fragment b and the DNA fragment d both consist of A, T, C and G randomly.
The 5 'end of the DNA fragment e and the 3' end of the DNA fragment a are reversely complementary.
The primer 5 may include the DNA fragment A.
The primer 3 comprises the DNA segment A, DNA segment B and the DNA segment C from the 5 'end to the 3' end in sequence; the 5' ends of the DNA fragment C and the DNA fragment a are completely consistent; the DNA fragment B consisted of A, T, C and G randomly.
The primer 3 may specifically consist of the DNA fragment A, the DNA fragment B and the DNA fragment C from the 5 'end to the 3' end.
The primer 6 comprises the DNA fragment D.
The primer 4 comprises the DNA fragment D, DNA fragment E and the DNA fragment F from the 5 'end to the 3' end in sequence; the 3' ends of the DNA fragment F and the DNA fragment e are completely consistent; the DNA fragment E consisted of A, T, C and G randomly.
The primer 4 may specifically consist of the DNA fragment D, the DNA fragment E and the DNA fragment F from the 5 'end to the 3' end.
The length of the DNA fragment b and the DNA fragment d can be 6-14bp (such as 6-10bp, 10-14bp, 6bp, 10bp or 14 bp).
The DNA fragment A may be 17-25bp (e.g., 17-21bp, 21-25bp, 17bp, 21bp, or 25bp) in length.
The length of the DNA fragment B can be 1-8bp (such as 1-4bp, 4-8bp, 1bp, 4bp or 8 bp).
The DNA fragment D may be 17-25bp (e.g., 17-21bp, 21-25bp, 17bp, 21bp, or 25bp) in length.
The length of the DNA fragment E is 10-25bp (such as 10-17bp, 17-25bp, 10bp, 17bp or 25 bp).
Any of the above primers 4 may further comprise a Barcode tag sequence; the Barcode tag sequence is located upstream, downstream or in the middle of the DNA fragment E.
The 3' end of any of the above linker 1, any of the above primer 5, and any of the above primer 6 may be modified with a thio group.
The 5' end of any of the above linkers 2 may be modified by phosphorylation.
Any one of the above kits may further comprise a carrier carrying a judgment standard A and/or a judgment standard B.
The judgment standard A is used for judging whether the person to be tested has 50 genetic disease single gene mutations;
the judgment standard A can be as follows: obtaining SNP indels of the 50 monogenic genetic disease mutant genes of a person to be detected; counting the condition of mutation sites in each mutant gene;
the steps for obtaining the SNP indels of the testee about 50 monogenic genetic disease mutant genes are as follows:
(K1) preparing a genomic DNA library of a to-be-detected person; the linker for preparing the genomic DNA library of the subject may be any of the above-mentioned linkers 1 and 2;
(K2) after the step (K1) is finished, hybridizing the genomic DNA library of the testee with the probe set of any one of the kits to obtain a hybridization product;
(K3) after step (K2) is completed, collecting the target sequence from the hybridization product to obtain a target sequence capture library;
(K4) performing high-throughput sequencing on the target sequence capture library obtained in the step (K3) to obtain sequencing original data;
(K5) cutting off an adaptor sequence and low-quality bases from the sequencing original data obtained in the step (K4), filtering, and aligning to a corresponding position of the hg19 of the reference genome;
(K6) after the step (K5) is completed, removing repeated sequences caused by PCR amplification preference to obtain the data of the testee; then analyzing to obtain related information of SNP and INDEL;
(K7) annotating the information obtained in the step (K6), and then screening to obtain the SNP Indel of the person to be tested;
(K8) annotating sites reported by an HGMD database, and then screening to obtain 6636 pathogenic mutation sites; if the SNP Indel of the person to be detected contains any point mutation in 6636 pathogenic mutation sites, the person to be detected carries the mutation site of the corresponding mutant gene; otherwise, the testee does not carry the corresponding gene mutation site.
The "method of judging spinal muscular atrophy due to SMN1 gene mutation" and the "method of judging α thalassemia due to HBA1 gene and HBA2 gene mutation" may be as follows:
(1) counting the coverage of each gene target area, then drawing a graph by taking the position information of each target area site as an abscissa and the corresponding coverage of each position as an ordinate, and carrying out site statistical analysis to obtain a repeated and missing analysis graph through the reading depth of each site;
(2) after the step (1) is completed, obtaining copy values of the SMN1 and SMN2 by calculating absolute copy numbers of target region depths of the test sample, the negative sample SMN1 and the SMN2, and further judging specific copy values of the SMN1 and SMN 2;
(3) comparing the sequencing result with the SMN1 gene and the SMN2 gene in the human genome version Hg19, and calculating the f (Z) value of the SMN1 gene and the f (Z) value of the SMN2 gene in the sample to be detected to judge the copy number of the SMN1 gene and the SMN2 gene in the sample to be detected, so as to determine whether the sample to be detected is a spinal muscular atrophy patient or a spinal muscular atrophy carrier, wherein the method specifically comprises the following steps:
median of f (z) ═ B/all negative sample B values for SMN1 gene
B-sample sequencing depth D/alignment base number A of SMN1 gene
Wherein the D value represents the sequencing depth of the SMN1 gene of a single sample, the A value represents the number of comparison bases of the SMN1 gene of the single sample, and the B value is the ratio of the D to the A;
median of f (z) ═ B/all negative sample B values for SMN2 gene
B-sample sequencing depth D/alignment base number A of SMN2 gene
Wherein the D value represents the sequencing depth of the SMN2 gene of a single sample, the A value represents the number of comparison bases of the SMN2 gene of the single sample, and the B value is the ratio of the D to the A;
judging whether the sample to be detected is a spinal muscular atrophy patient or a spinal muscular atrophy carrier by using the f (Z) value of the SMN1 gene:
if f (Z) of the SMN1 gene is 0.75< 1.25, the copy number of the SMN1 gene of the sample to be detected is normal, namely the copy number of the SMN1 gene of the sample to be detected is 2;
if f (Z) of the SMN1 gene is not less than 0.25 and not more than 0.75, the copy number of the SMN1 gene of the sample to be detected is abnormal, namely the copy number of the SMN1 gene of the sample to be detected is 1;
if f (Z) of the SMN1 gene is 0< 0.25, the SMN1 gene of the sample to be detected is completely deleted, namely the copy number of the SMN1 gene of the sample to be detected is 0;
judging the disease degree of the spinal muscular atrophy patient to be detected by using the f (Z) value of the SMN2 gene:
0< f (Z) <0.25 of SMN2 gene, and the degree of disease of the spinal muscular atrophy patient to be detected is more than 0.25 and less than or equal to f (Z) < 0.75 of SMN1 gene, and the spinal muscular atrophy patient to be detected is detected;
(4) depth statistics is carried out on the regions HBA1 and HBA2, the copy values of the samples HBA1 and HBA2 are obtained by calculating the absolute copy number of the depth of the test sample and the negative sample, and then the specific copy values of the samples HBA1 and HBA2 are judged; calculating f (z) values for HBA1 and HBA2 as SMN1, SMN2 calculated copy number;
if f (Z) of the HBA1 gene is not less than 0.25 and not more than 0.75, f (Z) of the HBA2 gene is more than 0.75, or f (Z) of the HBA2 gene is not less than 0.25 and not more than 0.75 and f (Z) of the HBA1 gene is more than 0.75, the alpha gene of the sample to be detected is deleted;
if f (Z) of the HBA1 gene is not less than 0.25 and not more than 0.75 and f (Z) of the HBA1 gene is not less than 0.25 and not more than 0.75, two alpha genes are deleted from the sample to be detected;
if f (Z) of the HBA1 gene is more than or equal to 0.25 and less than or equal to 0.75, f (Z) of the HBA2 gene is more than or equal to 0.25, or f (Z) of the HBA2 gene is more than or equal to 0.25 and less than or equal to 0.75, and f (Z) of the HBA1 gene is more than or equal to 0.25, three alpha genes of the sample to be detected are deleted;
if 0< f (Z) <0.25 of HBA1 gene and 0< f (Z) <0.25 of HBA2 gene, the sample to be detected lacks four alpha genes;
the judgment standard B is used for judging whether the fetus to be detected has 45 genetic disease single gene mutations; 45 genetic disease monogenes are excluded from CYP21A2, SMN1, HBA1, HBA2 and MT-RNR1 genes in the 150 genes in the table.
The judgment criterion B can be as follows:
(a1) obtaining the types, mutation frequencies and sequencing depths of the mutation sites of 45 monogenic genetic disease mutation genes of the mother of the fetus;
(a2) obtaining the types, mutation frequencies and sequencing depths of mutation sites of 45 monogenic genetic disease mutation genes of the father of the fetus;
(a3) obtaining the types, mutation frequencies and sequencing depths of the mutation sites of the 45 monogenic genetic disease mutation genes of the mother and the fetus;
(a4) judging whether the fetus has 24 autosomal recessive genetic disease single gene mutations, wherein the target mutant gene is at least one of DYSF, CYPN3, MMACHC, MUT, PAH, ATP7B, SLC25A13, SLC22A5, G6PC, GAA, AGL, PYGL, ETFDH, UGT1A1, HBB, FANCA, ABCA4, CYP4V2, TYR, OCA2, SLC26A4, GJB2, OTOF and SLC12A 13;
dividing the types of the single gene mutation sites of the 24 autosomal recessive genetic diseases of the pregnant woman to be detected and the fetus obtained in the step three into the following three types: the first type: a mutation site that is identical only to the fetal father; the second type: a mutation site that is identical only to the mother of the fetus; in the third category: the same mutation site as both the fetal father and the fetal mother;
(a4-1) when both the father and mother of the fetus are heterozygous for the mutation, the judgment method is as follows:
when the type of the mutation site is the first type, if the mutation site is detected in the third step, the fetus carries the mutation site and is heterozygous for the mutation; if no mutation is detected at the mutation site in step three, the fetus does not carry the mutation site;
when the type of the mutation site is of the second type, if the mutation frequency of the mutation site in step three is below 0.43, the fetus does not carry the mutation site; if the mutation frequency of the mutation site in step three is more than 0.43 and less than 0.57, the fetus carries the mutation site and is heterozygous for the mutation;
when the type of the mutation site is of the third class, if the mutation frequency of the mutation site in step three is below 0.43, the fetus does not carry the mutation site; if the mutation frequency of the mutation site in step three is more than 0.43 and less than 0.57, the fetus carries the mutation site and is heterozygous for the mutation; if the mutation frequency of the mutation site in the step three is more than 0.57, the fetus carries the mutation site and is homozygous mutation;
(a4-2) when the mother of fetus is heterozygous and the father is homozygous, the judgment method is as follows:
when the type of the mutation site is the first type, if the mutation site is detected in the third step, the fetus carries the mutation site and is heterozygous for the mutation;
when the type of the mutation site is of the second type, if the mutation frequency of the mutation site in step three is below 0.43, the fetus does not carry the mutation site; if the mutation frequency of the mutation site in step three is more than 0.43 and less than 0.57, the fetus carries the mutation site and is heterozygous for the mutation;
when the type of the mutation site is of the third class, if the mutation frequency of the mutation site in step three is more than 0.43 and less than 0.57, the fetus carries the mutation site and is a heterozygous mutation; if the mutation frequency of the mutation site in the step three is more than 0.57, the fetus carries the mutation site and is homozygous mutation;
(a4-3) when the father of the fetus is heterozygous mutation and the mother is homozygous mutation, the judgment method is as follows:
when the type of the mutation site is the first type, if the mutation site is detected in the third step, the fetus carries the mutation site and is heterozygous for the mutation; if no mutation is detected at the mutation site in step three, the fetus does not carry the mutation site;
when the type of the mutation site is in the second class, if the mutation frequency of the mutation site is detected to be less than 1 in the third step, the fetus carries the mutation site and is heterozygous for the mutation;
when the mutation site is of the third type, if the mutation frequency of the mutation site in the third step is less than 1, the fetus is homozygous mutation, otherwise, the fetus is heterozygous mutation;
(a5) judging whether the fetus has 11 kinds of autosomal dominant genetic disease single gene mutations; the target mutant gene is at least one of SCN1A, PPRT2, FZD4, RB1, SLC4A1, COL1A1, FGFR3, NF1, TSC1, TSC2 and JAG 1;
(a5-1) when the mother of fetus is heterozygous mutant and the father is heterozygous mutant, the judgment method is as follows:
dividing the types of the mutation sites of the pregnant woman to be detected and the fetus obtained in the step three, which relate to the 11 autosomal monogenic dominant hereditary diseases of the mutant genes, into the following three types: the first type: a mutation site that is identical only to the fetal father; the second type: a mutation site that is identical only to the mother of the fetus; the third type: the same mutation site as that of the father and mother of the fetus;
when the type of the mutation site is the first type, if the mutation site is detected in the third step, the fetus carries the mutation site and is heterozygous for the mutation; if no mutation is detected at the mutation site in step three, the fetus does not carry the mutation site;
when the type of the mutation site is of the second type, if the mutation frequency of the mutation site in step three is below 0.43, the fetus does not carry the mutation site; if the mutation frequency of the mutation site in step three is more than 0.43 and less than 0.57, the fetus carries the mutation site and is heterozygous for the mutation;
when the type of the mutation site is of the third class, if the mutation frequency of the mutation site in step three is below 0.43, the fetus does not carry the mutation site; if the mutation frequency of the mutation site in step three is more than 0.43, the fetus carries the mutation site and is heterozygous for the mutation; if the mutation frequency of the mutation site in the step three is more than 0.57, the fetus carries the mutation site and is homozygous mutation;
(a5-2) when the mother of the fetus is heterozygous for the mutation and the father is not mutated, if the mutation frequency of the mutation site in step three is below 0.43, the fetus does not carry the mutation site; if the mutation frequency of the mutation site in step three is more than 0.43 and less than 0.57, the fetus carries the mutation site and is heterozygous for the mutation;
(a5-3) when the father of the fetus is heterozygous for the mutation and the mother is not mutated, if the mutation is detected at the mutation site in step three, the fetus carries the mutation site and is heterozygous for the mutation; if no mutation is detected at the mutation site in step three, the fetus does not carry the mutation site;
(a5-4) when the mother and father of the fetus have no mutation, if the mutation site is detected in step three, the fetus carries the mutation site;
(a6) judging whether the fetus has 7X chromosome recessive genetic disease monogenic mutations, wherein the target mutant gene is at least one of DMD, PHKA2, ABCD1, RS1, WAS, BTK and IL2 RG;
(a6-1) when the mother of fetus has heterozygous mutation and hemizygous mutation, the judgment method is as follows: dividing the types of the X chromosome monogenic recessive genetic disease monogenic mutation sites of the pregnant woman to be detected and the fetus obtained in the step three into the following three types: the first type: a mutation site that is identical only to the fetal father; the second type: a mutation site that is identical only to the mother of the fetus; in the third category: the same mutation site as both the fetal father and the fetal mother;
judging the gender of the fetus;
when the fetus is a girl, the type of the mutation site is a first type, and if the mutation site is detected in the step three, the fetus carries the mutation site and is heterozygous mutation; if no mutation is detected at the mutation site in step three, the fetus does not carry the mutation site; the type of the mutation site is a second type, if the mutation frequency of the mutation site in the step three is below 0.43, the fetus does not carry the mutation site; if the mutation frequency of the mutation site in step three is more than 0.43 and less than 0.57, the fetus carries the mutation site and is heterozygous for the mutation; the type of the mutation site is a third type, if the mutation frequency of the mutation site in the third step is more than 0.57, the fetus is subjected to homozygous mutation at the mutation site; if the mutation frequency of the mutation site in step three is more than 0.43 and less than 0.57, the fetus carries the mutation site and is heterozygous for the mutation;
when the fetus is a male fetus, if the mutation frequency of the mutation site in step three is below 0.43, the fetus does not carry the mutation site; if the mutation frequency of the mutation site in step three is more than 0.57, the fetus carries the mutation site and is heterozygous for the mutation;
(a6-2) when the mother of fetus is heterozygous and the father is not mutated, the judgment method is as follows:
judging the gender of the fetus;
when the fetus is a girl, if the mutation frequency of the mutation site in step three is below 0.43, the fetus does not carry the mutation site; if the mutation frequency of the mutation site in step three is more than 0.43 and less than 0.57, the fetus carries the mutation site and is heterozygous for the mutation;
when the fetus is a boy, if the mutation frequency of the mutation site in step three is below 0.43, the fetus does not carry the mutation site; if the mutation frequency of the mutation site in the step three is more than 0.57, the fetus is hemizygous mutated; 3. when the father and mother of fetus have no mutation site of the target gene, if the mutation frequency of the mutation site of the target gene in step three is more than 0, the fetus carries the mutation site and is spontaneous mutation;
(a7) judging whether the fetus suffers from 2X chromosome dominant genetic disease single gene mutations, wherein the target gene is at least one of MECP2 gene and COL4A5 gene;
(a7-1) when the father and mother of fetus have no mutation site of the target gene, if the mutation frequency of the mutation site of the target gene in step three is more than 0, the fetus carries the mutation site and is spontaneous mutation; otherwise, the fetus does not carry the mutation site;
(a7-2) when the mother of fetus is heterozygous and the father is hemizygous, the judgment method is as follows:
dividing the types of the X chromosome monogenic recessive genetic disease monogenic mutation sites of the pregnant woman to be detected and the fetus obtained in the step three into the following three types: the first type: a mutation site that is identical only to the fetal father; the second type: a mutation site that is identical only to the mother of the fetus; in the third category: the same mutation site as both the fetal father and the fetal mother;
judging the gender of the fetus;
when the fetus is a female fetus, the type of the mutation site is a first type, and if the mutation site is detected in the step three, the fetus carries the mutation site and is heterozygous mutation; the type of the mutation site is a second type, if the mutation frequency of the mutation site in the step three is below 0.43, the fetus does not carry the mutation site; if the mutation frequency of the mutation site in step three is more than 0.43 and less than 0.57, the fetus carries the mutation site and is heterozygous for the mutation; the type of the mutation site is a third type, if the mutation frequency of the mutation site in the third step is more than 0.57, the fetus is subjected to homozygous mutation at the mutation site; if the mutation frequency of the mutation site in step three is more than 0.43 and less than 0.57, the fetus carries the mutation site and is heterozygous for the mutation;
when the fetus is a male fetus, if the mutation frequency of the mutation site in step three is below 0.43, the fetus does not carry the mutation site; if the mutation frequency of the mutation site in step three is more than 0.57, carrying the mutation site by the fetus;
(a7-3) when the mother of the fetus has the mutation site of the target gene and the father of the fetus does not have the mutation site of the target gene, the judging method is as follows:
judging the gender of the fetus;
when the fetus is a female fetus, if the mutation frequency of the target gene mutation site in the step III is more than 0.43 and less than 0.57, the fetus carries the site mutation and is a heterozygous mutation; if the mutation frequency of the target gene mutation site in the step three is less than 0.43, the fetus does not carry the site mutation;
when the fetus is a male fetus, if the mutation frequency of the target gene mutation site in the step III is more than 0.57, the fetus carries the site mutation; if the mutation frequency of the target gene mutation site in the step three is less than 0.43, the fetus does not carry the site mutation.
The step of obtaining "the type of mutation site, mutation frequency and sequencing depth of the fetal mother or fetal father itself with respect to the 44 monogenic genetic disease mutant genes" may be as follows:
(w1) preparing a genomic DNA library of the mother or father of the fetus; preparing adaptors for genomic DNA libraries of the mother or father of the fetus as described in claim 9 to 12 as described in 1 and 2;
(w2) after completion of step (w1), hybridizing the genomic DNA library of the mother or father of the fetus with the probe set of any one of claims 1 to 8 to obtain a hybridization product;
(w3) after completion of step (w2), collecting target sequences from the hybridization products to obtain a target sequence capture library;
(w4) carrying out high-throughput sequencing on the target sequence capture library obtained in the step (w3) to obtain sequencing raw data;
(w5) cutting adaptor sequences, low-quality bases from the sequencing raw data obtained in the step (w4), filtering, and aligning to the corresponding position of hg19 of a reference genome;
(w6) after the step (w5) is completed, removing the repetitive sequences caused by the PCR amplification preference to obtain the data of the mother or father of the fetus; then analyzing to obtain related information of SNP and INDEL;
(w7) annotating the information obtained in the step (w6), and then screening to obtain a fetal mother or fetal father SNP Indel;
(w8) annotating sites reported by an HGMD database, and then screening to obtain 6636 pathogenic mutation sites; if the SNP Indel of the mother or father of the fetus contains any point mutation in 6636 pathogenic mutation sites, the mother or father of the fetus carries the mutation site of the corresponding mutant gene; otherwise, the fetal mother or the fetal father does not carry the corresponding gene mutation site; drawing a target gene deletion and repeat analysis graph according to the mutation sites of the mutant genes carried by the mother or father of the fetus, and obtaining the types, the mutation frequencies and the sequencing depths of the mutation sites of the 44 single-gene genetic disease mutant genes of the mother or father of the fetus.
The steps for obtaining the types of mutation sites, mutation frequencies and sequencing depths of the fetal mother and the fetus relative to the 44 single-gene genetic disease mutant genes can be as follows:
(Q1) preparing a fetal mother plasma episomal DNA library; preparing a linker of a fetal mother plasma free DNA library as the linker 1 and the linker 2 in claims 9 to 12;
(Q2) after completion of step (Q1), hybridizing the maternal plasma free DNA library of the fetus to the set of probes of any one of claims 1 to 8 to obtain a hybridization product;
(Q3) after completion of step (Q2), collecting target sequences from the hybridization products to obtain a target sequence capture library;
(Q4) performing high-throughput sequencing on the target sequence capture library obtained in the step (Q3) to obtain sequencing raw data;
(Q5) cutting adaptor sequences, low-quality bases from the sequencing raw data obtained in step (Q4), filtering, and aligning to the corresponding position of hg19 in the reference genome;
(Q6) after completion of step (Q5), removing the repetitive sequences due to PCR amplification bias, resulting in fetal mother and fetal data; then analyzing to obtain related information of SNP and INDEL;
(Q7) annotating the information obtained in step (Q6) and then screening to obtain the SNP indels of "mother and fetus";
(Q8) annotating sites reported by an HGMD database, and then screening to obtain 6636 pathogenic mutation sites; if SNP Indel of 'fetal mother and fetus' contains any one point mutation in 6636 pathogenic mutation sites, then 'fetal mother and fetus' carry the mutation site of the corresponding mutant gene; otherwise, the 'fetal mother and fetus' do not carry the corresponding gene mutation site; according to the mutation sites of the mutant genes carried by the mother and the fetus, a target gene deletion and repeated analysis graph is drawn, and the types, the mutation frequencies and the sequencing depths of the mutation sites of the 44 single-gene genetic disease mutant genes of the mother and the fetus are obtained.
The invention also protects any probe set. The probe set can be used for detecting whether the testee or the fetus to be detected has 50 genetic disease single gene mutations. The probe set can be used for detecting whether a fetus to be detected or a subject to be detected is normal, heterozygous or homozygous mutated based on 50 genes corresponding to monogenic genetic diseases.
The invention also discloses a kit for detecting whether the corresponding genes of the fetus to be detected based on 50 single-gene genetic diseases are normal, heterozygous carrying or homozygous mutation, which comprises any one of the probe sets.
The invention also provides a kit for detecting whether the corresponding genes of a person to be detected are normal, heterozygous carrying or homozygous mutation based on 50 single-gene genetic diseases, which comprises any one of the probe sets.
Any one of the above kits further comprises at least one of any one of the above primer 3, any one of the above primer 4, any one of the above linker 1, and any one of the above linker 2.
Any one of the above kits further comprises any one of the above primers 5 and/or any one of the above primers 6.
The invention also protects the application of any probe set, which can be at least one of P1) -P4);
p1) detecting whether the tested person or the tested fetus has the 50 monogenic genetic diseases;
p2) detecting whether the tested person or the tested fetus has the 50 genetic disease single gene mutations;
p3) detecting whether the corresponding genes of the fetus to be detected are normal, heterozygous carrying or homozygous mutation based on the 50 single-gene genetic diseases;
p4) to test the subjects for whether the corresponding genes are normal, heterozygous or homozygous for the above 50 monogenic genetic diseases.
The invention also provides a method for detecting whether the genes corresponding to the 50 monogenic genetic diseases of the fetus to be detected are normal, heterozygous carried or homozygous mutated, which sequentially comprises the following steps:
(T1) preparing a fetal maternal plasma episomal DNA library, a fetal maternal genomic DNA library and a fetal paternal genomic DNA library, respectively;
(T2) after the step (T1) is completed, hybridizing the fetal maternal plasma episomal DNA library, the fetal maternal genomic DNA library and the fetal paternal genomic DNA library with any one of the probe sets described above, respectively, to obtain hybridization products;
(T3) after completion of step (T2), collecting target sequences from the hybridization products to obtain a target sequence capture library;
(T4) after the step (T3) is completed, sequencing the target sequence capture libraries respectively, and judging whether a single gene of the fetus to be detected is normal, heterozygous carrying or homozygous mutation according to sequencing data.
The invention also provides a method for detecting whether the gene corresponding to the single-gene genetic disease of a person to be detected is normal, heterozygous carried or homozygous mutated, which sequentially comprises the following steps:
(B1) preparing a genomic DNA library of a to-be-detected person;
(B2) after the step (B1) is finished, hybridizing the genomic DNA library of the testee with any probe set to obtain a hybridization product;
(B3) after step (B2) is completed, collecting the target sequence from the hybridization product to obtain a target sequence capture library;
(B4) and (B3) after the step is completed, sequencing the target sequence capture library, and judging whether the gene corresponding to a single genetic disease of the person to be tested is normal, heterozygous carrying or homozygous mutation according to sequencing data.
In any of the above methods, the linker of the "preparing a fetal maternal plasma episomal DNA library, a fetal maternal genomic DNA library or a fetal paternal genomic DNA library" or the "preparing a test subject genomic DNA library" may be any of the above linkers 1 and/or any of the above linkers 2.
In any of the above methods, in the step (T2), the step of hybridizing the fetal maternal plasma episomal DNA library, the fetal maternal genomic DNA library, and the fetal paternal genomic DNA library with any of the above probe sets to obtain hybridization products may be as follows:
(T2-1) preparing an enrichment system A; the enrichment system A comprises the fetal maternal plasma free DNA library, the fetal maternal genomic DNA library or the fetal paternal genomic DNA library, the probe set, any of the primers 3 described above and any of the primers 4 described above;
(T2-2) taking the enrichment system, hybridizing and enriching for more than 16h at the temperature of 60-70 ℃ to obtain a hybridization product;
in the step (B2), the step of hybridizing the genomic DNA library of the subject with any of the probe sets described above to obtain a hybridization product comprises:
(B2-1) preparing an enrichment system B; the enrichment system B comprises the genomic DNA library of the testee, the probe set, any one of the primers 3 and any one of the primers 4;
(B2-2) taking the enrichment system B, and hybridizing and enriching for more than 16h at the temperature of 60-70 ℃ to obtain a hybridization product.
In any of the above methods, the step of "collecting target sequences from hybridization products to obtain target sequence capture library" may be as follows:
(3-a) collecting the hybridization product using magnetic beads;
and (3-b) performing PCR amplification by using the product collected in the step (3-1) as a template and adopting a primer pair consisting of any one of the primers 5 and any one of the primers 6, wherein the PCR amplification product is a target sequence capture library.
The judgment standard for judging whether the gene corresponding to a single genetic disease of a fetus to be detected is normal, heterozygous carried or homozygous mutated according to the sequencing data or for judging whether the gene corresponding to a single genetic disease of a person to be detected is normal, heterozygous carried or homozygous mutated according to the sequencing data can be any one of the judgment standards A and/or any one of the judgment standards B.
The invention also provides a target sequence capture library, which can be composed of the target sequence obtained by any one of the methods described above.
Through a large number of experiments, the inventor of the invention develops a capture kit based on a liquid phase capture technology, greatly reduces sequencing cost, improves sequencing depth and more accurately discovers the genetic variation information of specific regions of 50 monogenic genetic diseases on the premise of ensuring the accuracy of gene screening. The invention has important application value.
Drawings
FIG. 1 shows the sequencing results of sanger of 45 samples obtained in example 4.
FIG. 2 shows the results of 3 in step two of example 4 in which the kit prepared in example 1 was used to detect 18C004166 in a sample.
FIG. 3 shows the results of the detection of sample 18C004166 using MLPA in step two, example 4.
FIG. 4 is the result of detecting 18C030612 using the kit prepared in example 1 in step two, step 3, example 4.
FIG. 5 shows the results of the examination of sample 18C030612 using MLPA at step two, example 4.
FIG. 6 shows the results of 4 in step two of example 4.
Detailed Description
The following examples are intended to facilitate a better understanding of the invention, but are not intended to limit the invention thereto.
The experimental procedures in the following examples are conventional unless otherwise specified.
The test materials used in the following examples were purchased from a conventional biochemical reagent store unless otherwise specified.
Both the pregnant woman and the pregnant woman husband in the following examples gave informed consent to the experimental contents.
In the following examples, the plasma sample of the pregnant woman contains genetic information of the fetus and the pregnant woman (i.e., the mother) himself, the leucocyte sample of the pregnant woman has only genetic information of the pregnant woman (i.e., the mother) himself, and the peripheral blood sample of the pregnant woman husband has only genetic information of the pregnant woman (i.e., the father) himself.
The systematic classification, mutant genes, disease subtypes and genetic patterns of the 50 monogenic genetic diseases referred to in the examples below are detailed in table 1.
TABLE 1
Figure BDA0002782009310000121
Figure BDA0002782009310000131
Note: XR is sex chromosome recessive inheritance, AR is autosomal recessive inheritance, XD is sex chromosome dominant inheritance, and AD is autosomal recessive inheritance.
The nucleotide sequences of the primers referred to in the examples below are shown in Table 2.
TABLE 2
Name of primer Nucleotide sequence (5 '-3') Position in sequence Listing
Primer
1 GACTACATGGGACAT SEQ ID NO:1060
Primer 2 GGAACCTACGACGTA SEQ ID NO:1061
Primer 3 AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCT SEQ ID NO:1062
Primer 4 CAAGCAGAAGACGGCATACGAGATNNNNNNNNGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT SEQ ID NO:1063
Primer 5 AATGATACGGCGACCACCGA * G SEQ ID NO:1064
Primer 6 CAAGCAGAAGACGGCATACG * A SEQ ID NO:1065
Single-stranded DNA1 ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNNN * T SEQ ID NO:1066
Single-stranded DNA2 P-NNNNNNNNAGATCGGAAGAGCACACGTCT SEQ ID NO:1067
Note: * g represents that G is subjected to a thio modification, * a represents that A is subjected to thio modification, * t is T for thio modification, P is phosphorylation modification, and N is A, T, C or G.
Example 1 preparation of a kit for the detection of Single Gene mutations of 50 genetic diseases
First, preparation of Probe set
1. 1059 probes were designed and synthesized based on the nucleotide sequences of 50 mutant genes involved in monogenic genetic diseases. Each probe consists of 108 nucleotides, and comprises a DNA fragment 1, a DNA fragment 2 and a DNA fragment 3 from a5 'end to a 3' end in sequence. The nucleotide sequence of the DNA fragment 1 is 5'-GACTACATGGGACAT-3'. The nucleotide sequence of the DNA fragment 3 is 5'-GGAACCTACGACGTA-3'. DNA fragment 2 consisted of 78 nucleotides. DNA fragment 2 is a part of 50 mutant genes involved in monogenic genetic diseases.
The principle of probe design is as follows: obtaining exon sequences of 50 mutant genes related to monogenic genetic diseases from a UCSC database, extending 50bp back and forth, extending less than 50bp to 50bp after extension, extracting a reference sequence (reference genome version hg38) of each region, removing sequences of repeated regions, and analyzing the repeated sequences by using RepeatMask software. And (3) intercepting a 78bp sequence from the first base as a probe, moving the n bases backwards again, and intercepting the 78bp sequence as the probe until the last 78bp sequence is reached. Each region varies in n depending on the GC content of the exon, with higher or lower GC content and smaller n, the more densely the probe design is designed to achieve improved uniformity of capture. The SMN1 gene and SMN2 gene are very similar and for this gene probes were designed separately for the different snp sites on the two genes. The probability of the copy number change of the DMD gene is very high, the CNV analysis is inaccurate to the single exon analysis, and therefore, probes are supplemented to the upstream and downstream 300bp regions of each exon of the DMD gene, so that the copy number change of the single exon can be analyzed.
The probe density formula was adjusted according to GC content:
D gc =a+a*10*|gc-0.5|
wherein D gc The probe density at a certain GC content was represented, and a represents the probe density at a GC content of 50%, and was 20. GC represents GC content.
Specifically, the nucleotide sequence of the DNA fragment 2 of the 1059 probes is shown as SEQ ID NO: 1 from position 16-93 from the 5' end to SEQ ID NO: 1059 is shown at positions 16-93 from the 5' end.
2. After step 1 was completed, the probe was biotin-labeled. The method comprises the following specific steps: 1059 probes were mixed well in ddH with a total volume of 1.2mL 2 In O, 15. mu.L of the mixture was subjected to PCR amplification (performed in three tubes) using a universal PCR primer set consisting of primer 1:5 ' -bio-GACTACATGGGACAT-3 ' (bio indicates that the 5 ' -end has a biotin label) and primer 2: 5'-GGAACCTACGACGTA-3' to obtain a PCR amplification product.
3. Purifying the PCR amplification product with MinElute PCR Purification Kit (product of Qiagen, cat # 28006) to obtain a purified product; then 500ng of the purified product was taken and bound with MyOne streptavidin magnetic beads (product of Invitrogen, cat # 35602); then adding NaOH solution for treatment, aiming at denaturing and eluting the complementary strand without biotin labeling; then washing the whole magnetic beads with formamide liquid at 100 ℃ to separate the probes from the magnetic beads; and finally, precipitating with ethanol to obtain the biotin-labeled probe set.
Preparation of kit for detecting 50 genetic disease single gene mutations
The detection kit for 50 genetic disease single gene mutations consists of enrichment buffer, hybridization buffer, library combination buffer, rinsing buffer 1, rinsing buffer 2, library enrichment eluent, neutralization buffer, PCR reaction liquid and probe sets prepared in the first step.
The enrichment buffer solution consists of 3.5 volume parts of human cot-1DNA aqueous solution, 3.5 volume parts of salmon sperm DNA aqueous solution and 3 volume parts of primer mixture solution (consisting of a primer 3, a primer 4 and water). In the enrichment buffer, the concentration of human cot-1DNA was 35% (v/v), the concentration of salmon sperm DNA was 15% (v/v), the concentration of primer 3 was 0.5 nmol/. mu.L, and the concentration of primer 4 was 0.5 nmol/. mu.L.
Hybridization buffer: an aqueous solution containing 1.25M NaCl, 0.125M sodium citrate, 0.1g/100mL BSA and 7% (v/v) Tween 20.
Library binding buffer: 10mM Tris-HCl buffer, pH7.5, containing 1M NaCl and 1mM EDTA.
Rinsing buffer 1: sodium citrate buffer containing 0.1% (m/v) SDS. The sodium citrate buffer solution is an aqueous solution containing 175g/L NaCl and 88g/L trisodium citrate; the pH was 7.4.
Rinsing buffer 2: dilutions of sodium citrate buffer containing 0.1% (m/v) SDS. The sodium citrate buffer solution diluent is formed by mixing 1 volume part of sodium citrate buffer solution and 9 volume parts of water.
Library enrichment eluent: aqueous NaOH solution having a concentration of 0.1M.
Neutralization buffer: Tris-HCl buffer (pH 7.5, 1M).
3mL of the PCR reaction solution consisted of 100. mu.L of Phusion Hot Start II DNA Polymerase (product of Thermo, cat # F549S) at a concentration of 0.05U/. mu.L and 2900. mu.L of PCR mixbuffer. PCR mixbuffer containing 0.2mM dATP, 0.2mM dTTP, 0.2mM dCTP, 0.2mM dGTP, 5% (v/v) DMSO, 2.5pmol primer 5, 2.5pmol primer 6, 4mM MgCl 2 500mM KCl and 0.8% (v/v) Nonidet P40.
Example 2 and establishment of method for detecting whether genetic disease single gene mutation exists by kit prepared in example 1
A. Example 1 establishment of method for noninvasive prenatal detection of whether fetus has 45 genetic disease single gene mutations by using kit prepared in example 1
Through a large number of experiments, the inventor establishes a method for noninvasive prenatal detection of whether 45 genetic disease single gene mutations exist in a fetus by using the kit prepared in the embodiment 1. The method comprises the following specific steps:
firstly, obtaining the mutation site types, mutation frequencies and sequencing depths of 45 (shown in table 1, except CYP21A2, SMN1, HBA1, HBA2 and MT-RNR1 genes) single-gene genetic disease mutation genes of the pregnant women to be tested
Extraction of genome DNA of pregnant woman to be detected
10mL of peripheral Blood of a pregnant woman to be tested is collected by an EDTA anticoagulant tube, plasma and leucocytes are separated, and genome DNA of the leucocytes is extracted by a CWE2100 Blood DNA Kit V2 (Kangji is a product of century Biotechnology Co., Ltd., product number CW 2543). The genomic DNA is named as the genomic DNA of the pregnant woman to be detected.
(II) preparation of genomic DNA library of pregnant woman to be tested
3 mu g of pregnant woman genome DNA to be detected is taken, ultrasonic breaking (the instrument model is Covaris S220, the parameters are Peak inclusion Power 175W, Duty Factor 10%, Cycles per Burst 200 and Treatment Time 180S) is carried out to about 200bp, and then a KAPA Hyper library construction kit is utilized to prepare the pregnant woman genome DNA library to be detected. The joints for preparing the pregnant woman genome DNA library to be detected are single-stranded DNA1 and single-stranded DNA 2.
Taking a genome DNA library of a pregnant woman to be detected, and carrying out Qubit quantification and 2% agarose gel electrophoresis detection.
(III) construction of target sequence Capture library A
1. And (4) preparing an enrichment system. The enrichment system is 100 mu L and consists of 48 mu L of pregnant woman genome DNA library to be detected (containing 1 mu g of pregnant woman genome DNA to be detected), 12 mu L of enrichment buffer, 5 mu L of probe set and 35 mu L of hybridization buffer (preheated at 65 ℃).
2. And (3) after the step 1 is finished, taking the enrichment system, and putting the enrichment system in a PCR instrument for overnight hybridization enrichment (the hybridization time is at least 16h) to obtain an enrichment product.
Reaction procedure: 7min at 95 ℃ and more than 16h at 65 ℃.
3. Obtaining solution of streptavidin-coated magnetic beads (streptavidin-coated magnetic beads are stored in a storage solution, which is performed to remove the storage solution)
(1) Adding 50 μ L of the low-adsorption centrifuge tube
Figure BDA0002782009310000151
M-280 streptavidin magnetic beads, then placed in the magnetic frame for 1 min.
(2) After completion of step (1), the supernatant was discarded, 50. mu.L of library binding buffer was added, the beads were resuspended, and then briefly centrifuged.
(3) And (3) after the step (2) is finished, taking the low-adsorption centrifuge tube, placing the low-adsorption centrifuge tube in a magnetic frame for 1min, discarding the supernatant, adding 50 mu L of library binding buffer solution, and resuspending the magnetic beads.
(4) And (4) after the step (3) is finished, taking the low-adsorption centrifuge tube, placing the low-adsorption centrifuge tube in a magnetic frame for 1min, discarding the supernatant, adding 50 mu L of library binding buffer solution, and re-suspending the magnetic beads to obtain a solution of streptavidin-coated magnetic beads.
4. Co-incubation capture
(1) And (3) after the step 3 is finished, adding all the enriched products obtained in the step 2 into the low-adsorption centrifuge tube, performing vortex oscillation for 5sec, and then placing the tube on a rotary blending machine at room temperature for 1 h.
(2) And (3) after the step (1) is finished, taking the low-adsorption centrifuge tube, placing the low-adsorption centrifuge tube in a magnetic frame for 1min, and discarding the supernatant.
5. Washing and PCR amplification
(1) And (4) after the step 4 is finished, adding 500 mu L of rinsing buffer solution 1 into the low-adsorption centrifuge tube, uniformly mixing, and placing the mixture in a rotary mixer to rotate for 15 min.
(2) And (3) after the step (1) is finished, taking the low-adsorption centrifuge tube, placing the centrifuge tube on a magnetic frame for standing for 2min, and discarding the supernatant.
(3) After step (2) was completed, the low adsorption centrifuge tube was added with 500. mu.L of rinsing buffer 2 (preheated at 65 ℃) and incubated at 65 ℃ for 10 min.
(4) And (4) after the step (3) is finished, taking the low-adsorption centrifuge tube, placing the centrifuge tube on a magnetic frame for standing for 2min, and discarding the supernatant.
(5) And (4) repeating the step (4) twice.
The purpose of carrying out the above steps is to not react with
Figure BDA0002782009310000161
The probes bound to the M-280 streptavidin magnetic beads were washed away.
(6) And (5) after the step (5) is finished, adding 30 mu L of library enrichment eluent into the low-adsorption centrifuge tube, resuspending magnetic beads, and placing the low-adsorption centrifuge tube in a room-temperature rotary mixer for 10-20 min.
(7) And (5) after the step (6) is finished, taking the low-adsorption centrifuge tube, and placing the centrifuge tube on a magnetic frame for standing for 1 min.
(8) And (4) after the step (7) is completed, transferring the supernatant to a centrifuge tube, adding 40 mu L of neutralization buffer solution and 30 mu L of PCR reaction solution, sucking and uniformly mixing by a pipette, and placing the mixture in a PCR instrument for PCR amplification to obtain a PCR amplification product.
PCR procedure: 30sec at 98 ℃; 30sec at 98 ℃, 30sec at 65 ℃, 30sec at 72 ℃, 15 cycles; 5min at 72 ℃ and infinity at 4 ℃.
6. Purification of
After the step 5 is completed, the PCR amplification product is taken and purified by an AgencourtAAMPure XP nucleic acid purification kit (product of Beckman Coulter company, product number A63881) to obtain a library amplification purification product.
The library amplification and purification product is the target sequence capture library A.
(IV) high throughput sequencing and data analysis
1. And (5) carrying out high-throughput sequencing on the target sequence capture library A obtained in the step (three) by a second-generation sequencing platform such as Nextseq500, X Ten, Novaseq and the like to obtain sequencing original data.
2. After step 1 is completed, the sequencing original data is cut off the linker sequence and low-quality bases (quality value is less than 10) by using cutdapt software (website: https:// cutdapt. readthetadocs. io/en/stable /), the sequence with the length less than 80bp is filtered, and then the sequence is aligned to the corresponding position of the hg19 of the reference genome by using bwa software MEM algorithm (website: http:// bio-bw.
3. After completion of step 2, the repetitive sequences due to PCR amplification preference were removed using the GATK software (website: https:// software. branched amplification. org/GATK /), and the data were analyzed to obtain information about Single Nucleotide Variations (SNV) and INDEL mutations (INDELs).
4. All SNPs and INDELs in the relevant information obtained in step 3 were annotated with ANNOVAR software (website: http:// innovar. org/en/late /), and then normal human databases (including mutation sites with frequencies of less than 0.05 in thousand human genome project (website: http:// EVS. gs. washington. edu/EVS /), exterior Variant Server (website: http:// EVS. gs.), and EXAC (website: http:// exterior. branched. upright. org.)) were screened out, missense mutations were predicted with SIFT software (website: http:// site. jcvi. org.), Polyphen-2 software (website: http:// science. bw. bright. jcgi. org.), PolyPhen-2 software (website: http:// liver. fw. rd. 32. http:// http:/,/liver, and conserved version:/(. 52. http: /), the pathogenicity of the cutting site is analyzed by using SPIDEX software (the website is http:// www.deepgenomics.com/SPIDEX), and the data is output as an Excel file named as the SNP Indel of the pregnant woman to be detected.
5. Obtaining mutation sites of 45 single genetic disease mutation genes carried by the pregnant women to be tested (the mutation sites are only limited to gene mutation and do not comprise deletion of eg. SMN/DMD exon and the like)
Annotating sites reported by an HGMD (human gene mutation database), and then screening according to a screening principle (the screening principle is that the sites are pathogenic mutant-pathogenic and are large mutations (frame shift is large mutations) and tag is equal to DM) to obtain 6636 pathogenic mutation sites; if the SNP Indel of the pregnant woman to be detected contains any point mutation in 6636 pathogenic mutation sites, the pregnant woman to be detected carries the mutation site of the corresponding mutant gene; otherwise, the pregnant woman to be detected does not carry the corresponding gene mutation site.
Through the steps, the types, mutation frequencies and sequencing depths of mutation sites of 45 single-gene genetic disease mutation genes of the pregnant woman to be detected are finally obtained.
Secondly, obtaining the types, mutation frequencies and sequencing depths of mutation sites of 45 monogenic genetic disease mutation genes of the pregnant woman husband to be detected
According to the method of the first step, the leucocytes of the pregnant woman to be detected are replaced by the peripheral blood of the pregnant woman husband to be detected, and other steps are not changed, so that the types, mutation frequencies and sequencing depths of mutation sites of 45 monogenic genetic disease mutation genes of the pregnant woman husband to be detected are obtained.
Thirdly, obtaining the types, mutation frequencies and sequencing depths of mutation sites of 45 monogenic genetic disease mutation genes of the pregnant woman to be detected and the fetus
Extraction of free DNA in blood plasma of pregnant woman to be tested
1. Collecting 10mL of peripheral blood of a pregnant woman to be detected by using an EDTA anticoagulant tube, centrifuging for 15min at 4 ℃ at 1600g, and collecting supernatant 1 (placing in a low-adsorption centrifuge tube).
2. After completion of step 1, the supernatant 1 was centrifuged at 12000rpm for 5min and the supernatant 2 was collected (placed in a low adsorption centrifuge tube). Supernatant 2 is plasma.
3. After completion of step 2, 1mL of the supernatant 2 was taken, and plasma free DNA (cfDNA) was extracted using a large-volume free nucleic acid extraction kit (product of Tiangen Biochemical technology (Beijing) Ltd., product No. DP 710). The cfDNA is named as the plasma free DNA of the pregnant woman to be detected.
(II) preparation of pregnant woman plasma free DNA library to be detected
And (3) taking 5ng of the pregnant woman plasma free DNA to be detected obtained in the step (I), and preparing the pregnant woman plasma free DNA library to be detected by using a KAPA Hyper library construction kit (a product of KAPA Biosystems, the product number is KK 8504). The joints for preparing the pregnant woman plasma free DNA library to be detected are single-stranded DNA1 and single-stranded DNA 2.
Taking a pregnant woman plasma free DNA library to be detected, and carrying out Qubit quantification and 2% agarose gel electrophoresis detection.
(III) construction of target sequence Capture library B
Replacing the pregnant woman genome DNA library to be detected (containing 1 mu g of pregnant woman genome DNA to be detected) with the pregnant woman plasma free DNA library to be detected (containing 1 mu g of pregnant woman plasma free DNA to be detected) according to the method in the step one (three), and obtaining the target sequence capturing library B without changing other steps.
(IV) high throughput sequencing and data analysis
And (3) replacing the target sequence capture library A with a target sequence capture library B according to the method in the step one (fourth), and obtaining the types, mutation frequencies and sequencing depths of the mutation sites of the 45 monogenic genetic disease mutation genes of the pregnant woman to be detected and the fetus, wherein the other steps are not changed.
Fourthly, judging whether the fetus has genetic disease single gene mutation
(I) judging whether the fetus has 24 autosomal recessive genetic disease single gene mutations
The target mutant gene is at least one of DYSF, CYPN3, MMACHC, MUT, PAH, ATP7B, SLC25A13, SLC22A5, G6PC, GAA, AGL, PYGL, ETFDH, UGT1A1, HBB, FACCA, ABCA4, CYP4V2, TYR, OCA2, SLC26A4, GJB2, OTOF and SLC12A 13.
Dividing the types of the single gene mutation sites of the 24 autosomal recessive genetic diseases of the pregnant woman to be detected and the fetus obtained in the step three into the following three types: the first type: mutation sites that are only identical to the fetal father (i.e., the fetal and fetal father mutation sites are of the same type, and are of a different type than the fetal mother mutation sites); the second type: mutation sites that are identical only to the mother of the fetus (i.e., the type of mutation sites is identical for both the fetus and the mother of the fetus and different from the type of mutation sites for the father of the fetus); in the third category: the same mutation site as both the fetal father and the fetal mother (i.e., the same type of mutation site is found in the fetus, the fetal father, and the fetal mother).
1. When the father and mother of the fetus are heterozygous mutations, the judgment method is as follows:
when the type of the mutation site is the first type, if the mutation site is detected in the third step (mutation frequency is more than 0), the fetus carries the mutation site and is heterozygous for the mutation; if no mutation is detected at the mutation site in step three (mutation frequency of 0), the fetus does not carry the mutation site.
When the type of the mutation site is the second type, if the mutation frequency of the mutation site in the third step is below 0.43, the fetus does not carry the mutation site; if the mutation frequency of the mutation site in step three is more than 0.43 and less than 0.57, the fetus carries the mutation site and is heterozygous for the mutation;
when the type of the mutation site is of the third class, if the mutation frequency of the mutation site in step three is below 0.43, the fetus does not carry the mutation site; if the mutation frequency of the mutation site in step three is more than 0.43 and less than 0.57, the fetus carries the mutation site and is heterozygous for the mutation; if the mutation frequency of the mutation site in step three is above 0.57, the fetus carries the mutation site and is a homozygous mutation.
2. When the mother of the fetus is heterozygous mutation and the father is homozygous mutation, the judgment method is as follows:
when the type of the mutation site is the first type, if the mutation site is detected in the third step (mutation frequency is more than 0), the fetus carries the mutation site and is heterozygous for the mutation;
when the type of the mutation site is of the second type, if the mutation frequency of the mutation site in step three is below 0.43, the fetus does not carry the mutation site; if the mutation frequency of the mutation site in step three is more than 0.43 and less than 0.57, the fetus carries the mutation site and is heterozygous for the mutation;
when the type of the mutation site is of the third class, if the mutation frequency of the mutation site in step three is more than 0.43 and less than 0.57, the fetus carries the mutation site and is a heterozygous mutation; if the mutation frequency of the mutation site in step three is above 0.57, the fetus carries the mutation site and is a homozygous mutation.
3. When the father of the fetus is heterozygous mutation and the mother is homozygous mutation, the judgment method is as follows:
when the type of the mutation site is the first type, if the mutation site is detected in the third step (mutation frequency is more than 0), the fetus carries the mutation site and is heterozygous mutation; if no mutation is detected at this mutation site in step three (mutation frequency 0), the fetus does not carry this mutation site.
When the type of the mutation site is of the second type, if the mutation frequency of the mutation site is detected to be less than 1 in step three, the fetus carries the mutation site and is heterozygous for the mutation.
When the mutation site is of the third type, if the mutation frequency of the mutation site in the third step is less than 1, the fetus is homozygous mutation, otherwise, the fetus is heterozygous mutation.
(II) judging whether the fetus has 11 autosomal dominant hereditary single gene mutations
The target mutant gene is at least one of SCN1A, PPRT2, FZD4, RB1, SLC4A1, COL1A1, FGFR3, NF1, TSC1, TSC2 and JAG 1.
1. When the mother of the fetus is heterozygous mutant and the father is heterozygous mutant, the judgment method comprises the following steps:
dividing the types of the mutation sites of the pregnant woman to be detected and the fetus obtained in the step three, which relate to the 11 autosomal monogenic dominant hereditary diseases of the mutant genes, into the following three types: the first type: mutation sites that are only identical to the fetal father (i.e., the fetal and fetal father mutation sites are of the same type, and are of a different type than the fetal mother mutation sites); the second type: only the same mutation site as the fetal mother (i.e., the fetal and fetal mother mutation sites are of the same type and different from the fetal father mutation site); in the third category: the same mutation site as both the fetal father and the fetal mother (i.e., the same type of mutation site is found in the fetus, the fetal father, and the fetal mother).
When the type of the mutation site is the first type, if the mutation site is detected in the third step (mutation frequency is more than 0), the fetus carries the mutation site and is heterozygous for the mutation; if no mutation is detected at the mutation site in step three (mutation frequency of 0), the fetus does not carry the mutation site.
When the type of the mutation site is of the second type, if the mutation frequency of the mutation site in step three is below 0.43, the fetus does not carry the mutation site; if the mutation frequency of the mutation site in step three is more than 0.43 and less than 0.57, the fetus carries the mutation site and is heterozygous for the mutation;
when the type of the mutation site is of the third class, if the mutation frequency of the mutation site in step three is below 0.43, the fetus does not carry the mutation site; if the mutation frequency of the mutation site in step three is more than 0.43, the fetus carries the mutation site and is heterozygous for the mutation; if the mutation frequency of the mutation site in step three is above 0.57, the fetus carries the mutation site and is a homozygous mutation.
2. When the mother of the fetus is heterozygous and the father has no mutation, if the mutation frequency of the mutation site in the step III is below 0.43, the fetus does not carry the mutation site; if the mutation frequency of the mutation site in step three is more than 0.43 and less than 0.57, the fetus carries the mutation site and is heterozygous for the mutation;
3. when the father of the fetus is heterozygous mutation and the mother has no mutation, if the mutation site is detected to have mutation in the step three (the mutation frequency is more than 0), the fetus carries the mutation site and is heterozygous mutation; if no mutation is detected at the mutation site in step three (mutation frequency of 0), the fetus does not carry the mutation site.
4. When the fetus has no mutation in both mother and father, if the mutation site is detected in step three (mutation frequency is more than 0), the fetus carries the mutation site (spontaneous mutation).
(III) judging whether the fetus has 7X chromosome recessive genetic disease single gene mutations
The target mutant gene is at least one of DMD, PHKA2, ABCD1, RS1, WAS, BTK and IL2 RG.
1. When the fetus mother has heterozygous mutation and father hemizygous mutation, the judgment method comprises the following steps: dividing the types of the X chromosome monogenic recessive genetic disease monogenic mutation sites of the pregnant woman to be detected and the fetus obtained in the step three into the following three types: the first type: mutation sites that are only identical to the fetal father (i.e., the fetal and fetal father mutation sites are of the same type, and are of a different type than the fetal mother mutation sites); the second type: only the same mutation site as the fetal mother (i.e., the fetal and fetal mother mutation sites are of the same type and different from the fetal father mutation site); in the third category: the same mutation site as the fetal father and the fetal mother (i.e., the same type of mutation site as the fetal father and the fetal mother)
(1) And judging the gender of the fetus.
(2) When the fetus is a girl child, the type of the mutation site is a first type, and if the mutation site is detected in the third step (the mutation frequency is more than 0), the fetus carries the mutation site and is heterozygous mutation; if no mutation is detected at the mutation site in step three (mutation frequency of 0), the fetus does not carry the mutation site. The type of the mutation site is a second type, if the mutation frequency of the mutation site in the step three is below 0.43, the fetus does not carry the mutation site; if the mutation frequency of the mutation site in step three is greater than 0.43 and less than 0.57, the fetus carries the mutation site and is heterozygous for the mutation. The type of the mutation site is a third type, if the mutation frequency of the mutation site in the third step is more than 0.57, the fetus is subjected to homozygous mutation at the mutation site; if the mutation frequency of the mutation site in step three is greater than 0.43 and less than 0.57, the fetus carries the mutation site and is heterozygous for the mutation.
(3) When the fetus is a male fetus, if the mutation frequency of the mutation site in step three is below 0.43, the fetus does not carry the mutation site; if the mutation frequency of the mutation site in step three is greater than 0.57, the fetus carries the mutation site and is heterozygous for the mutation.
2. When the mother of the fetus is heterozygous and the father is not mutated, the judgment method comprises the following steps:
(1) and judging the gender of the fetus.
(2) When the fetus is a girl, if the mutation frequency of the mutation site in step three is below 0.43, the fetus does not carry the mutation site; if the mutation frequency of the mutation site in step three is greater than 0.43 and less than 0.57, the fetus carries the mutation site and is heterozygous for the mutation.
(3) When the fetus is a boy, if the mutation frequency of the mutation site in the third step is below 0.43, the fetus does not carry the mutation site; if the mutation frequency of the mutation site in step three is more than 0.57, the fetus is hemizygous mutated. 3. When the fetus father and the fetus mother do not have the mutation site of the target gene, if the mutation frequency of the mutation site of the target gene in the step three is more than 0, the fetus carries the mutation site and is spontaneous mutation.
(IV) judging whether the fetus suffers from 2X chromosome dominant genetic disease single gene mutations
The target gene is at least one of the MECP2 gene and COL4A5 gene.
1. When the father and mother of fetus have no mutation site of the target gene, if the mutation frequency of the mutation site of the target gene in step three is more than 0, the fetus carries the mutation site and is spontaneous mutation; otherwise, the fetus does not carry the mutation site.
2. When the fetus mother is heterozygous and the father is hemizygous, the judgment method is as follows:
dividing the types of the X chromosome monogenic recessive genetic disease monogenic mutation sites of the pregnant woman to be detected and the fetus obtained in the step three into the following three types: the first type is: mutation sites that are only identical to the fetal father (i.e., the fetal and fetal father mutation sites are of the same type, and are of a different type than the fetal mother mutation sites); the second type: mutation sites that are identical only to the mother of the fetus (i.e., the type of mutation sites is identical for both the fetus and the mother of the fetus and different from the type of mutation sites for the father of the fetus); in the third category: the same mutation site as the fetal father and the fetal mother (i.e., the same type of mutation site as the fetal father and the fetal mother)
(1) And judging the gender of the fetus.
(2) When the fetus is a female fetus, the type of the mutation site is the first type, and if the mutation site is detected in step three (the mutation frequency is more than 0), the fetus carries the mutation site and is a heterozygous mutation. The type of the mutation site is a second type, if the mutation frequency of the mutation site in the step three is below 0.43, the fetus does not carry the mutation site; if the mutation frequency of the mutation site in step three is greater than 0.43 and less than 0.57, the fetus carries the mutation site and is a heterozygous mutation. The type of the mutation site is a third type, if the mutation frequency of the mutation site in the third step is more than 0.57, the fetus is subjected to homozygous mutation at the mutation site; if the mutation frequency of the mutation site in step three is greater than 0.43 and less than 0.57, the fetus carries the mutation site and is heterozygous for the mutation.
(3) When the fetus is a male fetus, if the mutation frequency of the mutation site in step three is below 0.43, the fetus does not carry the mutation site; if the mutation frequency of the mutation site in step three is above 0.57, the fetus carries the mutation site.
3. When the mother of the fetus has the mutation site of the target gene and the father of the fetus does not have the mutation site of the target gene, the judgment method is as follows:
(1) and judging the gender of the fetus.
(2) When the fetus is a female fetus, if the mutation frequency of the target gene mutation site in the step III is more than 0.43 and less than 0.57, the fetus carries the site mutation and is a heterozygous mutation; if the mutation frequency of the target gene mutation site in the step three is less than 0.43, the fetus does not carry the site mutation.
(3) When the fetus is a male fetus, if the mutation frequency of the target gene mutation site in the third step is more than 0.57, the fetus carries the site mutation; if the mutation frequency of the target gene mutation site in the step three is less than 0.43, the fetus does not carry the site mutation.
B. Example 1 method for determining whether the subject has 50 genetic disease single gene mutations
1. And D, replacing the leucocytes of the pregnant woman to be detected with the peripheral blood of the person to be detected according to the method in the step A, wherein the other steps are unchanged, and obtaining the SNP Indel of the person to be detected about 50 monogenic genetic disease mutant genes.
2. After the step 1 is completed, counting the situation of the mutation sites in each mutant gene.
Specifically, the "method for judging spinal muscular atrophy due to SMN1 gene mutation" and the "method for judging α thalassemia due to HBA1 gene and HBA2 gene mutation" are as follows:
(1) and counting the coverage of each gene target region by using cnvkit software (http:// cnvkit. readthetadocs. io/en/stable/quick start. html), then drawing by taking the position information of each target region site as an abscissa and the corresponding coverage of each position as an ordinate, and carrying out site statistical analysis to obtain a repeated and missing analysis diagram through the reading depth of each site.
(2) After the step (1) is completed, the absolute copy numbers of the depths of the target regions of the test sample, the negative sample SMN1 and the SMN2 are calculated to obtain the copy values of the SMN1 and SMN2, and further to judge the specific copy values of the SMN1 and SMN2 (the detection range of the kit prepared in the example 1 on the SMN1 is that the copy number of the exon 7 of the SMN1 gene can be distinguished, and the others are not in the detection range).
(3) Comparing the sequencing result with the SMN1 gene and the SMN2 gene in the human genome version Hg19, and calculating the f (Z) value of the SMN1 gene and the f (Z) value of the SMN2 gene in the sample to be detected to judge the copy number of the SMN1 gene and the SMN2 gene in the sample to be detected, so as to determine whether the sample to be detected is a spinal muscular atrophy patient or a spinal muscular atrophy carrier, wherein the method specifically comprises the following steps:
median of f (z) ═ B/all negative sample B values for SMN1 gene
B-sample sequencing depth D/alignment base number A of SMN1 gene
Wherein the D value represents the sequencing depth of the SMN1 gene of a single sample, the A value represents the number of comparison bases of the SMN1 gene of the single sample, and the B value is the ratio of the D to the A;
median of f (z) ═ B/all negative sample B values for SMN2 gene
B-sample sequencing depth D/alignment base number A of SMN2 gene
Wherein, the D value represents the sequencing depth of the SMN2 gene of a single sample, the A value represents the number of the alignment bases of the SMN2 gene of the single sample, and the B value is the ratio of the D to the A.
Judging whether the sample to be detected is a spinal muscular atrophy patient or a spinal muscular atrophy carrier by using the f (Z) value of the SMN1 gene:
if f (Z) of the SMN1 gene is 0.75< 1.25, the copy number of the SMN1 gene of the sample to be detected is normal, namely the copy number of the SMN1 gene of the sample to be detected is 2;
if f (Z) of the SMN1 gene is not less than 0.25 and not more than 0.75, the copy number of the SMN1 gene of the sample to be detected is abnormal, namely the copy number of the SMN1 gene of the sample to be detected is 1;
if f (z) of the SMN1 gene is 0< 0.25, the SMN1 gene of the test sample is completely deleted, i.e., the copy number of the SMN1 gene of the test sample is 0.
Judging the disease degree of the spinal muscular atrophy patient to be detected by using the f (Z) value of the SMN2 gene:
0< f (Z) <0.25 of SMN2 gene, and the degree of disease of the spinal muscular atrophy patient to be detected is more than 0.25 and less than or equal to f (Z) < 0.75 of SMN1 gene, and the spinal muscular atrophy patient to be detected is detected.
(4) Depth statistics is carried out on the regions HBA1 and HBA2, the copy values of the samples HBA1 and HBA2 are obtained by calculating the absolute copy number of the depth of the test sample and the negative sample, and then the specific copy values of the samples HBA1 and HBA2 are judged. The f (z) values for HBA1 and HBA2 were calculated as copy numbers calculated by SMN1, SMN 2.
If f (Z) of the HBA1 gene is not less than 0.25 and not more than 0.75, f (Z) of the HBA2 gene is more than 0.75, or f (Z) of the HBA2 gene is not less than 0.25 and not more than 0.75 and f (Z) of the HBA1 gene is more than 0.75, the alpha gene of the sample to be detected is deleted;
if f (Z) of the HBA1 gene is not less than 0.25 and not more than 0.75 and f (Z) of the HBA1 gene is not less than 0.25 and not more than 0.75, two alpha genes are deleted from the sample to be detected;
if f (Z) of the HBA1 gene is more than or equal to 0.25 and less than or equal to 0.75, f (Z) of the HBA2 gene is more than or equal to 0.25, or f (Z) of the HBA2 gene is more than or equal to 0.25 and less than or equal to 0.75, and f (Z) of the HBA1 gene is more than or equal to 0.25, three alpha genes of the sample to be detected are deleted;
if 0< f (Z) <0.25 of HBA1 gene and 0< f (Z) <0.25 of HBA2 gene, the four alpha genes of the sample to be tested are deleted.
Example 3, beneficial effects of the kit prepared in example 1
The sample R-001 and the sample R-003, the sample R-002 and the sample R-004 are the same normal human peripheral blood sample, and the data volume of the sample R-001 and the sample R-003 are similar. The data amounts of the sample R-002 and the sample R-004 are similar.
A sample R-001 and a sample R-002 are taken, a universal BL-closed kit (Mikeno kit) is adopted to construct a target sequence capture library, and then high-throughput sequencing and data analysis are carried out.
Sample R-003 and sample R-004 were taken, and the target sequence capture library was constructed using the kit prepared in example 1, followed by high throughput sequencing and data analysis.
The analytical results are shown in Table 3 (precision BL is the kit prepared in example 1). The results show that the capture efficiency and the average sequencing depth of the kit prepared in example 1 are significantly improved compared with the universal BL-blocked kit.
TABLE 3
Figure BDA0002782009310000231
EXAMPLE 4 beneficial Effect of optimizing probes based on GC content
The sample R-005 and the sample R-006, the sample R-007 and the sample R-008 are the same normal human peripheral blood sample, and the data amount of the sample R-005 and the sample R-006 are similar. The data size of sample R-007 and sample R-008 was similar.
The kit prepared in example 1 was used for capture sequencing of the pre-optimized probes and the optimized probe sets with adjusted probe density based on GC content. The results (table 4) show that after the probe set is optimized according to GC content and subjected to capture sequencing, the optimized probe set has higher capture efficiency, coverage and average depth under the condition of similar data volume.
TABLE 4
Figure BDA0002782009310000232
Example 5 detection of the presence or absence of a monogenic genetic disease Gene mutation in a test subject Using the kit prepared in example 1
One, adopting the kit prepared in example 1 to detect single gene point mutation
1. Peripheral blood of 45 subjects (see column 1 of Table 5 for subject numbers) was collected and tested by the method of step B in example 2.
The results are shown in Table 5: the 2 nd column is a mutant gene, the 3 rd column is a mutant position of the mutant gene, the number of a transcript in which the 4 th column of the mutant gene is located, the 5 th example is an exon in which the mutant gene of the mutant gene is located, the 6 th column is a nucleotide change of the mutant position of the mutant gene, the 7 th column is an amino acid change of the mutant position of the mutant gene, the 8 th column is whether the mutant site is heterozygous mutation, homozygous mutation or hemizygous mutation, the 9 th column is pathogenicity analysis, the 10 th column is a genetic disease inheritance mode, the 11 th column is a disease/phenotype, and the 12 th column is a mutant site mutation source (four types including mother, father and spontaneous mutation).
TABLE 5-1
Figure BDA0002782009310000233
Figure BDA0002782009310000241
TABLE 5-2
Figure BDA0002782009310000242
Figure BDA0002782009310000251
Tables 5 to 3
Figure BDA0002782009310000252
Figure BDA0002782009310000261
Note: hom represents homozygosity, het represents heterozygosity, hemi represents hemizygosis, pathogenic represents pathogenic variation, like pathogenic variation, uncertain represents unknown clinical significance, AR represents autosomal recessive inheritance, AD represents autosomal dominant inheritance, XR represents X-chromosome recessive inheritance, and XD represents X-chromosome dominant inheritance; the genomic version was GRCh37/hg19, and the positional information for the nucleotide changes was based on the genome and transcript of the current version.
2. sanger sequencing
The 45 samples in step 1 were subjected to sanger sequencing, and partial detection results are shown in FIG. 1.
The results showed that the single gene mutation detection results using the kit prepared in example 1 were completely consistent with the sanger sequencing results.
Secondly, the kit prepared in example 1 is used for detecting copy number variation of single genes (SMN, HBA1, HBA2, DMD and CYP21A2)
1. Variation in SMN Gene copy number Using the kit prepared in example 1
8 samples were tested separately using MLPA (MLPA P060/P052, HRC-Holland) and the kit prepared in example 1.
The results are shown in Table 6. The results show that the SMN single gene copy number detection results by using the kit prepared in example 1 are consistent with the MLPA results.
TABLE 6
Figure BDA0002782009310000271
2. Variation in HBA Gene copy number Using the kit prepared in example 1
8 samples were detected using "deletion type alpha-thalassemia gene detection kit (Xiamen, 802004, national institutes of record 20173403211)" and Gap-PCR "and" the kit prepared in example 1 ", respectively.
The results are shown in Table 7. The result shows that the kit prepared in example 1 can detect the deletion condition of the alpha gene in the alpha thalassemia, and the deletion condition is completely consistent with the fluorescent PCR dissolution curve/Gap-PCR detection result.
TABLE 7
Figure BDA0002782009310000272
3. Detection of variation in the DMD Gene copy number Using the kit prepared in example 1
The samples 18C004166 and 18C030612 were respectively detected using MLPA (MLPA P060/P052, HRC-Holland) and the kit prepared in example 1. In MLPA detection, fluorescence signal intensities between 0.75 and 1.25 are generally considered normal.
The result of detecting 18C004166 of a sample by the kit prepared in example 1 is shown in fig. 2 (the abscissa represents exon and the ordinate represents copy number). The results of MLPA assay sample 18C004166 are shown in FIG. 3 (exons on the abscissa and copy number on the ordinate). The results indicated that sample 18C004166 had a deletion of exon 48 in the DMD gene.
The results of examining the sample 18C030612 with the kit prepared in example 1 are shown in FIG. 4 (the abscissa is exon and the ordinate is copy number). The results of MLPA assay sample 18C030612 are shown in FIG. 5 (exons on the abscissa and copy number on the ordinate). The results showed that the DMD gene exons 3-4 of sample 18C030612 detected increased gene copy numbers.
The results show that the results of detecting the variation of the DMD gene copy number using the kit prepared in example 1 are consistent with the MLPA results.
4. CYP21A2 gene mutation and copy number variation were detected by the kit prepared in example 1
1 sample of suspected adrenal cortex hyperplasia was tested using the kit prepared in example 1.
The results are shown in FIG. 6.
The result shows that the kit prepared in example 1 can detect CYP21A2 or CYP21A1P2 gene mutation and copy number variation, and the existence of the pseudogene CYP21A1P2 of CYP21A2 can only indicate that the sample to be detected has high risk of congenital adrenal cortex hyperplasia.
Example 5 non-invasive prenatal detection of whether the fetus to be detected has monogenic genetic disease gene mutation or not by using the kit prepared in example 1
Firstly, the kit prepared in the embodiment 1 is adopted to detect whether the fetus to be detected has the autosomal genetic disease monogenic mutation in a noninvasive prenatal manner
1. Noninvasive prenatal detection of whether the fetus to be detected has the autosomal monogenic genetic disease gene mutation or not by adopting the kit prepared in example 1
23 fetal samples to be tested (the serial numbers of the fetal samples to be tested are shown in the 1 st column in the table 8) are taken and tested according to the method of the step A in the embodiment 2. Each sample to be tested consists of a plasma sample of a pregnant woman, a leucocyte sample of the pregnant woman and a peripheral blood sample of a pregnant woman husband.
The results are shown in columns 2-8 of Table 8.
2. Amniotic fluid gold label detection of whether fetus has monogenic hereditary disease gene mutation
23 fetal samples to be detected (the serial numbers of the fetal samples to be detected are shown in the 1 st column in the table 8) are taken for amniotic fluid gold mark detection.
The results are shown in Table 8, column 9.
TABLE 8
Figure BDA0002782009310000281
Figure BDA0002782009310000291
Some of the results are described below:
sample No. 1, mother has guanine to adenine heterozygous mutation at 589 th position of coding region of SLC26A4 (SLC26A4-589G > A), father has second nucleotide mutation from adenine to guanine at 7 th intron of the gene (SLC26A4-IVS7-2A > G). The kit prepared in example 1 is used for respectively detecting free plasma DNA and genomic DNA, the mutation frequency of a plasma sample of a pregnant woman at SLC26A4-589G > A is 0.36, the mutation frequency of a leucocyte sample of the pregnant woman at the position is 0.47, and the mutation frequency of the plasma sample is obviously lower than that of the leucocyte sample, so that the fact that a fetus does not have mutation at the position, namely the fetus does not carry a mutant mother at the position, is shown. Plasma blood samples from pregnant women were found to have no mutation at SLC26A4-IVS7-2A > G, indicating that the fetus did not have a mutation at this site, i.e., the fetus did not carry a paternal mutation at this site. Therefore, sample No. 1 is fetal normal. This result is in full agreement with the amniotic fluid results.
Sample No. 2, both mother and father, had the GJB2-235delC mutation. The kit prepared in example 1 is used for detecting plasma free DNA and genome DNA respectively, the mutation frequency of the plasma sample of the pregnant woman in GJB2-235delC is 0.51, and the mutation frequency of the leucocyte sample of the pregnant woman in the site is 0.48. Indicating that the fetus has heterozygous mutation at this site. Therefore, fetus No. 2 is heterozygous for the mutation at GJB2-235delC (i.e., the fetus is heterozygous for the mutation). This result is consistent with the amniotic fluid results.
Sample No. 3, the mother did not find a mutation in ATP7B, and the father was heterozygous for both ATP7B coding region 2333 (ATP7B-2333G > T) and 2975 (ATP7B-2975C > T). The kit prepared in example 1 is used for detecting free DNA and genomic DNA of plasma respectively, the mutation frequency of the plasma sample of the pregnant woman in ATP7B-2333G > T is 0.15, and the leucocyte sample of the pregnant woman does not have mutation in ATP7B gene, which indicates that the fetus carries father mutation in ATP7B-2333G > T. Therefore, the fetus in the No. 3 sample is heterozygous for the mutation (i.e. the fetus is heterozygous for the mutation) in ATP7B-2333G > T. This result is consistent with the amniotic fluid results.
Sample No. 4, the mother had a guanine to adenine heterozygous mutation at position 9 of the coding region of the gene GJB2 (GJB2-9G > A) and the father had a GJB2-235delC mutation. The kit prepared in the embodiment 1 is used for respectively detecting plasma free DNA and genome DNA, the mutation frequency of a plasma sample of a pregnant woman in GJB2-9G > A is 0.28, the mutation frequency of a leucocyte sample of the pregnant woman at the site is 0.47, and the mutation frequency of the plasma sample is obviously lower than that of the leucocyte sample, so that the fact that no mutation exists in the site in the No. 4 fetal sample is shown, namely, the fetus does not carry maternal mutation at the site; the mutation frequency of the pregnant woman peripheral blood sample at the GJB2-235delC site is 0.15, and the pregnant woman leukocyte sample has no mutation at the site, which indicates that the fetus carries the father mutation at the site. Therefore, fetus No. 4 is heterozygous for the mutation at GJB2-235delC (i.e., the fetus is heterozygous for the mutation). This result is consistent with the amniotic fluid results.
Sample No. 5, both mother and father, had the SLC26A4-IVS7-2A > G mutation. The kit prepared in example 1 is used for detecting free plasma DNA and genomic DNA respectively, the mutation frequency of plasma samples of pregnant women at SLC26A4-IVS7-2A > G is 0.61, and the mutation frequency of leucocyte samples of pregnant women at the position is 0.51. The mutation frequency of the plasma sample was significantly higher than that of the leukocyte sample, indicating that the fetus was homozygous for the mutation at that site. Therefore, the fetus of sample No. 5 is homozygous for the mutation at SLC26A4-IVS7-2A > G, i.e., the fetus sample No. 5 has Pendred's syndrome. This result is consistent with the amniotic fluid results.
The result shows that the kit prepared in the embodiment 1 can non-invasively detect whether the fetus to be detected has the autosomal single gene genetic disease gene mutation or not in the prenatal period and has higher accuracy.
Secondly, the kit prepared in the embodiment 1 is adopted to detect whether the fetus to be detected has X chromosome monogenic genetic disease gene mutation or not in a noninvasive prenatal manner
1. Noninvasive prenatal detection of whether X chromosome monogenic genetic disease gene mutation exists in fetus to be detected by adopting kit prepared in example 1
5 fetal samples to be tested (the serial numbers of the fetal samples to be tested are shown in the 1 st column in the table 9) are taken and tested according to the method of the step A in the embodiment 2. Each sample to be tested consists of a plasma sample of a pregnant woman, a leucocyte sample of the pregnant woman and a peripheral blood sample of a pregnant woman husband.
The results are shown in columns 2-9 of Table 9.
TABLE 9
Figure BDA0002782009310000301
Figure BDA0002782009310000311
2. Amniotic fluid gold marker for detecting whether fetus has monogenic genetic disease gene mutation
5 fetal amniotic fluid samples to be detected (the serial numbers of the fetal samples to be detected are shown in the 1 st column in the table 9) are taken for carrying out amniotic fluid gold-labeled detection.
The results are shown in column 10 of Table 9.
The result shows that the kit prepared in the embodiment 1 can non-invasively detect whether the fetus to be detected has X chromosome monogenic genetic disease gene mutation or not in the prenatal period and has higher accuracy.
<110> Beijing Makino Gene science and technology Co., Ltd
<120> a kit for detecting 50 genetic disease single gene mutations and probe set used by the same
<160> 1067
<170> PatentIn version 3.5
<210> 1
<211> 108
<212> DNA
<213>Artificial sequence
<400> 1
gactacatgg gacatgcaca ggctcctgcg cctccagctg cccagagttc ctttctggct 60
gcaggaacga gcggtgtgaa agatcagtcc tgttacgtcg taggttcc 108
<210> 2
<211> 108
<212> DNA
<213>Artificial sequence
<400> 2
gactacatgg gacattgtgg actgcataag cagcaggggt acctgggctt gtcgactggc 60
tccagcagct cgagggtgca gagggaggtc atgtacgtcg taggttcc 108
<210> 3
<211> 108
<212> DNA
<213>Artificial sequence
<400> 3
gactacatgg gacatcctgg tccagtgtgg tctgtgtgac tgagtactcc tcgatgagca 60
ggctgtcctt gtgggagagg aggagctgga agatacgtcg taggttcc 108
<210> 4
<211> 108
<212> DNA
<213>Artificial sequence
<400> 4
gactacatgg gacatgggca cgccccacca tctgcttact tggacttgag atgctgaatg 60
gtgcccatac atcgaaaggc gccctttacc atgtacgtcg taggttcc 108
<210> 5
<211> 108
<212> DNA
<213>Artificial sequence
<400> 5
gactacatgg gacatgatga tgctcacgat gacgttccac agcatgcggc gtgcctgggg 60
gtccatccct gtggtgggct catcctgggg ggttacgtcg taggttcc 108
<210> 6
<211> 108
<212> DNA
<213>Artificial sequence
<400> 6
gactacatgg gacattacca gcagcaccag cggtgggcag ccaatgagtg cgatggctgt 60
ggagagtttc cgcttgttgc ccccactgta cgttacgtcg taggttcc 108
<210> 7
<211> 108
<212> DNA
<213>Artificial sequence
<400> 7
gactacatgg gacatccttt tcgatttctt ctgctggtac acctcgaagc cgggcataaa 60
ggtaaagatg ttctcgtcct gtgagcagct cattacgtcg taggttcc 108
<210> 8
<211> 108
<212> DNA
<213>Artificial sequence
<400> 8
gactacatgg gacataggag caggatactc acctcttgcc tgctacggtg gcatcccctg 60
aggtcactgt ggtgtcccca gtgagcatct tgatacgtcg taggttcc 108
<210> 9
<211> 108
<212> DNA
<213>Artificial sequence
<400> 9
gactacatgg gacatgttcg gaagcctttc acacgtggtc tgcagagtac ccacctctcc 60
agggcgaact ccgacacaca gcctgtccac tgctacgtcg taggttcc 108
<210> 10
<211> 108
<212> DNA
<213>Artificial sequence
<400> 10
gactacatgg gacatattcc cttaccttgg ttagttcatg tagccttaag atgtcagttt 60
tatttccacc agtaataatt ctttgtcttt ctttacgtcg taggttcc 108
<210> 11
<211> 108
<212> DNA
<213>Artificial sequence
<400> 11
gactacatgg gacatacgta ccattgggag aggaagaagt ggcgctggac cagcagggtc 60
aggaggaagt acaccacccc ttccaccacc atgtacgtcg taggttcc 108
<210> 12
<211> 108
<212> DNA
<213>Artificial sequence
<400> 12
gactacatgg gacataccac ccaccaaacc gggcatagac atctgtcaca gcctggctca 60
gtgcaaggtc aatgaggccc cggcccaggc agatacgtcg taggttcc 108
<210> 13
<211> 108
<212> DNA
<213>Artificial sequence
<400> 13
gactacatgg gacatcccgg ttattctcaa ataattccaa gatgaaggta atagcactgc 60
tgttgatgcc gatgaacaga ttagcacaag atatacgtcg taggttcc 108
<210> 14
<211> 108
<212> DNA
<213>Artificial sequence
<400> 14
gactacatgg gacatccaaa cggcttaccc atacagcagg agcagtgcca caagggcagg 60
aaggttttct ggagaagtgt aggctttctt ctgtacgtcg taggttcc 108
<210> 15
<211> 108
<212> DNA
<213>Artificial sequence
<400> 15
gactacatgg gacatcgatg tcccagagga agttggtcac ccagtaggtg gtggggctca 60
ctccactgat aaactggagg tgcttggatt tgttacgtcg taggttcc 108
<210> 16
<211> 108
<212> DNA
<213>Artificial sequence
<400> 16
gactacatgg gacatcactg taatctctga gagctgctcc ttggtcaggt tcaggggttg 60
gctaatgacg gtgattccat actcctcggg gcttacgtcg taggttcc 108
<210> 17
<211> 108
<212> DNA
<213>Artificial sequence
<400> 17
gactacatgg gacatagctc cagagcagat tatacatagg tcaagtacct taatgttgtc 60
ttcagtttct agatgtttaa ggaaatcagg tattacgtcg taggttcc 108
<210> 18
<211> 108
<212> DNA
<213>Artificial sequence
<400> 18
gactacatgg gacattccag tctgtttaca taccccgctc acattcatga tccggccaag 60
gtcgcttaaa aacccaacaa gtgcttcccc cgttacgtcg taggttcc 108
<210> 19
<211> 108
<212> DNA
<213>Artificial sequence
<400> 19
gactacatgg gacatatttc aacaatgaat caatctgaga ttttaattct gataaaaata 60
gtttcttacc tctgttcatt gacccagaat ttgtacgtcg taggttcc 108
<210> 20
<211> 108
<212> DNA
<213>Artificial sequence
<400> 20
gactacatgg gacatagcat aaaaggattt cttcttacct gcttcttata agagcaggat 60
acgtttttac caagaagtcg gagatgttcc tgttacgtcg taggttcc 108
<210> 21
<211> 108
<212> DNA
<213>Artificial sequence
<400> 21
gactacatgg gacatcctgg gggggcggga ggcccccggc accctcgggg cactctggca 60
gcatggtgag cttctccctg gtgctgcacc tgctacgtcg taggttcc 108
<210> 22
<211> 108
<212> DNA
<213>Artificial sequence
<400> 22
gactacatgg gacatcaggg gcgcgtaggc acttacggaa gccacccttc cttcaggcag 60
cggttgccaa agcctggctt attcaggagg acgtacgtcg taggttcc 108
<210> 23
<211> 108
<212> DNA
<213>Artificial sequence
<400> 23
gactacatgg gacatccgcg cacctgaaga aggtgtactg ctgcccatat atccaggggt 60
gaagggtcaa agcggggtat tcgccaaaag gagtacgtcg taggttcc 108
<210> 24
<211> 108
<212> DNA
<213>Artificial sequence
<400> 24
gactacatgg gacatcctgc gccaggaagt ccttgtggct gcggatggtg tgttggaatc 60
tcttgaccag cagcgcctgc acatgctgga ggatacgtcg taggttcc 108
<210> 25
<211> 108
<212> DNA
<213>Artificial sequence
<400> 25
gactacatgg gacatggagg gaggcaagga agggaacaag ccactggctc cagcaccata 60
cccgcaaaca gaggtcctga atcagaatcc tcctacgtcg taggttcc 108
<210> 26
<211> 108
<212> DNA
<213>Artificial sequence
<400> 26
gactacatgg gacatcctct tccaggggag tgtcagaaat tccaaaactg ctgagaccaa 60
ggtcagccag cgtctcctcc agctctctga aaatacgtcg taggttcc 108
<210> 27
<211> 108
<212> DNA
<213>Artificial sequence
<400> 27
gactacatgg gacataccca agtatggccc gtccagtcct taccatccag gacttgttct 60
ggagttaggt catcgacgtg ggctggacac gtgtacgtcg taggttcc 108
<210> 28
<211> 108
<212> DNA
<213>Artificial sequence
<400> 28
gactacatgg gacatcctca ctgcctttcc tttggctctg gatgtttttc atcttgcgca 60
ccaaggttaa gtacaagcct gtgccaaagc agttacgtcg taggttcc 108
<210> 29
<211> 108
<212> DNA
<213>Artificial sequence
<400> 29
gactacatgg gacatacctg agcgatactt caggagcaga tcccagattg agcgtctcga 60
gtaagggtcc accccagagg tgggttcgtc cagtacgtcg taggttcc 108
<210> 30
<211> 108
<212> DNA
<213>Artificial sequence
<400> 30
gactacatgg gacatcctga taggtcctga gcctcttcat tccgcttgtg gtggaggcct 60
gtgtcctcca acatggcttc catctccagc tggtacgtcg taggttcc 108
<210> 31
<211> 108
<212> DNA
<213>Artificial sequence
<400> 31
gactacatgg gacatcttac tggtggaaca ggatgttgtg ctgtggacac atgccaaggc 60
tctgccggac tgcatccagg ctggtttcaa tgttacgtcg taggttcc 108
<210> 32
<211> 108
<212> DNA
<213>Artificial sequence
<400> 32
gactacatgg gacatcaagg tggtggtttt cccagctcca ttgtggccca ggaatgcggt 60
gatctggttc tcgtagaagg tgatgttcag acgtacgtcg taggttcc 108
<210> 33
<211> 108
<212> DNA
<213>Artificial sequence
<400> 33
gactacatgg gacatctgtg tattctttat cggggtttta ccgtgtattc cttctgggtg 60
ctctggatcc tccgtttcct ctgttagggg ctctacgtcg taggttcc 108
<210> 34
<211> 108
<212> DNA
<213>Artificial sequence
<400> 34
gactacatgg gacatgattt caaacattaa gatttgtgtt ttaaaggact caccttcacc 60
gccaagccaa tacgactctt gtagaagaaa gtatacgtcg taggttcc 108
<210> 35
<211> 108
<212> DNA
<213>Artificial sequence
<400> 35
gactacatgg gacatcctgg aaacacctga tcaaggtacc aagcgagtaa gccatagaca 60
gcagcatcaa ggagcatcat ctgcatggac agctacgtcg taggttcc 108
<210> 36
<211> 108
<212> DNA
<213>Artificial sequence
<400> 36
gactacatgg gacatccaca gccttcttca gctcagcggt catgcggtcc tgccaggcga 60
agcacaggat gtgtggcagg tagagggtga aattacgtcg taggttcc 108
<210> 37
<211> 108
<212> DNA
<213>Artificial sequence
<400> 37
gactacatgg gacatccatg atgaatatcg tcaggaggaa gatgctcatc gacatgatgg 60
agaagctgtc caggaaccag gtacaccaaa tcatacgtcg taggttcc 108
<210> 38
<211> 108
<212> DNA
<213>Artificial sequence
<400> 38
gactacatgg gacatcgaat cgtccacgaa gcaggggtag ggcatctgct ggaggtagat 60
tccaactgga gcctccgcct gcacctggct ccttacgtcg taggttcc 108
<210> 39
<211> 108
<212> DNA
<213>Artificial sequence
<400> 39
gactacatgg gacatatact tcacgtgggg tggtagagag ctggtccagg gatacatgtc 60
agggaatacc actccggccc agaacatgtt ttctacgtcg taggttcc 108
<210> 40
<211> 108
<212> DNA
<213>Artificial sequence
<400> 40
gactacatgg gacatcctcc aggtattgat tgaccaggcg gagggtgcga tcagtgatgt 60
taaatatgtc cctccagtcg aagttggcca tgttacgtcg taggttcc 108
<210> 41
<211> 108
<212> DNA
<213>Artificial sequence
<400> 41
gactacatgg gacataaccc cccttactct gatcatgttc atctgtgtgc tgttgtcaaa 60
gaagtaccag atctggggcc ctacttcttc ccatacgtcg taggttcc 108
<210> 42
<211> 108
<212> DNA
<213>Artificial sequence
<400> 42
gactacatgg gacatcattc ttcagtatcc ttcgtgctgc aggtgaatca ggagtgtaca 60
ggatttttcc catcagcaaa ggctttgccg ccctacgtcg taggttcc 108
<210> 43
<211> 108
<212> DNA
<213>Artificial sequence
<400> 43
gactacatgg gacatcttgt tcttctgtca taagaataga taggatcctt ccttgtggag 60
tcaatcccca gaaaggcctt atagttattg tcttacgtcg taggttcc 108
<210> 44
<211> 108
<212> DNA
<213>Artificial sequence
<400> 44
gactacatgg gacatataat tactaccatc aggctactca cctcttgaat tcttggtgac 60
atatcagata atattcctcc ccaagatctc agatacgtcg taggttcc 108
<210> 45
<211> 108
<212> DNA
<213>Artificial sequence
<400> 45
gactacatgg gacatccaca cggaagagct tgaagaagtc cacgttggca tacagagtgt 60
cttctatcca ctgtagggtg ccctgggaga gggtacgtcg taggttcc 108
<210> 46
<211> 108
<212> DNA
<213>Artificial sequence
<400> 46
gactacatgg gacatcccct acctgctctg gacggacttg agagttgatc agaaggtaga 60
ccactgagtc agacaggccg atgtttttaa tgatacgtcg taggttcc 108
<210> 47
<211> 108
<212> DNA
<213>Artificial sequence
<400> 47
gactacatgg gacatcctgc aattctctcc gggtgagtcc ggagggtgtc catgaattgg 60
gacaagatgt gtagctctgt ccaaatacgg ccatacgtcg taggttcc 108
<210> 48
<211> 108
<212> DNA
<213>Artificial sequence
<400> 48
gactacatgg gacatcatgg agttgttata gtttgacaca attccaggag attctcctgg 60
ggtggggctt tgaaaacagg gattgttcac atttacgtcg taggttcc 108
<210> 49
<211> 108
<212> DNA
<213>Artificial sequence
<400> 49
gactacatgg gacatcccaa gctaccctgc tatgcttaca ttcatgatgg ctgtagagtg 60
ggttggcatt ccttaaccag atcaagacca gaatacgtcg taggttcc 108
<210> 50
<211> 108
<212> DNA
<213>Artificial sequence
<400> 50
gactacatgg gacatccaca cctcattttt aaaccacaga cagtaactgt taccttttgc 60
cttttccgca gggtccagtt cttccagagc aaatacgtcg taggttcc 108
<210> 51
<211> 108
<212> DNA
<213>Artificial sequence
<400> 51
gactacatgg gacatcatgc cggtgctctc caggccccgg ccctggcggg ggaacacgct 60
gaagcgcacg gccgtgctcc tggccctcgc ggctacgtcg taggttcc 108
<210> 52
<211> 108
<212> DNA
<213>Artificial sequence
<400> 52
gactacatgg gacatggccc tgctacagcg ctcctaccag gacctggcct cgcagatcaa 60
cctcatcctt ctggaacgcc tgtggtatgt tattacgtcg taggttcc 108
<210> 53
<211> 108
<212> DNA
<213>Artificial sequence
<400> 53
gactacatgg gacataaggc agccttggaa aagaaggagg aggagctggt gagcgagcgc 60
acagaagcct tcactattgc ccgcaacctc ctgtacgtcg taggttcc 108
<210> 54
<211> 108
<212> DNA
<213>Artificial sequence
<400> 54
gactacatgg gacatctaca cagcccgggt gcacgagatg ttccaggtat ttgaagatgt 60
tcagcgctgt cacttcaaga ggcccaggga gcttacgtcg taggttcc 108
<210> 55
<211> 108
<212> DNA
<213>Artificial sequence
<400> 55
gactacatgg gacatgcccc gctgtgctgt ctctgcaggc caggtggtgg atgtggaaca 60
ggggatcatc tgcgagaaca tccccatcgt cactacgtcg taggttcc 108
<210> 56
<211> 108
<212> DNA
<213>Artificial sequence
<400> 56
gactacatgg gacatggtgg aggaaggcat gcatctgctc atcacaggcc ccaatggctg 60
cggcaagagc tccctgttcc ggatcctggg tggtacgtcg taggttcc 108
<210> 57
<211> 108
<212> DNA
<213>Artificial sequence
<400> 57
gactacatgg gacattgaaa gatttcaaat cctctagaag ccaaaatggg acacagtaaa 60
cagattcgaa ttttacttct gaacgaaatg gagtacgtcg taggttcc 108
<210> 58
<211> 108
<212> DNA
<213>Artificial sequence
<400> 58
gactacatgg gacatgggta tgagctacag ttccgattag gcccaacttt acagggaaaa 60
gcagttaccg tgtatacaaa ttacccattt ccttacgtcg taggttcc 108
<210> 59
<211> 108
<212> DNA
<213>Artificial sequence
<400> 59
gactacatgg gacatgaaat gagaaaagtg gtggaggtta catagttgtg gaccccattt 60
tacgtgttgg tgctgataat catgtgctac ccttacgtcg taggttcc 108
<210> 60
<211> 108
<212> DNA
<213>Artificial sequence
<400> 60
gactacatgg gacatggcta caacatgatt cattttaccc cattgcagac tcttggacta 60
tctaggtcat gctactccct tgccaatcag ttatacgtcg taggttcc 108
<210> 61
<211> 108
<212> DNA
<213>Artificial sequence
<400> 61
gactacatgg gacatgctgc taatagtaaa tggatccagg aacatccaga atgtgcctat 60
aatcttgtga attctccaca cttaaaacct gcctacgtcg taggttcc 108
<210> 62
<211> 108
<212> DNA
<213>Artificial sequence
<400> 62
gactacatgg gacatattga catttttcag tccatccgaa aaataatttg ggaggatatt 60
tttccaaagc ttaaactctg ggaatttttc caatacgtcg taggttcc 108
<210> 63
<211> 108
<212> DNA
<213>Artificial sequence
<400> 63
gactacatgg gacatttctt ttagaaaata ggcgagtaac caagtctgat ccaaaccaac 60
accttacgat tattcaagat cctgaataca gactacgtcg taggttcc 108
<210> 64
<211> 108
<212> DNA
<213>Artificial sequence
<400> 64
gactacatgg gacatatttc tccatctgct ctagcaaggg gccagcagca attgaagaat 60
gctgtaattg gtttcataaa agaatggagg aattacgtcg taggttcc 108
<210> 65
<211> 108
<212> DNA
<213>Artificial sequence
<400> 65
gactacatgg gacataacac aatttaatgt ttttcaggca gttaattgcc ttttgggaaa 60
tgtgttttat gaacgactgg ctggccatgg tcctacgtcg taggttcc 108
<210> 66
<211> 108
<212> DNA
<213>Artificial sequence
<400> 66
gactacatgg gacatggtat tttactttcc catttgaaga gatagacttc tccatggaag 60
aatctatgat tcatctgcca aataaagctt gtttacgtcg taggttcc 108
<210> 67
<211> 108
<212> DNA
<213>Artificial sequence
<400> 67
gactacatgg gacatggttc agaagtttac ctaaggagag aacttatttg ctggggagac 60
agtgttaaat tacgctatgg gaataaacca gagtacgtcg taggttcc 108
<210> 68
<211> 108
<212> DNA
<213>Artificial sequence
<400> 68
gactacatgg gacatttttt acagtacatg ttggatgctg ctaggaattt gcaacccaat 60
ttatatgtag tagctgaact gttcacagga agttacgtcg taggttcc 108
<210> 69
<211> 108
<212> DNA
<213>Artificial sequence
<400> 69
gactacatgg gacatgaggc aatgagtgca tataatagtc atgaagaggg cagattagtt 60
taccgatatg gaggagaacc tgttggatcc ttttacgtcg taggttcc 108
<210> 70
<211> 108
<212> DNA
<213>Artificial sequence
<400> 70
gactacatgg gacatttgtt gttgttgtct tctagcatag atcagcgtat gatgctcttc 60
caagtactac aattgtttct atggcatgtt gtgtacgtcg taggttcc 108
<210> 71
<211> 108
<212> DNA
<213>Artificial sequence
<400> 71
gactacatgg gacatgattt cagtggtttc tgaagaacgg ttttacacta agtggaatcc 60
tgaagcattg ccttcaaaca caggtgaagt taatacgtcg taggttcc 108
<210> 72
<211> 108
<212> DNA
<213>Artificial sequence
<400> 72
gactacatgg gacatggtgt atgtggatca agttgatgaa gacatagtgg cagtaacaag 60
acactcacct agcatccatc agtctgttgt ggctacgtcg taggttcc 108
<210> 73
<211> 108
<212> DNA
<213>Artificial sequence
<400> 73
gactacatgg gacatattcc taggcaaaat tgaagaagta gttcttgaag ctagaactat 60
tgagagaaac acgaaacctt ataggaagga tgatacgtcg taggttcc 108
<210> 74
<211> 108
<212> DNA
<213>Artificial sequence
<400> 74
gactacatgg gacattactt tttttcaagc ttaatgaaag taaaattgtt aaacaagctg 60
gagttgccac aaaagggccc aatgaatata ttctacgtcg taggttcc 108
<210> 75
<211> 108
<212> DNA
<213>Artificial sequence
<400> 75
gactacatgg gacatcagag ttagtcttga tccacatgca caagtcgctg ttggaattct 60
tcgaaatcat ctgacacaat tcagtcctca ctttacgtcg taggttcc 108
<210> 76
<211> 108
<212> DNA
<213>Artificial sequence
<400> 76
gactacatgg gacatcttag tcttgcctcc agattaactt tggctgagct aaatcagatc 60
ctttaccgat gtgaatcaga agaaaaggaa gattacgtcg taggttcc 108
<210> 77
<211> 108
<212> DNA
<213>Artificial sequence
<400> 77
gactacatgg gacataggtt taatgtctgt attggcagaa ataagaccaa agaatgactt 60
ggggcatcct ttttgtaata atttgagatc tggtacgtcg taggttcc 108
<210> 78
<211> 108
<212> DNA
<213>Artificial sequence
<400> 78
gactacatgg gacatacagg ttggtaaatg gttgcaggct atgttcttct acctgaagca 60
gatcccacgt taccttatcc catgttactt tgatacgtcg taggttcc 108
<210> 79
<211> 108
<212> DNA
<213>Artificial sequence
<400> 79
gactacatgg gacatgcttt gttcagaatg gttcaacctt tgtgaaacac ctttcattgg 60
gttcagttca actgtgtgga gtaggaaaat tcctacgtcg taggttcc 108
<210> 80
<211> 108
<212> DNA
<213>Artificial sequence
<400> 80
gactacatgg gacatgttgt gttttttttg ttaggcttac ctcatttttc ttctggtatt 60
ttccgctgct ggggaaggga tacttttatt gcatacgtcg taggttcc 108
<210> 81
<211> 108
<212> DNA
<213>Artificial sequence
<400> 81
gactacatgg gacatggaat attattttag catttgcggg taccctgagg catggtctca 60
ttcctaatct actgggtgaa ggaatttatg ccatacgtcg taggttcc 108
<210> 82
<211> 108
<212> DNA
<213>Artificial sequence
<400> 82
gactacatgg gacatttatg tctcaaacag gatcagccat tgtttgaagt catacaggaa 60
gcaatgcaaa aacacatgca gggcatacag ttctacgtcg taggttcc 108
<210> 83
<211> 108
<212> DNA
<213>Artificial sequence
<400> 83
gactacatgg gacattaggt tttaatataa ctgcaggagt tgatgaagaa acaggatttg 60
tttatggagg aaatcgtttc aattgtggca cattacgtcg taggttcc 108
<210> 84
<211> 108
<212> DNA
<213>Artificial sequence
<400> 84
gactacatgg gacatttttt taattttaga gatgggtctg ctgtggaaat tgtgggcctg 60
agtaaatctg ctgttcgctg gttgctggaa ttatacgtcg taggttcc 108
<210> 85
<211> 108
<212> DNA
<213>Artificial sequence
<400> 85
gactacatgg gacatggaaa ggctataaag gtctcatatg atgagtggaa cagaaaaata 60
caagacaact ttgaaaagct atttcatgtt tcctacgtcg taggttcc 108
<210> 86
<211> 108
<212> DNA
<213>Artificial sequence
<400> 86
gactacatgg gacatatttg tttttggcat tcactaggcc cctgagctct ttactacaga 60
aaaagcatgg aaagctttgg agattgcaga aaatacgtcg taggttcc 108
<210> 87
<211> 108
<212> DNA
<213>Artificial sequence
<400> 87
gactacatgg gacatttaac ttaaatttca atcattttgc agtgatatgg tttactgtgg 60
aatttatgac aatgcattag acaatgacaa ctatacgtcg taggttcc 108
<210> 88
<211> 108
<212> DNA
<213>Artificial sequence
<400> 88
gactacatgg gacatttagg agtggctgtg gcctattggg tattttcttc gtgcaaaatt 60
atatttttcc agattgatgg gcccggagac tactacgtcg taggttcc 108
<210> 89
<211> 108
<212> DNA
<213>Artificial sequence
<400> 89
gactacatgg gacattcttt cattcagatc cccttggaaa ggacttccag aactgaccaa 60
tgagaatgcc cagtactgtc ctttcagctg tgatacgtcg taggttcc 108
<210> 90
<211> 108
<212> DNA
<213>Artificial sequence
<400> 90
gactacatgg gacatatcag atgtactgct cctcatccct gccattcagg agcagagacc 60
acttgtcccc atcatcgtct gctgcagcgc tgttacgtcg taggttcc 108
<210> 91
<211> 108
<212> DNA
<213>Artificial sequence
<400> 91
gactacatgg gacattccac ctgaggggac tcaccacttg agctgcaggg atgagagcac 60
cacagacaca gaggaggctg ccatggccgc tgatacgtcg taggttcc 108
<210> 92
<211> 108
<212> DNA
<213>Artificial sequence
<400> 92
gactacatgg gacatagagc tgcctacctg ctgcaatggg tatcccaacc aggttataaa 60
tcagtgccag gaccaggttg atgcgtatcc ttctacgtcg taggttcc 108
<210> 93
<211> 108
<212> DNA
<213>Artificial sequence
<400> 93
gactacatgg gacatctctg ataaggacga cgtcggctgc ctcgatggcc acatccgtgc 60
cggtgccaat ggccacaccc atgtctgcct gggtacgtcg taggttcc 108
<210> 94
<211> 108
<212> DNA
<213>Artificial sequence
<400> 94
gactacatgg gacatcctgg gtggcaatag ctctggctgt cttccggttg tcccccgtga 60
tcagaaccac gtccacaccc atgctctgca gcgtacgtcg taggttcc 108
<210> 95
<211> 108
<212> DNA
<213>Artificial sequence
<400> 95
gactacatgg gacatccgtc aatagccacc aggatggctg tctgtccttt catctcgtgg 60
tctgtcatag cgtcactgac atcgctagaa atgtacgtcg taggttcc 108
<210> 96
<211> 108
<212> DNA
<213>Artificial sequence
<400> 96
gactacatgg gacatccttt ttctgcggga aggctgccag cctcattcag gtgactggcc 60
ggtgcactca aagggcgctc actgtgggcc aggtacgtcg taggttcc 108
<210> 97
<211> 108
<212> DNA
<213>Artificial sequence
<400> 97
gactacatgg gacatcctct ttacagtatt tggtgactgc cacgcccaag gggtgttcac 60
tgctggcctc cgcagtcccc accacagcca gaatacgtcg taggttcc 108
<210> 98
<211> 108
<212> DNA
<213>Artificial sequence
<400> 98
gactacatgg gacatccttg tgcgccatct ccaggggctt gcctcccttg atgaggatgc 60
cgttctgcgc ggccaccccg gtgcccacca tgatacgtcg taggttcc 108
<210> 99
<211> 108
<212> DNA
<213>Artificial sequence
<400> 99
gactacatgg gacattacag gaaagtatct ctgaacaaca ccaaaatcga taaaaccgat 60
tacaatccat accaccaacg tcaaagttga cattacgtcg taggttcc 108
<210> 100
<211> 108
<212> DNA
<213>Artificial sequence
<400> 100
gactacatgg gacatccttt gacatctgag cctcttccac cagtttcaca atctgagcca 60
aagtggtgtc attgcccacg tgggtagctt taatacgtcg taggttcc 108
<210> 101
<211> 108
<212> DNA
<213>Artificial sequence
<400> 101
gactacatgg gacatatctc acctgtgatg agggactcat cagccatggt attgccttcc 60
aggactttcc catccactgg aaactttccc ccatacgtcg taggttcc 108
<210> 102
<211> 108
<212> DNA
<213>Artificial sequence
<400> 102
gactacatgg gacataagac atttgataac cataactcac ctgatgatta aattgtcctc 60
accaagggtc acaacggtgg cttctgtggc ttgtacgtcg taggttcc 108
<210> 103
<211> 108
<212> DNA
<213>Artificial sequence
<400> 103
gactacatgg gacatccttt gccaagtgtt ccagccaccg gcccagggca atgaacacaa 60
agagcatggg gggcgtgtcg aagaatgtca cagtacgtcg taggttcc 108
<210> 104
<211> 108
<212> DNA
<213>Artificial sequence
<400> 104
gactacatgg gacatcctgg acaaaggtac acaagataaa gaagatgaga tttagaatgg 60
acagtcctgg aatgatgttg tggtccagga ccatacgtcg taggttcc 108
<210> 105
<211> 108
<212> DNA
<213>Artificial sequence
<400> 105
gactacatgg gacatgagct ggagtttatc ttttgtgttc tacctactgc tttatttcca 60
tcttgtggtc caagtgatga gcgttggggt ttctacgtcg taggttcc 108
<210> 106
<211> 108
<212> DNA
<213>Artificial sequence
<400> 106
gactacatgg gacatcctca ataattttga taatatcccg tggaccgata atttccgggt 60
caaacttaac aagggctttg ctggtggcaa gggtacgtcg taggttcc 108
<210> 107
<211> 108
<212> DNA
<213>Artificial sequence
<400> 107
gactacatgg gacatctgtc agctcaatgt tgccatcgga gcctgcgtag tcctccatga 60
ctgctgcctc aaaacccagg tcctggatga acttacgtcg taggttcc 108
<210> 108
<211> 108
<212> DNA
<213>Artificial sequence
<400> 108
gactacatgg gacatccagc ttctttctgc agattccttt ctatgttaga cacacaggat 60
gcacaggtca tgcctttgat ctgtaagaag cactacgtcg taggttcc 108
<210> 109
<211> 108
<212> DNA
<213>Artificial sequence
<400> 109
gactacatgg gacatccaga aacgactgaa gcctcaaatc ccatgtcttc tatagcagct 60
ctgagttctt ctgggctaat tacagaggga ttatacgtcg taggttcc 108
<210> 110
<211> 108
<212> DNA
<213>Artificial sequence
<400> 110
gactacatgg gacatggtgg gagtgagcac gctgcgcgga cgcgggggaa caaaactcac 60
tttccgactg gccccttctc tggctgtgat ctgtacgtcg taggttcc 108
<210> 111
<211> 108
<212> DNA
<213>Artificial sequence
<400> 111
gactacatgg gacatgaaga gaagtagaac caagaagctt attggcgagc tcaggattct 60
tcatccatga catctagaat attgctcaga agatacgtcg taggttcc 108
<210> 112
<211> 108
<212> DNA
<213>Artificial sequence
<400> 112
gactacatgg gacatcctca tgccagcaac tgtacatgat ggtatatacc ttctctgaag 60
ccagatgagg cctgtagaga cgtaggcctt gggtacgtcg taggttcc 108
<210> 113
<211> 108
<212> DNA
<213>Artificial sequence
<400> 113
gactacatgg gacattatcc acttaccaaa agcccaaatg tcagatttgc tgctgaactt 60
gctatacatc aggacttccg gtggggacca ccgtacgtcg taggttcc 108
<210> 114
<211> 108
<212> DNA
<213>Artificial sequence
<400> 114
gactacatgg gacattttac ttctggaggg aaagatgaaa aagccacact cacctggaca 60
ggccgaaatc agatacttta acaactcctt gattacgtcg taggttcc 108
<210> 115
<211> 108
<212> DNA
<213>Artificial sequence
<400> 115
gactacatgg gacatccagg tctcggtgaa ggaactgctt tgactccagg tattccatgg 60
cttcacagac atccttgcac atctctagca gcttacgtcg taggttcc 108
<210> 116
<211> 108
<212> DNA
<213>Artificial sequence
<400> 116
gactacatgg gacatcatca tgactttggc ttcttcaatg aattcatctt cagacatgga 60
gccttctttg atcatcttga tggccacgtc gtatacgtcg taggttcc 108
<210> 117
<211> 108
<212> DNA
<213>Artificial sequence
<400> 117
gactacatgg gacatagtcc accctacccc agagaaataa ggagttaccg tatcccaggc 60
ctgcagtgga aggtgcattc ttgttttgtt gagtacgtcg taggttcc 108
<210> 118
<211> 108
<212> DNA
<213>Artificial sequence
<400> 118
gactacatgg gacattactc acctgcagag ttgtgctgat ggtagttaat gagctcaggg 60
atggtgctga aaaggtgctt ctcagccagg taatacgtcg taggttcc 108
<210> 119
<211> 108
<212> DNA
<213>Artificial sequence
<400> 119
gactacatgg gacatgtcct cagggccttg gaatagtagc actcaccctg tggatttagc 60
aaacacagac actgtatatt tgccagcttt gcttacgtcg taggttcc 108
<210> 120
<211> 108
<212> DNA
<213>Artificial sequence
<400> 120
gactacatgg gacatcttat gcaaggagaa tgctgtgtgc tagtggttcc acacttacct 60
cttgctttag cagttgctca gcctgactcc gagtacgtcg taggttcc 108
<210> 121
<211> 108
<212> DNA
<213>Artificial sequence
<400> 121
gactacatgg gacattcctc ctggaagatt gtggactgac ataaacatac ttactcatac 60
atttctatgg agtcttctgc ttcagtgaca tagtacgtcg taggttcc 108
<210> 122
<211> 108
<212> DNA
<213>Artificial sequence
<400> 122
gactacatgg gacatcccat ttttatctcg tgctctccac catggtaagt tgctttcctc 60
caagataaaa tattcatcac ccttccgcag ctgtacgtcg taggttcc 108
<210> 123
<211> 108
<212> DNA
<213>Artificial sequence
<400> 123
gactacatgg gacatcattt aagcagtggc agcacccagt ttccctgtat acctggtcct 60
cctcaggcgt tgggggaaga ggcttttttg tcttacgtcg taggttcc 108
<210> 124
<211> 108
<212> DNA
<213>Artificial sequence
<400> 124
gactacatgg gacatgctta cttccattcc tgttctccaa aatttggcag cccatagcat 60
ttttggctgt ctgagagcag cagagatact gcctacgtcg taggttcc 108
<210> 125
<211> 108
<212> DNA
<213>Artificial sequence
<400> 125
gactacatgg gacatggaaa catttatttt ccaaataatt ctcaccgttt ttgagctggt 60
gaatccaccg cttccttagt tcttcagttg gggtacgtcg taggttcc 108
<210> 126
<211> 108
<212> DNA
<213>Artificial sequence
<400> 126
gactacatgg gacatgggcc tttcgagatt tggtgagaga aaataactca cctggaaggg 60
ataagggaac ctttcaatga ttgaaatttg ctctacgtcg taggttcc 108
<210> 127
<211> 108
<212> DNA
<213>Artificial sequence
<400> 127
gactacatgg gacatcagac attggtctct tcttaccgga atctgtcttt ctggaggagg 60
atttttttca ggaaccactg tttcaacaca agttacgtcg taggttcc 108
<210> 128
<211> 108
<212> DNA
<213>Artificial sequence
<400> 128
gactacatgg gacatcccca cgttcaaagt catactcata gtaggagagt ttgtgcacgg 60
tcaagagaaa caggcgcttc ttgaagttta gagtacgtcg taggttcc 108
<210> 129
<211> 108
<212> DNA
<213>Artificial sequence
<400> 129
gactacatgg gacatcatgc cgaccgtcat tagcgcatct gtggctccaa ggacagcggc 60
tgagccccgg tccccagggc cagttcctca ccctacgtcg taggttcc 108
<210> 130
<211> 108
<212> DNA
<213>Artificial sequence
<400> 130
gactacatgg gacatttatt cttacctggt catttccttt ttgtttcaca ggaaatttgc 60
gagaatcccc gatttatcat tgatggagcc aactacgtcg taggttcc 108
<210> 131
<211> 108
<212> DNA
<213>Artificial sequence
<400> 131
gactacatgg gacattctgc ctgcagggga ctgctggttt ctcgcagcca ttgcctgcct 60
gaccctgaac cagcaccttc ttttccgagt cattacgtcg taggttcc 108
<210> 132
<211> 108
<212> DNA
<213>Artificial sequence
<400> 132
gactacatgg gacatgcagt tctggcgcta tggagagtgg gtggacgtgg ttatagatga 60
ctgcctgcca acgtacaaca atcaactggt ttttacgtcg taggttcc 108
<210> 133
<211> 108
<212> DNA
<213>Artificial sequence
<400> 133
gactacatgg gacatggctc catggttcct acgaagctct gaaaggtggg aacaccacag 60
aggccatgga ggacttcaca ggaggggtgg cagtacgtcg taggttcc 108
<210> 134
<211> 108
<212> DNA
<213>Artificial sequence
<400> 134
gactacatgg gacatggatg gcacgaacat gacctatgga acctctcctt ctggtctgaa 60
catgggggag ttgattgcac ggatggtaag gaatacgtcg taggttcc 108
<210> 135
<211> 108
<212> DNA
<213>Artificial sequence
<400> 135
gactacatgg gacattaatg ggttctctgg ttactgctct acagacaatc attccggttc 60
agtatgagac aagaatggcc tgcgggctgg tcatacgtcg taggttcc 108
<210> 136
<211> 108
<212> DNA
<213>Artificial sequence
<400> 136
gactacatgg gacatgcatg agagctcttt ctgtgtgctt aaggtcccgt tcaaaggtga 60
gaaagtgaag ctggtgcggc tgcggaatcc gtgtacgtcg taggttcc 108
<210> 137
<211> 108
<212> DNA
<213>Artificial sequence
<400> 137
gactacatgg gacatctgct tccttaattc ctccattttc ccaccagatg gaaggactgg 60
agctttgtgg acaaagatga gaaggcccgt ctgtacgtcg taggttcc 108
<210> 138
<211> 108
<212> DNA
<213>Artificial sequence
<400> 138
gactacatgg gacatggatg tcctatgagg atttcatcta ccatttcaca aagttggaga 60
tctgcaacct cacggccgat gctctgcagt ctgtacgtcg taggttcc 108
<210> 139
<211> 108
<212> DNA
<213>Artificial sequence
<400> 139
gactacatgg gacatgatac tttctggacc aaccctcagt accgtctgaa gctcctggag 60
gaggacgatg accctgatga ctcggaggtg atttacgtcg taggttcc 108
<210> 140
<211> 108
<212> DNA
<213>Artificial sequence
<400> 140
gactacatgg gacattgcct tccgcaggct cctcatcctc attcacatct gaagcatctt 60
cctttctgtt tcttctcaag gttcccaaag aggtacgtcg taggttcc 108
<210> 141
<211> 108
<212> DNA
<213>Artificial sequence
<400> 141
gactacatgg gacatgatgc acgggaacaa gcagcacctg cagaaggact tcttcctgta 60
caacgcctcc aaggccagga gcaaaaccta cattacgtcg taggttcc 108
<210> 142
<211> 108
<212> DNA
<213>Artificial sequence
<400> 142
gactacatgg gacattcctg cttgcttctg gtgacactga gaccccacat gtctgtattc 60
ctcacaggga agttgaaaat accatctccg tggtacgtcg taggttcc 108
<210> 143
<211> 108
<212> DNA
<213>Artificial sequence
<400> 143
gactacatgg gacattggcg gttctgagaa cttacttttc acttattctg catttactgt 60
ttccttttct tatgcagaaa aagaaaaaaa ccatacgtcg taggttcc 108
<210> 144
<211> 108
<212> DNA
<213>Artificial sequence
<400> 144
gactacatgg gacatcctcc tctctccagc ccatcatctt cgtttcggac agagcaaaca 60
gcaacaagga gctgggtgtg gaccaggagt cagtacgtcg taggttcc 108
<210> 145
<211> 108
<212> DNA
<213>Artificial sequence
<400> 145
gactacatgg gacatctgtg aaccagtttt cctttgtgcc tccacagcca cagcctggca 60
gctctgatca ggaaagtgag gaacagcaac aattacgtcg taggttcc 108
<210> 146
<211> 108
<212> DNA
<213>Artificial sequence
<400> 146
gactacatgg gacatctgta ctcctgaacc atgaccctcc tctcccttcc tcctcaggac 60
atggagatct gtgcagatga gctcaagaag gtctacgtcg taggttcc 108
<210> 147
<211> 108
<212> DNA
<213>Artificial sequence
<400> 147
gactacatgg gacatgtctc aaagcagctc ctcactcttc tccatccccc cagacaagga 60
cctgaagaca cacgggttca cactggagtc ctgtacgtcg taggttcc 108
<210> 148
<211> 108
<212> DNA
<213>Artificial sequence
<400> 148
gactacatgg gacatgctgt gtgctgtgta gccctgacct ccctcctcca gacagatggc 60
tctggaaagc tcaacctgca ggagttccac cactacgtcg taggttcc 108
<210> 149
<211> 108
<212> DNA
<213>Artificial sequence
<400> 149
gactacatgg gacattgacc tccatcctca aattttctat tgccagaaaa ttttcaaaca 60
ctatgacaca gaccagtccg gcaccatcaa cagtacgtcg taggttcc 108
<210> 150
<211> 108
<212> DNA
<213>Artificial sequence
<400> 150
gactacatgg gacattcccc tccacaggat tccacctcaa caaccagctc tatgacatca 60
ttaccatgcg gtacgcagac aaacacatga acatacgtcg taggttcc 108
<210> 151
<211> 108
<212> DNA
<213>Artificial sequence
<400> 151
gactacatgg gacattgcgc ctgtaactgg cctctggcct gtgcattctt tcacaggagc 60
ttttcatgca tttgacaagg atggagatgg tattacgtcg taggttcc 108
<210> 152
<211> 108
<212> DNA
<213>Artificial sequence
<400> 152
gactacatgg gacatggggg ggggggggtc actcttttct gatctacatt ctgatcttgg 60
gacttctttc agtggctgca gctcaccatg tattacgtcg taggttcc 108
<210> 153
<211> 108
<212> DNA
<213>Artificial sequence
<400> 153
gactacatgg gacattttac aggaagcaga cagggccaac gtcgaagccg aattcctggt 60
ctggggcacc aacgtccaag ggggccacat cgatacgtcg taggttcc 108
<210> 154
<211> 108
<212> DNA
<213>Artificial sequence
<400> 154
gactacatgg gacatccgtg cagccatcga cagtgacgct gtaggtgaag cggctgttgc 60
cctcggcgcg gatctcgatc tcgttggagc ccttacgtcg taggttcc 108
<210> 155
<211> 108
<212> DNA
<213>Artificial sequence
<400> 155
gactacatgg gacatcctgg aatccatcgg tcatgctctc gccgaaccag acatgcctct 60
tgtccttggg gttcttgctg atgtaccagt tcttacgtcg taggttcc 108
<210> 156
<211> 108
<212> DNA
<213>Artificial sequence
<400> 156
gactacatgg gacatccact cttccagtca gagtggcaca tcttgaggtc acggcaggtg 60
cgggcggggt tcttgcggct gccctctggg ctctacgtcg taggttcc 108
<210> 157
<211> 108
<212> DNA
<213>Artificial sequence
<400> 157
gactacatgg gacatgatga ggggctacat acaacaggac cagcatcacc agtgcgaccg 60
cgaggaccag ggggcccaat ggggccaggg agatacgtcg taggttcc 108
<210> 158
<211> 108
<212> DNA
<213>Artificial sequence
<400> 158
gactacatgg gacatctggg cttggggctc aggaagagga gagagaaggc atgacttact 60
cggggaccag caggaccaga ggctccagag ggatacgtcg taggttcc 108
<210> 159
<211> 108
<212> DNA
<213>Artificial sequence
<400> 159
gactacatgg gacatgggct gagcatactt acaggagggc cagggggacc ctggaggcca 60
gagaagccac ggtgaccctt tatgcctctg tcgtacgtcg taggttcc 108
<210> 160
<211> 108
<212> DNA
<213>Artificial sequence
<400> 160
gactacatgg gacattctgt agagttctaa aggcatgggg gacacagcag ggtacttacg 60
gcggggccac gggcgccaac agggccgaca ggatacgtcg taggttcc 108
<210> 161
<211> 108
<212> DNA
<213>Artificial sequence
<400> 161
gactacatgg gacatggagc ccagctactt acagtctcac cacgatcacc actcttgcca 60
gcagggccaa cgggggggtc cagcggggcc ggttacgtcg taggttcc 108
<210> 162
<211> 108
<212> DNA
<213>Artificial sequence
<400> 162
gactacatgg gacatgaagc agcagacaag gctgtggtca tggagtgttg ccatcttacc 60
ttggcgccag gagaaccgtc tcgtccaggg gaatacgtcg taggttcc 108
<210> 163
<211> 108
<212> DNA
<213>Artificial sequence
<400> 163
gactacatgg gacatggctg gggactgctc acctcacgtc cagattcacc agggggtcca 60
gccaatccag gggggcccat gggaccaggg ggatacgtcg taggttcc 108
<210> 164
<211> 108
<212> DNA
<213>Artificial sequence
<400> 164
gactacatgg gacatgtgag gggggcactt acagaggggc caggaagacc agggaagcct 60
ctctctcctc tctgaccagg caggccgacc acatacgtcg taggttcc 108
<210> 165
<211> 108
<212> DNA
<213>Artificial sequence
<400> 165
gactacatgg gacatcagca ggaccatcag caccagggga tcctttctcg ccagcagggc 60
cagggggacc agggggacca acttcaccag gactacgtcg taggttcc 108
<210> 166
<211> 108
<212> DNA
<213>Artificial sequence
<400> 166
gactacatgg gacatagcac ccccaaccta gagcagtgga ctctgctgca gagacttaca 60
gaggggccag gaggaccgac tcggccagca gcatacgtcg taggttcc 108
<210> 167
<211> 108
<212> DNA
<213>Artificial sequence
<400> 167
gactacatgg gacattgggg agaggggaga ggctcaacag agaggcgggt gatactcaca 60
gggggaccag cgctgccgcg agcacctttg gcttacgtcg taggttcc 108
<210> 168
<211> 108
<212> DNA
<213>Artificial sequence
<400> 168
gactacatgg gacatagggc caagccactc acaatggggc cagggggtcc agcgggtccg 60
gcagggccag ggggaccagc atcgccttta gcatacgtcg taggttcc 108
<210> 169
<211> 108
<212> DNA
<213>Artificial sequence
<400> 169
gactacatgg gacatggtcc cagtcggtga tgaaaaatga tgggggtctt ggtactcaca 60
ggggggccag caaagccagc agggccgggg ggatacgtcg taggttcc 108
<210> 170
<211> 108
<212> DNA
<213>Artificial sequence
<400> 170
gactacatgg gacatgggaa gggccaagta tggggtctta acaggtcttc tgtacttacg 60
ggggcaccac gagctccagt gggaccagca gggtacgtcg taggttcc 108
<210> 171
<211> 108
<212> DNA
<213>Artificial sequence
<400> 171
gactacatgg gacatggagg cggccacctc accttgtcac caggggcacc agcagggcca 60
ggaggaccaa tggggccagt cagaccacgg acgtacgtcg taggttcc 108
<210> 172
<211> 108
<212> DNA
<213>Artificial sequence
<400> 172
gactacatgg gacatgggaa ggttgaactt actctgtcac ccttaggccc tggaagacca 60
gctgcaccac gttcaccagg cattccctga aggtacgtcg taggttcc 108
<210> 173
<211> 108
<212> DNA
<213>Artificial sequence
<400> 173
gactacatgg gacatcccct tccacgctgc cctcacctta gcaccatcgt tgccgggagc 60
accgttggcc cctcggggac cagcaggacc aggtacgtcg taggttcc 108
<210> 174
<211> 108
<212> DNA
<213>Artificial sequence
<400> 174
gactacatgg gacatgccaa gtacgacgca ccttgacgga tgcagcgaga gaggcctact 60
tactcttgct ccagaggggc caggggcgcc aagtacgtcg taggttcc 108
<210> 175
<211> 108
<212> DNA
<213>Artificial sequence
<400> 175
gactacatgg gacatattcc ctgcatctcc cacccctctg gccggctgct ccctcttacc 60
tgttcaccag gtttgcctgc ttcacctgga ggatacgtcg taggttcc 108
<210> 176
<211> 108
<212> DNA
<213>Artificial sequence
<400> 176
gactacatgg gacattccta cccctacctc ccagcatcct gacagccatg aggcctcacc 60
tggaatccgg gggagccagc agggccttgt tcatacgtcg taggttcc 108
<210> 177
<211> 108
<212> DNA
<213>Artificial sequence
<400> 177
gactacatgg gacatctccc cttttctgct ccccagatct ccccatcagg gacactcaca 60
gcagggccag ggggtccctg agctccagcc tcttacgtcg taggttcc 108
<210> 178
<211> 108
<212> DNA
<213>Artificial sequence
<400> 178
gactacatgg gacatgggca gcaatgggaa ggaggtaggg atggaaagga gatacttacg 60
acagcgccag ggggtccggg aacacctcgc tcttacgtcg taggttcc 108
<210> 179
<211> 108
<212> DNA
<213>Artificial sequence
<400> 179
gactacatgg gacatggatc ctcacttaat actcacagca gcacctttag gtccagggaa 60
tcccatcaca ccagcctgac cacgggcacc aggtacgtcg taggttcc 108
<210> 180
<211> 108
<212> DNA
<213>Artificial sequence
<400> 180
gactacatgg gacatgcaga caggacaatg gcagggggtt cagggggagt gatacttaca 60
ggggggccag ttttgccatc aggaccaggg ctgtacgtcg taggttcc 108
<210> 181
<211> 108
<212> DNA
<213>Artificial sequence
<400> 181
gactacatgg gacatgctga aagcctgggg cctcaccttg gcaccaggca gaccagcttc 60
accgggacga ccagcttcac caggagatcc ttttacgtcg taggttcc 108
<210> 182
<211> 108
<212> DNA
<213>Artificial sequence
<400> 182
gactacatgg gacatcaggg agcggcaggg tcagcccccc ggccgcaagg agaggttacc 60
ttgggaccag caacaccatc tgcgccaggg aaatacgtcg taggttcc 108
<210> 183
<211> 108
<212> DNA
<213>Artificial sequence
<400> 183
gactacatgg gacatcgggc agggacactt acacgctcgc cagggggtcc gggcaggcca 60
gtgggtccgg gttcacctcg agctcctcgc ttttacgtcg taggttcc 108
<210> 184
<211> 108
<212> DNA
<213>Artificial sequence
<400> 184
gactacatgg gacatggcag ggtgggctgg gctgcaagaa ggatggcggg gagacttaca 60
ggctctccct tagcaccagt gtctcctttg ctgtacgtcg taggttcc 108
<210> 185
<211> 108
<212> DNA
<213>Artificial sequence
<400> 185
gactacatgg gacataaggg agagtttggt actcacgctg ttacccttgg gaccaggagg 60
gccgccgggg ccctggggtc cagaggggcc tcgtacgtcg taggttcc 108
<210> 186
<211> 108
<212> DNA
<213>Artificial sequence
<400> 186
gactacatgg gacatcaggc tgcaggcggc aggagtggga ctgaagcctg gcaggatact 60
tacattggca cctttagcac caggctgtcc atctacgtcg taggttcc 108
<210> 187
<211> 108
<212> DNA
<213>Artificial sequence
<400> 187
gactacatgg gacatcactg agtcggggac acttacagca gggccagcag caccagcagg 60
gccagggggg ccaggctcac cacgcacacc ctgtacgtcg taggttcc 108
<210> 188
<211> 108
<212> DNA
<213>Artificial sequence
<400> 188
gactacatgg gacatttggc ccatgagggt catgcttaga ggagagtggg gggtctcacc 60
ttagcaccaa cagcaccagg gaagccagga ggatacgtcg taggttcc 108
<210> 189
<211> 108
<212> DNA
<213>Artificial sequence
<400> 189
gactacatgg gacatgagac ccctccccac tcccaggccc tgaggcctac aggccacact 60
cacagggggc ccggcagcac cagtagcacc atctacgtcg taggttcc 108
<210> 190
<211> 108
<212> DNA
<213>Artificial sequence
<400> 190
gactacatgg gacatccttc cagagctcag ggatccccca aggggccagg agtacttaca 60
gcagggccag gggctccagg gcgacctctc tcatacgtcg taggttcc 108
<210> 191
<211> 108
<212> DNA
<213>Artificial sequence
<400> 191
gactacatgg gacatcccct gcctcctgcc ccatccctgc cctctggaac tgggcacact 60
caccatctga ccaggagctc cattttcacc aggtacgtcg taggttcc 108
<210> 192
<211> 108
<212> DNA
<213>Artificial sequence
<400> 192
gactacatgg gacatactct ggggatgtgg aggaccatga tgttcagaca gcctcttacc 60
ttaggaccag caggaccagc atctcccttg gcatacgtcg taggttcc 108
<210> 193
<211> 108
<212> DNA
<213>Artificial sequence
<400> 193
gactacatgg gacatatgct agggacttgg ggagcttaaa tgactcaaag gtgactcact 60
ctgtgtccct tcattccagg gaggccagct gtttacgtcg taggttcc 108
<210> 194
<211> 108
<212> DNA
<213>Artificial sequence
<400> 194
gactacatgg gacatccaag tgcagtgaag cccaggttca gccacagccc cctgctcacc 60
tgaggcccag gaggcccacg ctcaccagga cgatacgtcg taggttcc 108
<210> 195
<211> 108
<212> DNA
<213>Artificial sequence
<400> 195
gactacatgg gacatgaggc catggggtca gatggtatct tcttgctggg gatacttaca 60
tcatctccat tctttccagg gggacctggg ggatacgtcg taggttcc 108
<210> 196
<211> 108
<212> DNA
<213>Artificial sequence
<400> 196
gactacatgg gacatgtgtg tttgtagaag gagtatgaat ctgtatagag agtgcttact 60
gaagctccag gctcgccagg ctcaccaggg ggatacgtcg taggttcc 108
<210> 197
<211> 108
<212> DNA
<213>Artificial sequence
<400> 197
gactacatgg gacataaaag accaaagccc aaggaggcat atgaagacgt cctggatact 60
cacaggtgca ccaggggggc cagggagacc acgtacgtcg taggttcc 108
<210> 198
<211> 108
<212> DNA
<213>Artificial sequence
<400> 198
gactacatgg gacatctctt ctgtcatcca tgctccccct gctggctcac catggggcca 60
ggcacggaaa ttcctccggt tgatttctca tcatacgtcg taggttcc 108
<210> 199
<211> 108
<212> DNA
<213>Artificial sequence
<400> 199
gactacatgg gacatactcc tccgaggcca gggaggctgt ccagggatgc catctcggcc 60
aggggggcct gcgggtccct gcagggggag aggtacgtcg taggttcc 108
<210> 200
<211> 108
<212> DNA
<213>Artificial sequence
<400> 200
gactacatgg gacatgccga gagccatgcc cacctgcagc cccccacagc ccagagtgca 60
acgcttaccc ttgggcctcg ggggccagtg tcttacgtcg taggttcc 108
<210> 201
<211> 108
<212> DNA
<213>Artificial sequence
<400> 201
gactacatgg gacatactgt gaggagtcac gggccgcgca ggggcaaaat tcgagggcag 60
gagattacct cgacgccggt ggtttcttgg tcgtacgtcg taggttcc 108
<210> 202
<211> 108
<212> DNA
<213>Artificial sequence
<400> 202
gactacatgg gacatcctga gccgtcgggg cagacgggac agcactcgcc ctcggggact 60
tcggcgccgg ggcagttctt ggtctcgtca cagtacgtcg taggttcc 108
<210> 203
<211> 108
<212> DNA
<213>Artificial sequence
<400> 203
gactacatgg gacatccaaa agtttgggac ttactgtctt cgtcttggcc ctcgacttgg 60
ccttcctctt ggccgtgcgt caggagggcg gtgtacgtcg taggttcc 108
<210> 204
<211> 108
<212> DNA
<213>Artificial sequence
<400> 204
gactacatgg gacattgctg aaggagctgc gggagccgga gaagaatgaa actgcgtgga 60
gtcagcctgg ctgccggctt gttcttactg gcctacgtcg taggttcc 108
<210> 205
<211> 108
<212> DNA
<213>Artificial sequence
<400> 205
gactacatgg gacataatga ttttttccct ctttctcttc cttataggct tgctatgggt 60
gttctccagg atcaaagtgt gactgcagtg gcatacgtcg taggttcc 108
<210> 206
<211> 108
<212> DNA
<213>Artificial sequence
<400> 206
gactacatgg gacatttctc atttaattgc agggagagag agggtttcca ggtttggaag 60
gacacccagg attgcctgga tttccaggtc cagtacgtcg taggttcc 108
<210> 207
<211> 108
<212> DNA
<213>Artificial sequence
<400> 207
gactacatgg gacattaaaa atattgcatt tttcagggtg atgatggaat tccagggcca 60
ccaggaccaa aaggaatcag agtaagtagt atttacgtcg taggttcc 108
<210> 208
<211> 108
<212> DNA
<213>Artificial sequence
<400> 208
gactacatgg gacattgcat ttttcagggt gatgatggaa ttccagggcc accaggacca 60
aaaggaatca gagtaagtag tattttctct atatacgtcg taggttcc 108
<210> 209
<211> 108
<212> DNA
<213>Artificial sequence
<400> 209
gactacatgg gacatatttt tatgggttgt catttagttt aaggatttta tttcttctta 60
tagggtcctc ctggacttcc tggatttcca gggtacgtcg taggttcc 108
<210> 210
<211> 108
<212> DNA
<213>Artificial sequence
<400> 210
gactacatgg gacatctaag acatattata catgtgttat gtcgcttttc aaagggaatg 60
ccaggccacg atggggcccc aggacctcaa ggttacgtcg taggttcc 108
<210> 211
<211> 108
<212> DNA
<213>Artificial sequence
<400> 211
gactacatgg gacatttgtt tcttgttcct ccatgctctt tatttttaac tccttctagg 60
gagaacgtgg atttccaggc agtcccggtt ttctacgtcg taggttcc 108
<210> 212
<211> 108
<212> DNA
<213>Artificial sequence
<400> 212
gactacatgg gacataattg gcgtgtttct ctctcataca tataaaataa tcccttttct 60
ttttaataat agggaccccc tgggatccca ggttacgtcg taggttcc 108
<210> 213
<211> 108
<212> DNA
<213>Artificial sequence
<400> 213
gactacatgg gacatcttag aacttccatt gatggcttct tttagggtga accaggtagt 60
ataattatgt catcactgcc aggaccaaag ggttacgtcg taggttcc 108
<210> 214
<211> 108
<212> DNA
<213>Artificial sequence
<400> 214
gactacatgg gacattgtct tattttatct tgcaaacagg gtgagcaagg tcttcagggc 60
ccacctgggc cacctgggca gatcagtgaa cagtacgtcg taggttcc 108
<210> 215
<211> 108
<212> DNA
<213>Artificial sequence
<400> 215
gactacatgg gacatcttca gggcccacct gggccacctg ggcagatcag tgaacagaaa 60
agaccaattg atgtagagtt tcagaaagga gattacgtcg taggttcc 108
<210> 216
<211> 108
<212> DNA
<213>Artificial sequence
<400> 216
gactacatgg gacatccacc tgggccacct gggcagatca gtgaacagaa aagaccaatt 60
gatgtagagt ttcagaaagg agatcaggtg agttacgtcg taggttcc 108
<210> 217
<211> 108
<212> DNA
<213>Artificial sequence
<400> 217
gactacatgg gacatctatc ctctatgttt taaagggttt gcctggtgat cctggttacc 60
ctggtgaacc cggaagggat ggtgaaaagg taatacgtcg taggttcc 108
<210> 218
<211> 108
<212> DNA
<213>Artificial sequence
<400> 218
gactacatgg gacataaaaa ggtgacactg gcccacctgg acctcctgga cttgtaagtt 60
tttttttttt agtcttcgtt tatcaaattt atttacgtcg taggttcc 108
<210> 219
<211> 108
<212> DNA
<213>Artificial sequence
<400> 219
gactacatgg gacattggga ctggtataac tataggagaa aaaggaaaca ttgggttgcc 60
tgggttgcct ggagaaaaag gagagcgagg atttacgtcg taggttcc 108
<210> 220
<211> 108
<212> DNA
<213>Artificial sequence
<400> 220
gactacatgg gacatggggc tgcagttatg ggtcctcctg gccctcctgg atttcctgga 60
gaaaggggtc agaaaggtga tgaaggacca ccttacgtcg taggttcc 108
<210> 221
<211> 108
<212> DNA
<213>Artificial sequence
<400> 221
gactacatgg gacatcctgg acctcctgga cttgacggac agcctggggc tcctgggctt 60
ccagggcctc ctggccctgc tggccctcac atttacgtcg taggttcc 108
<210> 222
<211> 108
<212> DNA
<213>Artificial sequence
<400> 222
gactacatgg gacatgcttg ctatcctttc tttatcttac tcaggtgatg agatatgtga 60
accaggccct ccaggccccc caggatctcc aggtacgtcg taggttcc 108
<210> 223
<211> 108
<212> DNA
<213>Artificial sequence
<400> 223
gactacatgg gacatacact tgcttcaact gcattggaac tggtatttca gggcctccag 60
gtcaacctgg tttgccaggt ctcccaggtc ctctacgtcg taggttcc 108
<210> 224
<211> 108
<212> DNA
<213>Artificial sequence
<400> 224
gactacatgg gacattcaac tgcattggaa ctggtatttc agggcctcca ggtcaacctg 60
gtttgccagg tctcccaggt cctccaggta aattacgtcg taggttcc 108
<210> 225
<211> 108
<212> DNA
<213>Artificial sequence
<400> 225
gactacatgg gacatgggca ttccaggagc tccaggtgct ccaggctttc ctggatctaa 60
aggtgaacct ggtgatatcc tcacttttcc aggtacgtcg taggttcc 108
<210> 226
<211> 108
<212> DNA
<213>Artificial sequence
<400> 226
gactacatgg gacatccctg gagctccagg gcttcctggt ttacctggca ctcctggaca 60
ggatggattg ccagggcttc ctggcccgaa aggtacgtcg taggttcc 108
<210> 227
<211> 108
<212> DNA
<213>Artificial sequence
<400> 227
gactacatgg gacattggtt tcggccctcc aggcccagta ggtgaaaaag gcatacaagg 60
tgtggcagga aatccaggcc agccaggaat acctacgtcg taggttcc 108
<210> 228
<211> 108
<212> DNA
<213>Artificial sequence
<400> 228
gactacatgg gacatccatt gatttactct tgctttcagg tcctaaaggg gatccaggtc 60
agactataac ccagccgggg aagcctggct tgctacgtcg taggttcc 108
<210> 229
<211> 108
<212> DNA
<213>Artificial sequence
<400> 229
gactacatgg gacatggcaa ccaggcttgc cagggatacc tggtagcaaa ggagaaccag 60
gtatccctgg aattgggctt cctggaccac ctgtacgtcg taggttcc 108
<210> 230
<211> 108
<212> DNA
<213>Artificial sequence
<400> 230
gactacatgg gacatacagg ctttcctgga attccaggac ctccaggagc acctgggaca 60
cctggaagaa ttggtctaga aggccctcct gggtacgtcg taggttcc 108
<210> 231
<211> 108
<212> DNA
<213>Artificial sequence
<400> 231
gactacatgg gacatcctgg aattccagga cctccaggag cacctgggac acctggaaga 60
attggtctag aaggccctcc tgggccaccc ggctacgtcg taggttcc 108
<210> 232
<211> 108
<212> DNA
<213>Artificial sequence
<400> 232
gactacatgg gacatacttc caggtttcaa aggagcactt ggtccaaaag gtgatcgtgg 60
tttcccagga cctccgggtc ctccaggacg cactacgtcg taggttcc 108
<210> 233
<211> 108
<212> DNA
<213>Artificial sequence
<400> 233
gactacatgg gacatacctg gaccaatggg acctcctggg ctgccaggaa taggtgttca 60
gggaccacca ggaccaccag ggattcctgg gcctacgtcg taggttcc 108
<210> 234
<211> 108
<212> DNA
<213>Artificial sequence
<400> 234
gactacatgg gacatgttcc aggaccccca ggtgaaagag gcagtccagg gatccccgga 60
gcacctggtc ctataggacc tccaggatca ccatacgtcg taggttcc 108
<210> 235
<211> 108
<212> DNA
<213>Artificial sequence
<400> 235
gactacatgg gacatggccc tacaggagaa aaaggtagta aaggagagcc tggccttcca 60
ggccctcctg gaccaatgga tccaaatctt ctgtacgtcg taggttcc 108
<210> 236
<211> 108
<212> DNA
<213>Artificial sequence
<400> 236
gactacatgg gacatcaggg ccaaaaggtt atcagggttt gcctggagac ccagggcaac 60
ctggactgag tggacaacct ggattaccag gactacgtcg taggttcc 108
<210> 237
<211> 108
<212> DNA
<213>Artificial sequence
<400> 237
gactacatgg gacattccca aaggtaaccc tggtctccct ggacagccag gtcttatagg 60
acctcctgga cttaaaggaa ccatcggtga tattacgtcg taggttcc 108
<210> 238
<211> 108
<212> DNA
<213>Artificial sequence
<400> 238
gactacatgg gacatggaca acctggctcc ccaggattac ctggacagaa aggcgacaaa 60
ggtgatcctg gtatttcaag cattggtctt ccatacgtcg taggttcc 108
<210> 239
<211> 108
<212> DNA
<213>Artificial sequence
<400> 239
gactacatgg gacatgaacc ctggtatcaa aggttctgtg ggagatcctg gtttgcccgg 60
attaccagga acccctggag caaaaggaca acctacgtcg taggttcc 108
<210> 240
<211> 108
<212> DNA
<213>Artificial sequence
<400> 240
gactacatgg gacatcaggc cctcctggac caaaaggtat tagtggccct cctgggaacc 60
ccggccttcc aggagaacct ggtcctgtag gtatacgtcg taggttcc 108
<210> 241
<211> 108
<212> DNA
<213>Artificial sequence
<400> 241
gactacatgg gacattaggt ggtggaggtc atcctgggca accagggcct ccaggcgaaa 60
aaggcaaacc cggtcaagat ggtattcctg gactacgtcg taggttcc 108
<210> 242
<211> 108
<212> DNA
<213>Artificial sequence
<400> 242
gactacatgg gacatttatc cacttgagta ctctgacagg tcaaccaggc tttggaaacc 60
caggaccccc tggacttcca ggactttctg gtatacgtcg taggttcc 108
<210> 243
<211> 108
<212> DNA
<213>Artificial sequence
<400> 243
gactacatgg gacatggcca aaagggtgat ggaggattac ctgggattcc aggaaatcct 60
ggccttccag gtccaaaggg cgaaccaggc ttttacgtcg taggttcc 108
<210> 244
<211> 108
<212> DNA
<213>Artificial sequence
<400> 244
gactacatgg gacatggtgt gcagggtccc ccaggccctc ctggttctcc gggtccagct 60
ctggaaggac ctaaaggcaa ccctgggccc caatacgtcg taggttcc 108
<210> 245
<211> 108
<212> DNA
<213>Artificial sequence
<400> 245
gactacatgg gacatttaag gtctaccagg tccagaaggt cctccaggtc tccctggaaa 60
tggaggtatt aaaggagaga agggaaatcc aggtacgtcg taggttcc 108
<210> 246
<211> 108
<212> DNA
<213>Artificial sequence
<400> 246
gactacatgg gacattaaag gagagaaggg aaatccaggc caacctgggc tacctggctt 60
gcctggtttg aaaggagatc aaggaccacc aggtacgtcg taggttcc 108
<210> 247
<211> 108
<212> DNA
<213>Artificial sequence
<400> 247
gactacatgg gacattattc agggtaatcc tggccggccg ggtctcaatg gaatgaaagg 60
agatcctggt ctccctggtg ttccaggatt ccctacgtcg taggttcc 108
<210> 248
<211> 108
<212> DNA
<213>Artificial sequence
<400> 248
gactacatgg gacatagtac ctggatcagc tggccctgag ggggaaccgg gacttattgg 60
tcctccaggt aagacttatt cctgaagata gtttacgtcg taggttcc 108
<210> 249
<211> 108
<212> DNA
<213>Artificial sequence
<400> 249
gactacatgg gacattaatt aaaggagatg ctggtcctcc aggaatccct ggccagcctg 60
ggctaaaggg tctaccagga ccccaaggac ctctacgtcg taggttcc 108
<210> 250
<211> 108
<212> DNA
<213>Artificial sequence
<400> 250
gactacatgg gacatcagga gatcctggac gcaatggact ccctggcttt gatggtgcag 60
gagggcgcaa aggagaccca ggtctgccag gactacgtcg taggttcc 108
<210> 251
<211> 108
<212> DNA
<213>Artificial sequence
<400> 251
gactacatgg gacattctgt tgcacatgga tttcttatta cacgccacag ccagacaacg 60
gatgcaccac aatgcccaca gggaacactt cagtacgtcg taggttcc 108
<210> 252
<211> 108
<212> DNA
<213>Artificial sequence
<400> 252
gactacatgg gacatatgtt ctgcaacatc aataatgttt gcaactttgc ttcaagaaat 60
gactattctt actggctctc taccccagag ccctacgtcg taggttcc 108
<210> 253
<211> 108
<212> DNA
<213>Artificial sequence
<400> 253
gactacatgg gacataagct ccagctgtgg tgatcgcagt tcacagtcag acgatccaga 60
ttccccattg tcctcaggga tgggattctc tgttacgtcg taggttcc 108
<210> 254
<211> 108
<212> DNA
<213>Artificial sequence
<400> 254
gactacatgg gacatcctag cctcccctgg ttcctgcttg gaagagtttc gttcagctcc 60
cttcatcgaa tgtcatggga ggggtacctg taatacgtcg taggttcc 108
<210> 255
<211> 108
<212> DNA
<213>Artificial sequence
<400> 255
gactacatgg gacatcagta aacctcagtc agaaacgctg aaagcaggag acttgaggac 60
acgaattagc cgatgtcaag tgtgcatgaa gagtacgtcg taggttcc 108
<210> 256
<211> 108
<212> DNA
<213>Artificial sequence
<400> 256
gactacatgg gacatcagct ggcgcccgcc tgctgtggaa ctggtggaag ctccggagcc 60
tccacctcct gcctcttgcc ccgggcttct tgctacgtcg taggttcc 108
<210> 257
<211> 108
<212> DNA
<213>Artificial sequence
<400> 257
gactacatgg gacattgcct cttgccccgg gcttcttgca cctgctgcag cccgacctcc 60
ccatctatct gcttggcctg actcagaaat tcgtacgtcg taggttcc 108
<210> 258
<211> 108
<212> DNA
<213>Artificial sequence
<400> 258
gactacatgg gacatccccg ggcttcttgc acctgctgca gcccgacctc cccatctatc 60
tgcttggcct gactcagaaa ttcgggccca tcttacgtcg taggttcc 108
<210> 259
<211> 108
<212> DNA
<213>Artificial sequence
<400> 259
gactacatgg gacatcgttg gtctctgctc tggaaagccc acaagaagct cacccgctca 60
gccctgctgc tgggcatccg tgactccatg gagtacgtcg taggttcc 108
<210> 260
<211> 108
<212> DNA
<213>Artificial sequence
<400> 260
gactacatgg gacatctgct ctggaaagcc cacaagaagc tcacccgctc agccctgctg 60
ctgggcatcc gtgactccat ggagccagtg gtgtacgtcg taggttcc 108
<210> 261
<211> 108
<212> DNA
<213>Artificial sequence
<400> 261
gactacatgg gacattttct ccacagcgca tgagagccca gcccggcacc cctgtggcca 60
ttgaggagga attctctctc ctcacctgca gcatacgtcg taggttcc 108
<210> 262
<211> 108
<212> DNA
<213>Artificial sequence
<400> 262
gactacatgg gacataggag gacaacttaa tgcctgccta ttacaaatgt atccaggagg 60
tgttaaaaac ctggagccac tggtccatcc aaatacgtcg taggttcc 108
<210> 263
<211> 108
<212> DNA
<213>Artificial sequence
<400> 263
gactacatgg gacatactta atgcctgcct attacaaatg tatccaggag gtgttaaaaa 60
cctggagcca ctggtccatc caaattgtgg acgtacgtcg taggttcc 108
<210> 264
<211> 108
<212> DNA
<213>Artificial sequence
<400> 264
gactacatgg gacatgctgc attctcatgc ttcctgccgc agttcttccc caatccaggt 60
ctccggaggc tgaagcaggc catagagaag aggtacgtcg taggttcc 108
<210> 265
<211> 108
<212> DNA
<213>Artificial sequence
<400> 265
gactacatgg gacattcatg cttcctgccg cagttcttcc ccaatccagg tctccggagg 60
ctgaagcagg ccatagagaa gagggaccac aactacgtcg taggttcc 108
<210> 266
<211> 108
<212> DNA
<213>Artificial sequence
<400> 266
gactacatgg gacatggtgg caggccagtg gagggacatg atggactaca tgctccaagg 60
ggtggcgcag ccgagcatgg aagagggctc tggtacgtcg taggttcc 108
<210> 267
<211> 108
<212> DNA
<213>Artificial sequence
<400> 267
gactacatgg gacatccagt ggagggacat gatggactac atgctccaag gggtggcgca 60
gccgagcatg gaagagggct ctggacagct ccttacgtcg taggttcc 108
<210> 268
<211> 108
<212> DNA
<213>Artificial sequence
<400> 268
gactacatgg gacatgtggt tttttttgct tcaccaccct gaggtgcgtc ctgcggacaa 60
gcaaaaggct ccttcccagc aacctggcca gggtacgtcg taggttcc 108
<210> 269
<211> 108
<212> DNA
<213>Artificial sequence
<400> 269
gactacatgg gacatgcgac tgtaggagga gctagaccac gaactgggcc ctggtgcctc 60
cagctcccgg gtcccctaca aggaccgtgc acgtacgtcg taggttcc 108
<210> 270
<211> 108
<212> DNA
<213>Artificial sequence
<400> 270
gactacatgg gacatactgg gccctggtgc ctccagctcc cgggtcccct acaaggaccg 60
tgcacggctg cccttgctca atgccaccat cgctacgtcg taggttcc 108
<210> 271
<211> 108
<212> DNA
<213>Artificial sequence
<400> 271
gactacatgg gacatccccc ttcagcatct ccggctacga catccctgag ggcacagtca 60
tcattccgaa cctccaaggc gcccacctgg atgtacgtcg taggttcc 108
<210> 272
<211> 108
<212> DNA
<213>Artificial sequence
<400> 272
gactacatgg gacattccct gagggcacag tcatcattcc gaacctccaa ggcgcccacc 60
tggatgagac ggtctgggag aggccacatg agttacgtcg taggttcc 108
<210> 273
<211> 108
<212> DNA
<213>Artificial sequence
<400> 273
gactacatgg gacatctgcc ccactgcagt gtcatcctca agatgcagcc tttccaagtg 60
cggctgcagc cccgggggat gggggcccac agctacgtcg taggttcc 108
<210> 274
<211> 108
<212> DNA
<213>Artificial sequence
<400> 274
gactacatgg gacatatcct caagatgcag cctttccaag tgcggctgca gccccggggg 60
atgggggccc acagcccagg ccagaaccag tgatacgtcg taggttcc 108
<210> 275
<211> 108
<212> DNA
<213>Artificial sequence
<400> 275
gactacatgg gacatgatgg cggggctctg gctggggctc gtgtggcaga agctgctgct 60
gtggggcgcg gcgagtgccc tttccctggc cggtacgtcg taggttcc 108
<210> 276
<211> 108
<212> DNA
<213>Artificial sequence
<400> 276
gactacatgg gacatatgtt tttccccaga attttttcag cagatcattg agtacacaga 60
ggaataccgc cacatgccgc tgctgaagct ctgtacgtcg taggttcc 108
<210> 277
<211> 108
<212> DNA
<213>Artificial sequence
<400> 277
gactacatgg gacatctcta aagtatgttt ttctcttcct aaggtaattt taactagttc 60
aaagcaaatt gacaaatcct ctatgtacaa gtttacgtcg taggttcc 108
<210> 278
<211> 108
<212> DNA
<213>Artificial sequence
<400> 278
gactacatgg gacatgtact ggaaacaaat ggcgctccag gagaaagatg ttaacaccca 60
ctttccattt taccattctg gaagatttct tagtacgtcg taggttcc 108
<210> 279
<211> 108
<212> DNA
<213>Artificial sequence
<400> 279
gactacatgg gacattgaat tgaatggttg cttctcaccc atattttata gaaacagcta 60
tggggaagaa tattggtgct caaagtaatg atgtacgtcg taggttcc 108
<210> 280
<211> 108
<212> DNA
<213>Artificial sequence
<400> 280
gactacatgg gacattttat agaatgagtg agatgatatt tcgaagaata aagatgccct 60
ggctttggct tgatctctgg taccttatgt ttatacgtcg taggttcc 108
<210> 281
<211> 108
<212> DNA
<213>Artificial sequence
<400> 281
gactacatgg gacatggtca tcgctgaacg ggccaatgaa atgaacgcca atgaagactg 60
tagaggtgat ggcaggggct ctgccccctc caatacgtcg taggttcc 108
<210> 282
<211> 108
<212> DNA
<213>Artificial sequence
<400> 282
gactacatgg gacatttgtt ttctgcattt gtaggggcac gatacaactg cagctgcaat 60
aaactggtcc ttatacctgt tgggttctaa ccctacgtcg taggttcc 108
<210> 283
<211> 108
<212> DNA
<213>Artificial sequence
<400> 283
gactacatgg gacatcaggg aagtctgacc gtcccgctac agtagaagac ctgaagaaac 60
ttcggtatct ggaatgtgtt attaaggaga ccctacgtcg taggttcc 108
<210> 284
<211> 108
<212> DNA
<213>Artificial sequence
<400> 284
gactacatgg gacatgcagg ttacagagtt ctaaaaggca ctgaagccgt catcattccc 60
tatgcattgc acagagatcc gagatacttc ccctacgtcg taggttcc 108
<210> 285
<211> 108
<212> DNA
<213>Artificial sequence
<400> 285
gactacatgg gacatggtca aaagtttgct gtgatggaag aaaagaccat tctttcgtgc 60
atcctgaggc acttttggat agaatccaac cagtacgtcg taggttcc 108
<210> 286
<211> 108
<212> DNA
<213>Artificial sequence
<400> 286
gactacatgg gacatggaat caggagttgt aaaacattta ttctgctcct tcttcatctg 60
tcatgactga tactaaggac tccatcgctc tgctacgtcg taggttcc 108
<210> 287
<211> 108
<212> DNA
<213>Artificial sequence
<400> 287
gactacatgg gacataaaaa gcaggatgag acagacagaa gccatggccg tgagcctgaa 60
tctcactaac ctctctcatt ggctttccag gggtacgtcg taggttcc 108
<210> 288
<211> 108
<212> DNA
<213>Artificial sequence
<400> 288
gactacatgg gacattccct tctaggtatt ggagcttacc tcttgaacta gggaaggagt 60
tgttgagttg ctccatcacc tcctctaacc ctgtacgtcg taggttcc 108
<210> 289
<211> 108
<212> DNA
<213>Artificial sequence
<400> 289
gactacatgg gacatgacac ttacccatgg agtccgaagt ttgactgcca accactcgga 60
gcagcatagg ctgactgctg tcggacctct gtatacgtcg taggttcc 108
<210> 290
<211> 108
<212> DNA
<213>Artificial sequence
<400> 290
gactacatgg gacatcttgc tccagcagct gccttagcct gtgtaactgt gactccagct 60
gtttattgtg gtcttccagg atttgcatcc tggtacgtcg taggttcc 108
<210> 291
<211> 108
<212> DNA
<213>Artificial sequence
<400> 291
gactacatgg gacatcctgt tttcttcctc aagatctgct aggattctct ctagctcccc 60
tctttcctca ctctctaagg aaatcaagat ctgtacgtcg taggttcc 108
<210> 292
<211> 108
<212> DNA
<213>Artificial sequence
<400> 292
gactacatgg gacattgtca ggaacatttt gtaaaaagag atgggatact tacatgctct 60
cattaggaga gatgctatca tttagataag atctacgtcg taggttcc 108
<210> 293
<211> 108
<212> DNA
<213>Artificial sequence
<400> 293
gactacatgg gacattcaat caatatttgc ctggcataca actagtctca tacctgctag 60
cataatgttc aatgcgtgaa tgagtatcat cgttacgtcg taggttcc 108
<210> 294
<211> 108
<212> DNA
<213>Artificial sequence
<400> 294
gactacatgg gacatcgagc gaatgtgttg gtggtagcag cacccttcag caaaaaaagt 60
actcacgcag aatctactgg ccagaagttg atctacgtcg taggttcc 108
<210> 295
<211> 108
<212> DNA
<213>Artificial sequence
<400> 295
gactacatgg gacatctcac gtttccatgt tgtccccctc taagacagtc tgcactggca 60
ggtagcccat tcggggatgc ttcgcaaaat acctacgtcg taggttcc 108
<210> 296
<211> 108
<212> DNA
<213>Artificial sequence
<400> 296
gactacatgg gacattggcg tcaaacttac cggagtgcaa tattccacca tgggatagtg 60
cattttatgg ccttttgcaa ctcgaccaga aaatacgtcg taggttcc 108
<210> 297
<211> 108
<212> DNA
<213>Artificial sequence
<400> 297
gactacatgg gacatcctga atccaatgat tggacactct ttgcagatgt tacatttggc 60
ctgatgcttg gcagtttctg cagcagccac tcttacgtcg taggttcc 108
<210> 298
<211> 108
<212> DNA
<213>Artificial sequence
<400> 298
gactacatgg gacatcaaat tggaagcagc tccggacact tggctcaatg ttactgcccc 60
caaaggatgc aacttcaccc aactgtcttg gaatacgtcg taggttcc 108
<210> 299
<211> 108
<212> DNA
<213>Artificial sequence
<400> 299
gactacatgg gacatgaata cagcattaat atacacgact tacatctgta cttgtcttcc 60
aaatgtgctt tacacaggga aatgatgcca gtttacgtcg taggttcc 108
<210> 300
<211> 108
<212> DNA
<213>Artificial sequence
<400> 300
gactacatgg gacatcgtat cataaacatt cagcagccag ttcagacaca tatccacgca 60
gagagggacg ttgaccaaat tgttgtgctc ttgtacgtcg taggttcc 108
<210> 301
<211> 108
<212> DNA
<213>Artificial sequence
<400> 301
gactacatgg gacattatca agatcttcaa atactggcca atacttacag caaagggcct 60
tctgcagtct tcggagtttc atggcagtcc tattacgtcg taggttcc 108
<210> 302
<211> 108
<212> DNA
<213>Artificial sequence
<400> 302
gactacatgg gacatcctgt catttaactt ggaggaaaca tggccatgtc cttacctaaa 60
gactggtaga gctctgtcat tttgggatgg tcctacgtcg taggttcc 108
<210> 303
<211> 108
<212> DNA
<213>Artificial sequence
<400> 303
gactacatgg gacatcactt accctttgag ctgttccctc atggctgcaa gggctccgcg 60
gtcgagtgtg ggtacgagtg gaggagtgag ctttacgtcg taggttcc 108
<210> 304
<211> 108
<212> DNA
<213>Artificial sequence
<400> 304
gactacatgg gacatcaata aatgctcttt taaaaatgtg atacttccaa cttacttgat 60
atagtagggc actttgtttg gcgagatggc tcttacgtcg taggttcc 108
<210> 305
<211> 108
<212> DNA
<213>Artificial sequence
<400> 305
gactacatgg gacatagtta agtgataaaa gctgaaaatg acttactgga aagaaagtgc 60
tgagatgctg gaccaaagtc cctgtgggct tcatacgtcg taggttcc 108
<210> 306
<211> 108
<212> DNA
<213>Artificial sequence
<400> 306
gactacatgg gacatcctgc agaagcttcc atctggtgtt caggtcttcc agagtgctga 60
ggttatacgg tgagagctga atgcccaaag tggtacgtcg taggttcc 108
<210> 307
<211> 108
<212> DNA
<213>Artificial sequence
<400> 307
gactacatgg gacatccttg actttctcga ggtgatcttg gagagagtca atgaggagat 60
cgcccacggg ctgccaggat cccttgatca ccttacgtcg taggttcc 108
<210> 308
<211> 108
<212> DNA
<213>Artificial sequence
<400> 308
gactacatgg gacatattca attacctctg ggctcctggt agagtttctc tagtccttcc 60
aaaggctgct ctgtcagaaa tattcgtaca gtctacgtcg taggttcc 108
<210> 309
<211> 108
<212> DNA
<213>Artificial sequence
<400> 309
gactacatgg gacatcccta tgtacatcgt tctgcttctg aactgctgga aagtcgcctc 60
caataggtgc ctgccggctt aattcatcat ctttacgtcg taggttcc 108
<210> 310
<211> 108
<212> DNA
<213>Artificial sequence
<400> 310
gactacatgg gacatcctaa tgttgagaga ctttttccga agttcactcc acttgaagtt 60
catgttatcc aaacgtcttt gtaacaggac tgctacgtcg taggttcc 108
<210> 311
<211> 108
<212> DNA
<213>Artificial sequence
<400> 311
gactacatgg gacatacctt tacatggtat gtcttcctgt gtaacatttt cagcttgaac 60
cgggcactac agcactgatc ctgttgcata gcatacgtcg taggttcc 108
<210> 312
<211> 108
<212> DNA
<213>Artificial sequence
<400> 312
gactacatgg gacatcttgc cattgtttca tcagctcttt tactcccttg gagtcttcta 60
ggagcctttc cttacgggta gcatcctgta ggatacgtcg taggttcc 108
<210> 313
<211> 108
<212> DNA
<213>Artificial sequence
<400> 313
gactacatgg gacatccttt tatgaatgct tctccaagag gcattgatat tctctgttat 60
catgtggact tttctggtat catctgcaga atatacgtcg taggttcc 108
<210> 314
<211> 108
<212> DNA
<213>Artificial sequence
<400> 314
gactacatgg gacatccttg gtttctgtga ttttcttttg gattgcatct actgtatagg 60
gaccctcctt ccatgactca agcttggctc tggtacgtcg taggttcc 108
<210> 315
<211> 108
<212> DNA
<213>Artificial sequence
<400> 315
gactacatgg gacattaaaa aacttacttc gatccgtaat gattgttcta gcctcttgat 60
tgctggtctt gtttttcaaa ttttgggcag cggtacgtcg taggttcc 108
<210> 316
<211> 108
<212> DNA
<213>Artificial sequence
<400> 316
gactacatgg gacatccttc tgcttgatga tcatctcgtt gatatcctca aggtcaccca 60
ccatcaccct ctgtgatttt ataacttgat caatacgtcg taggttcc 108
<210> 317
<211> 108
<212> DNA
<213>Artificial sequence
<400> 317
gactacatgg gacatgatcc agtatactta caggctccaa tagtggtcag tccaggagct 60
aggtcaggct gctttgccct cagctcttga agttacgtcg taggttcc 108
<210> 318
<211> 108
<212> DNA
<213>Artificial sequence
<400> 318
gactacatgg gacattagag gttgcttcat taccttcact ggctgagtgg ctggtttttc 60
cttgtacaaa tgctgccctt tagacaaaat ctctacgtcg taggttcc 108
<210> 319
<211> 108
<212> DNA
<213>Artificial sequence
<400> 319
gactacatgg gacattaacg tcaaatggtc cttcttggtt tggttggtta taaatttcca 60
actgattcct aataggagat aaccacagca gcatacgtcg taggttcc 108
<210> 320
<211> 108
<212> DNA
<213>Artificial sequence
<400> 320
gactacatgg gacatccttt atccactgga gatttgtctg cttgagctta ttttcaagtt 60
tatcttgctc ttctgggctt atgggagcac ttatacgtcg taggttcc 108
<210> 321
<211> 108
<212> DNA
<213>Artificial sequence
<400> 321
gactacatgg gacatccttg acttgctcaa gcttttcttt tagttgctgc tcttttccag 60
gttcaagtgg gatactagca atgttatctg ctttacgtcg taggttcc 108
<210> 322
<211> 108
<212> DNA
<213>Artificial sequence
<400> 322
gactacatgg gacatcctct tttttctgtc tgacagctgt ttgcagacct cctgccaccg 60
cagattcagg cttcccaatt tttcctgtag aattacgtcg taggttcc 108
<210> 323
<211> 108
<212> DNA
<213>Artificial sequence
<400> 323
gactacatgg gacatcctta agataccatt tgtatttagc atgttcccaa ttctcaggaa 60
tttgtgtctt tctgagaaac tgttcagctt ctgtacgtcg taggttcc 108
<210> 324
<211> 108
<212> DNA
<213>Artificial sequence
<400> 324
gactacatgg gacatccctt gtcggtcctt gtacattttg ttaacttttt cccattggaa 60
atcaagctgg gagagagctt cctgtagctt cactacgtcg taggttcc 108
<210> 325
<211> 108
<212> DNA
<213>Artificial sequence
<400> 325
gactacatgg gacatccttc agagactcct cttgcttaaa gagatcttca aagtccttag 60
cacagaggtc aggagcattg agaagttgtt ccatacgtcg taggttcc 108
<210> 326
<211> 108
<212> DNA
<213>Artificial sequence
<400> 326
gactacatgg gacatcaatt tgtgcaaagt tgagtcttcg aaactgagca aatttgctct 60
caatttcccg ccagcgcttg ctgagctgga tcttacgtcg taggttcc 108
<210> 327
<211> 108
<212> DNA
<213>Artificial sequence
<400> 327
gactacatgg gacatccttt attttccttt catctctggg ctcaggtagg ctggctaatt 60
ttttttcaat gtcatccaag catttcagga gattacgtcg taggttcc 108
<210> 328
<211> 108
<212> DNA
<213>Artificial sequence
<400> 328
gactacatgg gacatacctt gagagcatta tgttttgtct gtaacagctg ctgttttatc 60
tttatttcct ctcgctttct ctcatctgtg atttacgtcg taggttcc 108
<210> 329
<211> 108
<212> DNA
<213>Artificial sequence
<400> 329
gactacatgg gacatccaat ttaccatatc tttattgaag tcttcctctt tcagattcac 60
cccctgctga atttcagcct ccagtggttc aagtacgtcg taggttcc 108
<210> 330
<211> 108
<212> DNA
<213>Artificial sequence
<400> 330
gactacatgg gacatccttt ccagtcttaa ttctgtgtga aatggctgca aatcgatggt 60
tgagctctga gatttggggc tctactaatt tcctacgtcg taggttcc 108
<210> 331
<211> 108
<212> DNA
<213>Artificial sequence
<400> 331
gactacatgg gacattgcta ccttaagcac gtcttctttt tgctggggtt tctttttctc 60
tgattcatcc aaaagtgtgt cagcctgaat gattacgtcg taggttcc 108
<210> 332
<211> 108
<212> DNA
<213>Artificial sequence
<400> 332
gactacatgg gacatccaac aaaagattta accactcttc tgctcgggag gtgacagcta 60
tccagttact attcagaaga ctgagtttat ctttacgtcg taggttcc 108
<210> 333
<211> 108
<212> DNA
<213>Artificial sequence
<400> 333
gactacatgg gacatccttt ccccaggcaa cttcagaatc caaattacta ggcattcctt 60
caactgctga tctctttgtc aattccatat ctgtacgtcg taggttcc 108
<210> 334
<211> 108
<212> DNA
<213>Artificial sequence
<400> 334
gactacatgg gacatccttt gctcccagct cattataatg caatttcaaa gctgttactc 60
tttcatcaag ttctttggga ttttccgtct gcttacgtcg taggttcc 108
<210> 335
<211> 108
<212> DNA
<213>Artificial sequence
<400> 335
gactacatgg gacatccaca caatgattta gctgtgactg tactacttcc tgttccacac 60
tctttgtttc caatgcaggc aagtgcatct tcatacgtcg taggttcc 108
<210> 336
<211> 108
<212> DNA
<213>Artificial sequence
<400> 336
gactacatgg gacattgaaa taacatatac ctgtgcaaca tcaatctgag acaggactct 60
ttgggcagcc tccttcccct gattatgttt ctttacgtcg taggttcc 108
<210> 337
<211> 108
<212> DNA
<213>Artificial sequence
<400> 337
gactacatgg gacatcctgg gcttcctgag gcatttgagc tgcgtccacc ttgtctgcaa 60
tataagctgc caactgcttg tcaatgaatg tgatacgtcg taggttcc 108
<210> 338
<211> 108
<212> DNA
<213>Artificial sequence
<400> 338
gactacatgg gacatctgta atcctgctga acaataaatg aagattctag actcttccac 60
aatcaccttt ttgtaagaca gatttcgcag ctttacgtcg taggttcc 108
<210> 339
<211> 108
<212> DNA
<213>Artificial sequence
<400> 339
gactacatgg gacatcctct tcatgtagtt ccctccaacg agaattaaat gtctcaagtt 60
cctcattgat tagctcatcc atgactccgc cattacgtcg taggttcc 108
<210> 340
<211> 108
<212> DNA
<213>Artificial sequence
<400> 340
gactacatgg gacattacat ctagcacctc agagatttcc tcagctccgc caggaatgtt 60
ttcagtggtt ttaagtttaa attctacttc atttacgtcg taggttcc 108
<210> 341
<211> 108
<212> DNA
<213>Artificial sequence
<400> 341
gactacatgg gacatcttcc aaagtcttgc atttcccatt cagcctagtg cagagccact 60
ggtagttggt ggttagagtt tcaagttcct ttttacgtcg taggttcc 108
<210> 342
<211> 108
<212> DNA
<213>Artificial sequence
<400> 342
gactacatgg gacatccttc atctcttcaa ctgctttctg taattcatct ggagttttat 60
attcaaaatc tctctcaaga tactcttctt cagtacgtcg taggttcc 108
<210> 343
<211> 108
<212> DNA
<213>Artificial sequence
<400> 343
gactacatgg gacatcctgt tggcacatgt gatcccactg agtgttaagt tctttgagtt 60
ctgtctcaag tctcgaagca aactctggct ctgtacgtcg taggttcc 108
<210> 344
<211> 108
<212> DNA
<213>Artificial sequence
<400> 344
gactacatgg gacattataa aaatcttact ctgcactgtt tcagctgctt ttttagaatt 60
tctgaatccc caagggcagg ccattcctcc ttctacgtcg taggttcc 108
<210> 345
<211> 108
<212> DNA
<213>Artificial sequence
<400> 345
gactacatgg gacatcctga atttttcgga gtttattcat ttgctcctct agcttttgac 60
aatgctcaac cagctgggag gagagcttct tcctacgtcg taggttcc 108
<210> 346
<211> 108
<212> DNA
<213>Artificial sequence
<400> 346
gactacatgg gacatcctgc aattccccga gtctctgctc catgatttca tagtcggtga 60
cactaagttg aggtatggag agtttggttt ctgtacgtcg taggttcc 108
<210> 347
<211> 108
<212> DNA
<213>Artificial sequence
<400> 347
gactacatgg gacatcttgt ctgtagctct ttctctctgg cctgcacatc agaaaagact 60
tgcttaaaat gatttgtaaa ggccacaaag tcttacgtcg taggttcc 108
<210> 348
<211> 108
<212> DNA
<213>Artificial sequence
<400> 348
gactacatgg gacatcctta caaattttta actgactttt aattgctgtt ggctctgatg 60
gggtggtggg ttggattttc aaccagtttt cagtacgtcg taggttcc 108
<210> 349
<211> 108
<212> DNA
<213>Artificial sequence
<400> 349
gactacatgg gacatattat ctaaatcaac tcgtgtaatt accattcacc atctgttcca 60
ccagggcctg agctgatctg ctggcatctt gcatacgtcg taggttcc 108
<210> 350
<211> 108
<212> DNA
<213>Artificial sequence
<400> 350
gactacatgg gacatataac ctacattgac tttttctttt aagtctgaga agttgccttc 60
cttccgaaag attgcaaatt caggactctg caatacgtcg taggttcc 108
<210> 351
<211> 108
<212> DNA
<213>Artificial sequence
<400> 351
gactacatgg gacatccttt tcctaatttc agaatccaca gtaatctgcc tcttcttttg 60
gggaggtggt ggtggaagtt cctcttgagc atgtacgtcg taggttcc 108
<210> 352
<211> 108
<212> DNA
<213>Artificial sequence
<400> 352
gactacatgg gacatcctgt gctgtactct tttcaagttt ttggactaaa ttatcccaac 60
accgggcaaa gttatccagc catgcttccg tcttacgtcg taggttcc 108
<210> 353
<211> 108
<212> DNA
<213>Artificial sequence
<400> 353
gactacatgg gacatagcta gaaagtacat acggccagtt tttgaagact tgataacatt 60
tcattttgat ctttaaagcc agttgtgtga atctacgtcg taggttcc 108
<210> 354
<211> 108
<212> DNA
<213>Artificial sequence
<400> 354
gactacatgg gacatgtttc tcacacatga cacacctgtt cttcagtaag acgttgccat 60
ttgagaagga tgtcttgtaa aagaacccag cggtacgtcg taggttcc 108
<210> 355
<211> 108
<212> DNA
<213>Artificial sequence
<400> 355
gactacatgg gacataataa tctgacctta agttgttctt ccaaagcagc agttgcgtga 60
tctccactag attcatcaac taccaccacc atgtacgtcg taggttcc 108
<210> 356
<211> 108
<212> DNA
<213>Artificial sequence
<400> 356
gactacatgg gacatcctta tgttgttgta cttggcgttt taggtcttca agatcaggtc 60
caagaggctc ttcctccatt ttccttgttc ttttacgtcg taggttcc 108
<210> 357
<211> 108
<212> DNA
<213>Artificial sequence
<400> 357
gactacatgg gacatcttgc tttgtttttc catgctagct accctgaggc attcccatct 60
tgaatttagg agattcatct gctcttgtac ttctacgtcg taggttcc 108
<210> 358
<211> 108
<212> DNA
<213>Artificial sequence
<400> 358
gactacatgg gacatcctca tgagtatgaa actggtcttt caccacttcc acatcattag 60
aaatctctcc ttgtgcttgc aatgtgtcct cagtacgtcg taggttcc 108
<210> 359
<211> 108
<212> DNA
<213>Artificial sequence
<400> 359
gactacatgg gacatacaga cctgtgaagg aaatgggctc cgtgtagggt cagaggtggt 60
gacataagca gcctgtgtgt aggcatagct ctttacgtcg taggttcc 108
<210> 360
<211> 108
<212> DNA
<213>Artificial sequence
<400> 360
gactacatgg gacatcctgt tgagaatagt gcatttgatg atgtaactga aaatgttctt 60
ctttagtcac tttaggtggc cttggcaaca ttttacgtcg taggttcc 108
<210> 361
<211> 108
<212> DNA
<213>Artificial sequence
<400> 361
gactacatgg gacataattt accaaccttc aggatcgagt agtttctcta tgcctaattg 60
atatctggcg atgttgaatg catgttccag tcgtacgtcg taggttcc 108
<210> 362
<211> 108
<212> DNA
<213>Artificial sequence
<400> 362
gactacatgg gacatcctat gactatggat gagagcattc aaagccaggc catcagacca 60
gctggtggtg aagttgatta cattaacctg tggtacgtcg taggttcc 108
<210> 363
<211> 108
<212> DNA
<213>Artificial sequence
<400> 363
gactacatgg gacatgaaac cattcatcag gattcttacc tgccagtgga ggattatatt 60
ccaaatcaaa ccaagagtca gtttatgatt tcctacgtcg taggttcc 108
<210> 364
<211> 108
<212> DNA
<213>Artificial sequence
<400> 364
gactacatgg gacatagcat ccagaccttg tccagggtac tacttacatt attgttctgc 60
aaaacccgca gtgccttgtt gacattgttc aggtacgtcg taggttcc 108
<210> 365
<211> 108
<212> DNA
<213>Artificial sequence
<400> 365
gactacatgg gacatctttc ttaaaaataa gtcacatacc agtttttgcc ctgtcaggcc 60
ttcgaggagg tctaggaggc gcctcccatc ctgtacgtcg taggttcc 108
<210> 366
<211> 108
<212> DNA
<213>Artificial sequence
<400> 366
gactacatgg gacatcaact tagatcttaa aagtaaagta acaaaccatt cttaccttag 60
aaaattgtgc atttacccat tttgtgaatg ttttacgtcg taggttcc 108
<210> 367
<211> 108
<212> DNA
<213>Artificial sequence
<400> 367
gactacatgg gacattgctt gtggaattta tcattcttct gaatggctgt tgcatttatc 60
tgcagctttt actcaccaga tgagacctca gactacgtcg taggttcc 108
<210> 368
<211> 108
<212> DNA
<213>Artificial sequence
<400> 368
gactacatgg gacatcacaa actaaacgtt atgccacagt aaaatatatt tttagttact 60
ttgtacttac aacagtcctc tacttcttcc cactacgtcg taggttcc 108
<210> 369
<211> 108
<212> DNA
<213>Artificial sequence
<400> 369
gactacatgg gacattgtgt gccgccgggg ctgcccagcc atgctgtgct gcctgctggt 60
gagggccagc aacctcccca gtgcgaagaa ggatacgtcg taggttcc 108
<210> 370
<211> 108
<212> DNA
<213>Artificial sequence
<400> 370
gactacatgg gacatggcgg gatgtgtctc tccattctcc cttttgtgtc tcttgtaggg 60
gtgaagaaga gaaccaaagt catcaagaac agctacgtcg taggttcc 108
<210> 371
<211> 108
<212> DNA
<213>Artificial sequence
<400> 371
gactacatgg gacatgatgc cttttctctt tttcttccag ggatttgaat gggacctcaa 60
gggcatcccc ctggaccagg gctctgagct tcatacgtcg taggttcc 108
<210> 372
<211> 108
<212> DNA
<213>Artificial sequence
<400> 372
gactacatgg gacatacttc tctctcctct caggttcctg ggggaagcca aggtcccact 60
ccgagaggtc ctcgccaccc ctagtctgtc cgctacgtcg taggttcc 108
<210> 373
<211> 108
<212> DNA
<213>Artificial sequence
<400> 373
gactacatgg gacattcatc tcttccaggc ctcgctggtc ctgcaggtgt cctacacacc 60
gctgcctgga gctgtgcccc tgttcccgcc ccctacgtcg taggttcc 108
<210> 374
<211> 108
<212> DNA
<213>Artificial sequence
<400> 374
gactacatgg gacatggtta tgccctgccc acaagacagg cgggggacag agccgggccg 60
agacttggtc cctgctcagt gacagcacca tggtacgtcg taggttcc 108
<210> 375
<211> 108
<212> DNA
<213>Artificial sequence
<400> 375
gactacatgg gacatgacac aggaggagag gaagacacag aggaccaggg actcactgga 60
gatgaggcgg agccattcct ggatcaaagc ggatacgtcg taggttcc 108
<210> 376
<211> 108
<212> DNA
<213>Artificial sequence
<400> 376
gactacatgg gacattttca gatcagggtc caggtgatcg aggggcgcca gctgccgggg 60
gtgaacatca agcctgtggt caaggttacc gcttacgtcg taggttcc 108
<210> 377
<211> 108
<212> DNA
<213>Artificial sequence
<400> 377
gactacatgg gacatgcagg cactgatatg tctctctttg ctctgaacca acagactctt 60
ttcttcaact tgtttgactc tcctggggag ctgtacgtcg taggttcc 108
<210> 378
<211> 108
<212> DNA
<213>Artificial sequence
<400> 378
gactacatgg gacatcacat gttccctgtg aatgtgagtt tccatgatct ttctctgcag 60
gtggtagact ctcgttctct caggacagat gcttacgtcg taggttcc 108
<210> 379
<211> 108
<212> DNA
<213>Artificial sequence
<400> 379
gactacatgg gacatgcttt ggcggcaaga gtttgatttg tgtctcctct cattgattgc 60
agatggacgt gggcaccatt tacagagagc ccctacgtcg taggttcc 108
<210> 380
<211> 108
<212> DNA
<213>Artificial sequence
<400> 380
gactacatgg gacatttgtc tctcttaggg cacgcctatc tcaggaagtg gctgctgctc 60
tcagaccctg atgacttctc tgctggggcc agatacgtcg taggttcc 108
<210> 381
<211> 108
<212> DNA
<213>Artificial sequence
<400> 381
gactacatgg gacattttgt agctggagag aaaagacccc tctgaagaca aggaggacat 60
tgaaagcaac ctgctccggc ccacaggcgt agctacgtcg taggttcc 108
<210> 382
<211> 108
<212> DNA
<213>Artificial sequence
<400> 382
gactacatgg gacatggtgt gtccctcttc ccagtggacg atgccgtgat ggacaacgtg 60
aaacagatct ttggcttcga gagtaacaag aagtacgtcg taggttcc 108
<210> 383
<211> 108
<212> DNA
<213>Artificial sequence
<400> 383
gactacatgg gacatagctt gatcaacttg tcccctccct gtgtcttcta gctgtgcagc 60
aagatcttgg agaagacggc caaccctcag tggtacgtcg taggttcc 108
<210> 384
<211> 108
<212> DNA
<213>Artificial sequence
<400> 384
gactacatgg gacatctatc ttcaaaagga ctcttctccc aacacgcctc tattccttcc 60
tcagtttccc tccatgtgcg aaaaaatgag gattacgtcg taggttcc 108
<210> 385
<211> 108
<212> DNA
<213>Artificial sequence
<400> 385
gactacatgg gacatttcag gccctctctg ctcccttgct ctagggaccg cctgactcac 60
aatgacatcg tggctaccac ctacctgagt atgtacgtcg taggttcc 108
<210> 386
<211> 108
<212> DNA
<213>Artificial sequence
<400> 386
gactacatgg gacattctcc cagccatgcc caccctaacc ccttttccat ttctttacgc 60
ttcagaggag cctgcaggtg ctgtcaagcc ttctacgtcg taggttcc 108
<210> 387
<211> 108
<212> DNA
<213>Artificial sequence
<400> 387
gactacatgg gacatttgtg tctcccagtg gatgactacc tgggcttcct ccccactttt 60
gggccctgct acatcaacct ctatggcagt ccctacgtcg taggttcc 108
<210> 388
<211> 108
<212> DNA
<213>Artificial sequence
<400> 388
gactacatgg gacatgacct ccctggcagg gggaaggtgt ggcttatcgt ggccggcttc 60
tgctctccct ggagaccaag ctggtggagc acatacgtcg taggttcc 108
<210> 389
<211> 108
<212> DNA
<213>Artificial sequence
<400> 389
gactacatgg gacatgaagt accttaggag gcgcaagtac tccctgtttg cggccttcta 60
ctcagccacc atgctgcagg atgtggatga tgctacgtcg taggttcc 108
<210> 390
<211> 108
<212> DNA
<213>Artificial sequence
<400> 390
gactacatgg gacatcattc cagggtgcca ctactactac ctaccctggg gtaacgtgaa 60
acctgtggtg gtgctgtcat cctactggga ggatacgtcg taggttcc 108
<210> 391
<211> 108
<212> DNA
<213>Artificial sequence
<400> 391
gactacatgg gacatgcctg cccattccac aggaagctgg cctggagcag gtccacctgg 60
ccctgaaggc gcagtgctcc acggaggacg tggtacgtcg taggttcc 108
<210> 392
<211> 108
<212> DNA
<213>Artificial sequence
<400> 392
gactacatgg gacatgccag cctctgggtg acatccatga gacaccctct gccacccacc 60
tggaccagta cctgtaccag ctgcgcaccc atctacgtcg taggttcc 108
<210> 393
<211> 108
<212> DNA
<213>Artificial sequence
<400> 393
gactacatgg gacatgcccc agaacagcct gccggacatc gtcatctgga tgctgcaggg 60
agacaagcgt gtggcatacc agcgggtgcc cgctacgtcg taggttcc 108
<210> 394
<211> 108
<212> DNA
<213>Artificial sequence
<400> 394
gactacatgg gacatcccag tatccgatgg agaaggtgcc tggcgcccgg atgccagtgc 60
agatacgggt caagctgtgg tttgggctct cagtacgtcg taggttcc 108
<210> 395
<211> 108
<212> DNA
<213>Artificial sequence
<400> 395
gactacatgg gacatgtatg agaacgagac taagttggcc cttgttggga actggggcac 60
aacgggcctc acctacccca agttttctga cgttacgtcg taggttcc 108
<210> 396
<211> 108
<212> DNA
<213>Artificial sequence
<400> 396
gactacatgg gacatccctc ctccacagtc tgctccatga catggacgcc ggtcacctga 60
gcttcgtgga agaggtgttt gagaaccaga ccctacgtcg taggttcc 108
<210> 397
<211> 108
<212> DNA
<213>Artificial sequence
<400> 397
gactacatgg gacatgttcg gttttgtcct tagaacgggg agaaggtgct tcccaaggat 60
gacattgagt gcccactggg ctggaagtgg gaatacgtcg taggttcc 108
<210> 398
<211> 108
<212> DNA
<213>Artificial sequence
<400> 398
gactacatgg gacatggctg ggagtatagc atcaccatcc ccccggagcg gaagccgaag 60
cactgggtcc ctgctgagaa gatgtactac acatacgtcg taggttcc 108
<210> 399
<211> 108
<212> DNA
<213>Artificial sequence
<400> 399
gactacatgg gacatgcaca ggcaggcgga ggcggagggc gagggctggg agtacgcctc 60
tctttttggc tggaagttcc acctcgagta ccgtacgtcg taggttcc 108
<210> 400
<211> 108
<212> DNA
<213>Artificial sequence
<400> 400
gactacatgg gacatccata accagcttcg tgtctccagg gcggcgtgat ggatgacaag 60
agtgaagatt ccatgtccgt ctccaccttg agctacgtcg taggttcc 108
<210> 401
<211> 108
<212> DNA
<213>Artificial sequence
<400> 401
gactacatgg gacatctctg gcacctctgt tttttccctt ggtgaagatg ggaaccgcta 60
ccatctacgc tgctacatgt accaggcccg ggatacgtcg taggttcc 108
<210> 402
<211> 108
<212> DNA
<213>Artificial sequence
<400> 402
gactacatgg gacatgatcc ctatgccatc gtctccttcc tgcaccagag ccagaagacg 60
gtggtggtga agaacaccct taaccccacc tggtacgtcg taggttcc 108
<210> 403
<211> 108
<212> DNA
<213>Artificial sequence
<400> 403
gactacatgg gacatgggtg cagacgagtt tatgggtcgc tgcatctgtc aaccgagtct 60
ggaacggatg ccacggctgg cctggttccc acttacgtcg taggttcc 108
<210> 404
<211> 108
<212> DNA
<213>Artificial sequence
<400> 404
gactacatgg gacattgatg ggggccttag gtgacaagca catgaccaga gctctctttt 60
cttcactcca gccggccatc caccatattc ctgtacgtcg taggttcc 108
<210> 405
<211> 108
<212> DNA
<213>Artificial sequence
<400> 405
gactacatgg gacatcttcc aacccctctc accatctcct ggatgtgcca catcccatgg 60
ctgtgggcca ggtgcaggag acatcaagga tcctacgtcg taggttcc 108
<210> 406
<211> 108
<212> DNA
<213>Artificial sequence
<400> 406
gactacatgg gacatctacc tgctgtccac tgcagtctga ggacacagac ctgccctacc 60
caccacccca gagggaggcc aacatctaca tggtacgtcg taggttcc 108
<210> 407
<211> 108
<212> DNA
<213>Artificial sequence
<400> 407
gactacatgg gacatgatcc tggcatgggg cctgcggaac atgaagagtt accagctggc 60
caacatctcc tcccccagcc tcgtggtaga gtgtacgtcg taggttcc 108
<210> 408
<211> 108
<212> DNA
<213>Artificial sequence
<400> 408
gactacatgg gacatgatgc tgcccaggga ggagctctac tgccccccca tcaccgtcaa 60
ggtcatcgat aaccgccagt ttggccgccg gcctacgtcg taggttcc 108
<210> 409
<211> 108
<212> DNA
<213>Artificial sequence
<400> 409
gactacatgg gacatctctc aggcctggat ggctccctcc cctgcagacg atgtgagcct 60
actcagtcct ggggaagacg tgctcatcga cattacgtcg taggttcc 108
<210> 410
<211> 108
<212> DNA
<213>Artificial sequence
<400> 410
gactacatgg gacattctct aatcctgttg ctaaccagca tgtttcattt gtagcttgca 60
gacggtctgt cgagcttggc ccccactaac acgtacgtcg taggttcc 108
<210> 411
<211> 108
<212> DNA
<213>Artificial sequence
<400> 411
gactacatgg gacattcttt ctttctaccc actcaggagg aagagttcat cgattggtgg 60
agcaaattct ttgcctccat aggggagagg gaatacgtcg taggttcc 108
<210> 412
<211> 108
<212> DNA
<213>Artificial sequence
<400> 412
gactacatgg gacattggca ggtctatgac acacagctgg agaatgtgga ggcctttgag 60
ggcctgtctg acttttgtaa caccttcaag ctgtacgtcg taggttcc 108
<210> 413
<211> 108
<212> DNA
<213>Artificial sequence
<400> 413
gactacatgg gacatgggcc tcttcaaaat ttatcccctc ccagaagacc cagccatccc 60
catgccccca agacagttcc accagctggc cgctacgtcg taggttcc 108
<210> 414
<211> 108
<212> DNA
<213>Artificial sequence
<400> 414
gactacatgg gacatagaag tgttttgtct cctcctccag tgtgatcctt acatcaagat 60
ctccataggg aagaaatcag tgagtgacca ggatacgtcg taggttcc 108
<210> 415
<211> 108
<212> DNA
<213>Artificial sequence
<400> 415
gactacatgg gacatggatg ttcgagctga cctgcactct gcctctggag aaggacctaa 60
agatcactct ctatgactat gacctcctct ccatacgtcg taggttcc 108
<210> 416
<211> 108
<212> DNA
<213>Artificial sequence
<400> 416
gactacatgg gacatgctct ggaccgaacc agtggcggga ccagctccgc ccctcccagc 60
tcctccacct cttctgccag cagcatagag tcatacgtcg taggttcc 108
<210> 417
<211> 108
<212> DNA
<213>Artificial sequence
<400> 417
gactacatgg gacatgaggc tggcaggatc ccaaacccac acctgggccc agtggaggag 60
cgtctggctc tgcatgtgct tcagcagcag ggctacgtcg taggttcc 108
<210> 418
<211> 108
<212> DNA
<213>Artificial sequence
<400> 418
gactacatgg gacatggaga gaacggaccc tgtctccgca ggggaagctg cagatgtggg 60
tcgacctatt tccgaaggcc ctggggcggc ctgtacgtcg taggttcc 108
<210> 419
<211> 108
<212> DNA
<213>Artificial sequence
<400> 419
gactacatgg gacatattag agtgatacct ttccccaggt ttttcctgcg ttgtattatc 60
tggaatacca gagatgtgat cctggatgac ctgtacgtcg taggttcc 108
<210> 420
<211> 108
<212> DNA
<213>Artificial sequence
<400> 420
gactacatgg gacatgttgg atgattggct ttgaagaaca caagcaaaag acagacgtgc 60
attatcgttc cctgggaggt gaaggcaact tcatacgtcg taggttcc 108
<210> 421
<211> 108
<212> DNA
<213>Artificial sequence
<400> 421
gactacatgg gacattctgt tcctcttccg ggtcaggatg ccttctggag gctggacaag 60
actgagagca aaatcccagc acgagtggtg ttctacgtcg taggttcc 108
<210> 422
<211> 108
<212> DNA
<213>Artificial sequence
<400> 422
gactacatgg gacatggctc cctgcagctc gatctcaacc gcatgcccaa gccagccaag 60
acagccaaga agtgctcctt ggaccagctg gattacgtcg taggttcc 108
<210> 423
<211> 108
<212> DNA
<213>Artificial sequence
<400> 423
gactacatgg gacatctctc tgtcccctca gggcaagctg gaaatgacct tggagattgt 60
agcagagagt gagcatgagg agcggcctgc tggtacgtcg taggttcc 108
<210> 424
<211> 108
<212> DNA
<213>Artificial sequence
<400> 424
gactacatgg gacatggcgc cccgacacct ccttcctgtg gtttacctcc ccatacaaga 60
ccatgaagtt catcctgtgg cggcgtttcc ggttacgtcg taggttcc 108
<210> 425
<211> 108
<212> DNA
<213>Artificial sequence
<400> 425
gactacatgg gacattgcct gccccagtgg gatcaccatg ggtccctgtc tcctccctcc 60
ctccagaact atgctgccat gaagctggtg aagtacgtcg taggttcc 108
<210> 426
<211> 108
<212> DNA
<213>Artificial sequence
<400> 426
gactacatgg gacatagcag cggacagtcc tcctgttgtg tccgaccgag agtcctggtg 60
actttgaaca tgctggtgcc gctagccaag ctgtacgtcg taggttcc 108
<210> 427
<211> 108
<212> DNA
<213>Artificial sequence
<400> 427
gactacatgg gacatgcata tcagtgcttt catgccttaa aaattaagaa aaattatcta 60
cctctatgtg ctacaagatg gtcttcaact tcttacgtcg taggttcc 108
<210> 428
<211> 108
<212> DNA
<213>Artificial sequence
<400> 428
gactacatgg gacatggagt gaacatggaa aggtttgcag aagaagcaga tgttgtaata 60
gttggtgcag gccctgcagg gctctctgca gcttacgtcg taggttcc 108
<210> 429
<211> 108
<212> DNA
<213>Artificial sequence
<400> 429
gactacatgg gacataaaca tttctttttc ttcttttatt tctaggctcc acttaacact 60
cctgtaacag aagacagatt tggaatttta acatacgtcg taggttcc 108
<210> 430
<211> 108
<212> DNA
<213>Artificial sequence
<400> 430
gactacatgg gacattatat ttatagggct tccaatgaat aatcatggca attacattgt 60
acgcttggga catttagtga gctggatggg cgatacgtcg taggttcc 108
<210> 431
<211> 108
<212> DNA
<213>Artificial sequence
<400> 431
gactacatgg gacatgtatt aataaatttg ttttttatca tttttaggtc ctttttcatg 60
atgatggtag tgtaaaagga attgccacta acgtacgtcg taggttcc 108
<210> 432
<211> 108
<212> DNA
<213>Artificial sequence
<400> 432
gactacatgg gacatggcaa catttgagag aggactggaa ctacatgcta aagtcacaat 60
ttttgcagaa ggttgccatg gacatctagc caatacgtcg taggttcc 108
<210> 433
<211> 108
<212> DNA
<213>Artificial sequence
<400> 433
gactacatgg gacatgttat gggttattga tgaaaagaac tggaaacctg ggagagtaga 60
tcacactgtt ggttggccct tggacagaca tactacgtcg taggttcc 108
<210> 434
<211> 108
<212> DNA
<213>Artificial sequence
<400> 434
gactacatgg gacatggttg gtctagacta tcagaatcca tacctgagtc catttagaga 60
gttccaaagg tggaaacacc atcctagcat tcgtacgtcg taggttcc 108
<210> 435
<211> 108
<212> DNA
<213>Artificial sequence
<400> 435
gactacatgg gacatgtcta taccaaaact cacctttcct ggtggtttac taattggttg 60
tagtcctggt tttatgaatg ttcccaagat caatacgtcg taggttcc 108
<210> 436
<211> 108
<212> DNA
<213>Artificial sequence
<400> 436
gactacatgg gacatggact ccatgtaact gaatatgagg acaatttgaa gaactcatgg 60
gtatggaaag agctatattc tgttagaaat atatacgtcg taggttcc 108
<210> 437
<211> 108
<212> DNA
<213>Artificial sequence
<400> 437
gactacatgg gacatggttc tgactttgaa cggctcaagc cagccaagga ttgcacacct 60
attgagtatc caaaacccga tggacagatc agttacgtcg taggttcc 108
<210> 438
<211> 108
<212> DNA
<213>Artificial sequence
<400> 438
gactacatgg gacatggagt ttatgaattt gtacctgtgg aacaaggtga tggatttcgg 60
ttacagataa atgctcagaa ctgtgtacat tgttacgtcg taggttcc 108
<210> 439
<211> 108
<212> DNA
<213>Artificial sequence
<400> 439
gactacatgg gacattgcag tggcaggtcc cgtcagaaga gatgaggctc ctgggacagg 60
tcagcgtcag gggcagcctg ctgtctgctc tggtacgtcg taggttcc 108
<210> 440
<211> 108
<212> DNA
<213>Artificial sequence
<400> 440
gactacatgg gacatccaag gtgggcatct tgacgttacc tctgccacgt gtgagaagct 60
ctttttcggg caccgaggta ttaactgcag cagtacgtcg taggttcc 108
<210> 441
<211> 108
<212> DNA
<213>Artificial sequence
<400> 441
gactacatgg gacatcctgc ctgacccttg agctccaggc tcctgccagc tggaggtgaa 60
actgtgcttg tatccccagc cacgaagagc tggtacgtcg taggttcc 108
<210> 442
<211> 108
<212> DNA
<213>Artificial sequence
<400> 442
gactacatgg gacatcccag ccctgaccag ccctgtgggt ggaggtacct gtaaaaagcg 60
aaaggcagca gcctggtgtg ctgatccggg gcctacgtcg taggttcc 108
<210> 443
<211> 108
<212> DNA
<213>Artificial sequence
<400> 443
gactacatgg gacatcagca gcgtgtttct taccactctc tgtcaactga aagagtgcca 60
gccaggatat cttcctcttc tctaaacact cgatacgtcg taggttcc 108
<210> 444
<211> 108
<212> DNA
<213>Artificial sequence
<400> 444
gactacatgg gacatagtgg gagaggacac cttggctggt aaggtctgac ttacatttga 60
ggtcagatgt gacgacagca ggcccatcaa ggatacgtcg taggttcc 108
<210> 445
<211> 108
<212> DNA
<213>Artificial sequence
<400> 445
gactacatgg gacatcctcc tctctctcgc agtccagctt ctttagctgc ttcctgatgt 60
tttcttccct gacttgttga atcgcaaagt gcatacgtcg taggttcc 108
<210> 446
<211> 108
<212> DNA
<213>Artificial sequence
<400> 446
gactacatgg gacatccacc cacacgtact cgctggcaaa ctgccggcct tcttgtagct 60
tctgcagttc ccggggcagc gggctctggc agttacgtcg taggttcc 108
<210> 447
<211> 108
<212> DNA
<213>Artificial sequence
<400> 447
gactacatgg gacatacaag acagctgacc caccagagca gaggtcaaaa ttaaggggca 60
tttcgtctgg cacttggcca gtatgaagtc gactacgtcg taggttcc 108
<210> 448
<211> 108
<212> DNA
<213>Artificial sequence
<400> 448
gactacatgg gacatgttct gagaaggcca cgagaggggc tgagggagca tctcaccctg 60
aagaagtggg cagtgatgtc ctgtgtcagg gcatacgtcg taggttcc 108
<210> 449
<211> 108
<212> DNA
<213>Artificial sequence
<400> 449
gactacatgg gacatcacac ggggcaccta ccatctcaga gttgaccaag tggaagaact 60
gctcgcatct ggcagtgatg ggctgttctg ccttacgtcg taggttcc 108
<210> 450
<211> 108
<212> DNA
<213>Artificial sequence
<400> 450
gactacatgg gacatccgtt tgtacattag cagctccctc tgtctctgaa ggctggcagc 60
cacgctccac ccgcttgtca gagcctggag ccgtacgtcg taggttcc 108
<210> 451
<211> 108
<212> DNA
<213>Artificial sequence
<400> 451
gactacatgg gacatcactg agttgtggca ccctcaaact cacctgcaat ctggaaataa 60
tatcctcatt tcctgtgcgg ccaccaaaga ccatacgtcg taggttcc 108
<210> 452
<211> 108
<212> DNA
<213>Artificial sequence
<400> 452
gactacatgg gacatgctaa cctttggtgg aaatccatca gtgcgttgac aagaatggta 60
cacgcagcct gcaggtctcc gtcacagccc ccttacgtcg taggttcc 108
<210> 453
<211> 108
<212> DNA
<213>Artificial sequence
<400> 453
gactacatgg gacatagggt agctcttttc aacacttacc gttcagtatc tgaaagagca 60
tcagcttcag gttgaatttc cagctccagg tgttacgtcg taggttcc 108
<210> 454
<211> 108
<212> DNA
<213>Artificial sequence
<400> 454
gactacatgg gacatcgtga acatcttcct ctttcaacac ctctcggaag gttctgtgtg 60
tccagagaga gagggcagct ctctgccagt ctgtacgtcg taggttcc 108
<210> 455
<211> 108
<212> DNA
<213>Artificial sequence
<400> 455
gactacatgg gacataatag gaaaagagtg aacctacctt tttaataagg cctggagata 60
agcagctgca caaagtatct cgtgactggg aagtacgtcg taggttcc 108
<210> 456
<211> 108
<212> DNA
<213>Artificial sequence
<400> 456
gactacatgg gacatcttca ggcagaagaa caaggaatcc ctcgtcctac aggtcaggag 60
gctgtcaaag agcgcaggga caggaaggcc agctacgtcg taggttcc 108
<210> 457
<211> 108
<212> DNA
<213>Artificial sequence
<400> 457
gactacatgg gacatggccc ccatgaagga gagcctcacc tggtgacgga gcagctggca 60
gagccgggtg agcactgcag ggagcacacg tcctacgtcg taggttcc 108
<210> 458
<211> 108
<212> DNA
<213>Artificial sequence
<400> 458
gactacatgg gacatagccc caccactcag ggagctgccc gcgccttcac ctctccgggg 60
gagcgacact ggaggcagcc atcaggttct gactacgtcg taggttcc 108
<210> 459
<211> 108
<212> DNA
<213>Artificial sequence
<400> 459
gactacatgg gacataccat gtgttcccgt ggctccagtc tcggcgtgtt gatgctgagc 60
tgaatctttg atatctcaac gctgctgtca tcctacgtcg taggttcc 108
<210> 460
<211> 108
<212> DNA
<213>Artificial sequence
<400> 460
gactacatgg gacatccatc catcctcacc atcacgctgg ctggggtctg tcatggaggc 60
tctcagctct cccagtgcag ctgtgagctg tcctacgtcg taggttcc 108
<210> 461
<211> 108
<212> DNA
<213>Artificial sequence
<400> 461
gactacatgg gacatagtcc cagagtggac aagcggccca ggaacttacc ttctggcttc 60
tcttcagcag cagagcaggc ctggcagtag gtgtacgtcg taggttcc 108
<210> 462
<211> 108
<212> DNA
<213>Artificial sequence
<400> 462
gactacatgg gacatgaaga aacctggaag tagtcatccc cttctaaccg ttgctgcata 60
cctcttcaga gactctataa acgccacacg ggatacgtcg taggttcc 108
<210> 463
<211> 108
<212> DNA
<213>Artificial sequence
<400> 463
gactacatgg gacatctaca caactggtca caaactcatg gagacgcata ctgaccactc 60
gaggtgtgag cagggcgggg aggaagtggg acatacgtcg taggttcc 108
<210> 464
<211> 108
<212> DNA
<213>Artificial sequence
<400> 464
gactacatgg gacatgaggc cttttcggca gcccagccta cctggcctcc atgacggtga 60
ctgggatgtt ccccgtatgc tcaaacacca tgatacgtcg taggttcc 108
<210> 465
<211> 108
<212> DNA
<213>Artificial sequence
<400> 465
gactacatgg gacatgcgtg actggctgag accctgcagg gctcaagcaa cattacctca 60
gtaatgtccc cagctgatga caaatcctcg tagtacgtcg taggttcc 108
<210> 466
<211> 108
<212> DNA
<213>Artificial sequence
<400> 466
gactacatgg gacatgtggg catggaggga cagcttgcct tgaggtcggc cagccgtgtc 60
ttggccaatg agatgtagtc tgtgaggagg gagtacgtcg taggttcc 108
<210> 467
<211> 108
<212> DNA
<213>Artificial sequence
<400> 467
gactacatgg gacatcagcc agcttctcac ctgcaggtac cggggagact caaaaggcac 60
gagttctgac aagaacgtaa acaggaagac cagtacgtcg taggttcc 108
<210> 468
<211> 108
<212> DNA
<213>Artificial sequence
<400> 468
gactacatgg gacatttacc ttgaaccagt ctgcatatga caggaacgca gaggggccct 60
ccagtgctgc ctggcgcaca accaggaacg cagtacgtcg taggttcc 108
<210> 469
<211> 108
<212> DNA
<213>Artificial sequence
<400> 469
gactacatgg gacatccttc aagcagctgc tgcgcttctg gaaagcagac aaccagggca 60
gacacaaagg agagcactct ctgccagtga acctacgtcg taggttcc 108
<210> 470
<211> 108
<212> DNA
<213>Artificial sequence
<400> 470
gactacatgg gacattcaga agcaggtata ataccacatc cactcaccct gcggtacagt 60
gaggtgagca gagggtgtgt ccgcgcaaag ctctacgtcg taggttcc 108
<210> 471
<211> 108
<212> DNA
<213>Artificial sequence
<400> 471
gactacatgg gacatcacac tgggcctacc tttcagcaca gggctgtgag tgagtatctg 60
agtcagggta tgactgaaga acctcttcag aggtacgtcg taggttcc 108
<210> 472
<211> 108
<212> DNA
<213>Artificial sequence
<400> 472
gactacatgg gacatggtcg cctcctcctc acgcacgtta tcgtaactgg cagaggaagt 60
gtgctcagga gcgggctgct gaagctctgg aagtacgtcg taggttcc 108
<210> 473
<211> 108
<212> DNA
<213>Artificial sequence
<400> 473
gactacatgg gacattgctg cacactcagg caggccaccc tcaggaacat accagcacct 60
cacgatcttg tgagtggagg actcctcctg tactacgtcg taggttcc 108
<210> 474
<211> 108
<212> DNA
<213>Artificial sequence
<400> 474
gactacatgg gacatgctaa taagcaaact aagtcattta cagtctgggc tgcagtgcaa 60
ttaacttaca aatcagcatt ctctgcagta cattacgtcg taggttcc 108
<210> 475
<211> 108
<212> DNA
<213>Artificial sequence
<400> 475
gactacatgg gacattaaac tcttcacttg acttttcctc ctacctgcgg cattttttca 60
ggctccacag ttcttctcag atctgagttt ttctacgtcg taggttcc 108
<210> 476
<211> 108
<212> DNA
<213>Artificial sequence
<400> 476
gactacatgg gacattgtca tgaacgcacc agaaagcatg gccctggcga cgtcagcatg 60
ctggcaggat gcttccatct gttcacaaag gcatacgtcg taggttcc 108
<210> 477
<211> 108
<212> DNA
<213>Artificial sequence
<400> 477
gactacatgg gacataaaca gtaacactga atcatcatta gcacgctacc tttccagcag 60
ctcttgcagg ctcacaatgc cttgtacgtg aagtacgtcg taggttcc 108
<210> 478
<211> 108
<212> DNA
<213>Artificial sequence
<400> 478
gactacatgg gacatagacg ggagaacata ctgtgtgcca ataaatactg agcaaactct 60
aacagggaag acagcttctt ctgaaaagag agatacgtcg taggttcc 108
<210> 479
<211> 108
<212> DNA
<213>Artificial sequence
<400> 479
gactacatgg gacatctctc tgctccacag tcagcagcac agggtgactg gtctccgctg 60
gagccgtgca gatctgtccc acgctagagg caatacgtcg taggttcc 108
<210> 480
<211> 108
<212> DNA
<213>Artificial sequence
<400> 480
gactacatgg gacatagaga aaatgaagct ataacttacc tataaatgaa ctagaatgat 60
tagcataggc ctcagaactg tcacagtcaa tcatacgtcg taggttcc 108
<210> 481
<211> 108
<212> DNA
<213>Artificial sequence
<400> 481
gactacatgg gacataccag cttcctctta cctcaagcaa aagggcattc aggtcctgat 60
ggcttcgcag gaggcgcaca gctgattcct ttatacgtcg taggttcc 108
<210> 482
<211> 108
<212> DNA
<213>Artificial sequence
<400> 482
gactacatgg gacatcccac tcccgcggcc tgccgcgccc acctacccag cagctcggcc 60
caggccctcc ggcggccccc tgggtcctgg ccctacgtcg taggttcc 108
<210> 483
<211> 108
<212> DNA
<213>Artificial sequence
<400> 483
gactacatgg gacatatggg cgcccctgcc tgcgccctcg cgctctgcgt ggccgtggcc 60
atcgtggccg gcgcctcctc ggagtccttg gggtacgtcg taggttcc 108
<210> 484
<211> 108
<212> DNA
<213>Artificial sequence
<400> 484
gactacatgg gacatgaagt cccgggccca gagcccggcc agcaggagca gttggtcttc 60
ggcagcgggg atgctgtgga gctgagctgt ccctacgtcg taggttcc 108
<210> 485
<211> 108
<212> DNA
<213>Artificial sequence
<400> 485
gactacatgg gacatcaggt tgggcattgg ttgcggccat ctctgccttg cagacgctcc 60
atcctcggga gatgacgaag acggggagga cgatacgtcg taggttcc 108
<210> 486
<211> 108
<212> DNA
<213>Artificial sequence
<400> 486
gactacatgg gacatggggc cccttactgg acacggcccg agcggatgga caagaagctg 60
ctggccgtgc cggccgccaa caccgtccgc ttctacgtcg taggttcc 108
<210> 487
<211> 108
<212> DNA
<213>Artificial sequence
<400> 487
gactacatgg gacatccggt gcagctgcgg catcagcagt ggagcctggt catggaaagc 60
gtggtgccct cggaccgcgg caactacacc tgctacgtcg taggttcc 108
<210> 488
<211> 108
<212> DNA
<213>Artificial sequence
<400> 488
gactacatgg gacatgagcg ctccccgcac cggcccatcc tgcaggcggg gctgccggcc 60
aaccagacgg cggtgctggg cagcgacgtg gagtacgtcg taggttcc 108
<210> 489
<211> 108
<212> DNA
<213>Artificial sequence
<400> 489
gactacatgg gacatgtcct ggatcagtga gagtgtggag gccgacgtgc gcctccgcct 60
ggccaatgtg tcggagcggg acgggggcga gtatacgtcg taggttcc 108
<210> 490
<211> 108
<212> DNA
<213>Artificial sequence
<400> 490
gactacatgg gacatgacgg cgggcgctaa caccaccgac aaggagctag aggttctctc 60
cttgcacaac gtcacctttg aggacgccgg ggatacgtcg taggttcc 108
<210> 491
<211> 108
<212> DNA
<213>Artificial sequence
<400> 491
gactacatgg gacatgccga ggaggagctg gtggaggctg acgaggcggg cagtgtgtat 60
gcaggcatcc tcagctacgg ggtgggcttc ttctacgtcg taggttcc 108
<210> 492
<211> 108
<212> DNA
<213>Artificial sequence
<400> 492
gactacatgg gacatggtgt ccctggagtc caacgcgtcc atgagctcca acacaccact 60
ggtgcgcatc gcaaggctgt cctcagggga gggtacgtcg taggttcc 108
<210> 493
<211> 108
<212> DNA
<213>Artificial sequence
<400> 493
gactacatgg gacatccact gccaggctga ccctgggcaa gccccttggg gagggctgct 60
tcggccaggt ggtcatggcg gaggccatcg gcatacgtcg taggttcc 108
<210> 494
<211> 108
<212> DNA
<213>Artificial sequence
<400> 494
gactacatgg gacatgggcc cctgtacgtg ctggtggagt acgcggccaa gggtaacctg 60
cgggagtttc ttggactact ccttcgacac ctgtacgtcg taggttcc 108
<210> 495
<211> 108
<212> DNA
<213>Artificial sequence
<400> 495
gactacatgg gacataatgt gctggtgacc gaggacaacg tgatgaagat cgcagacttc 60
gggctggccc gggacgtgca caacctcgac tactacgtcg taggttcc 108
<210> 496
<211> 108
<212> DNA
<213>Artificial sequence
<400> 496
gactacatgg gacattttgg ggtcctgctc tgggagatct tcacgctggg gggctccccg 60
taccccggca tccctgtgga ggagctcttc aagtacgtcg taggttcc 108
<210> 497
<211> 108
<212> DNA
<213>Artificial sequence
<400> 497
gactacatgg gacatgtgct ggcatgccgc gccctcccag aggcccacct tcaagcagct 60
ggtggaggac ctggaccgtg tccttaccgt gactacgtcg taggttcc 108
<210> 498
<211> 108
<212> DNA
<213>Artificial sequence
<400> 498
gactacatgg gacatggacc tgtcggcgcc tttcgagcag tactccccgg gtggccagga 60
cacccccagc tccagctcct caggggacga ctctacgtcg taggttcc 108
<210> 499
<211> 108
<212> DNA
<213>Artificial sequence
<400> 499
gactacatgg gacatcttat accacagtct cactgccttt tccaggcttc acccaaccat 60
ttcctctctt ctctctcttt acctttccag aattacgtcg taggttcc 108
<210> 500
<211> 108
<212> DNA
<213>Artificial sequence
<400> 500
gactacatgg gacatgtgtg aaagttgtca gctgcagctc ggcgtccgtc tgcagctcgt 60
gcccaaccag gttgggcatc ttggtcacgt tgttacgtcg taggttcc 108
<210> 501
<211> 108
<212> DNA
<213>Artificial sequence
<400> 501
gactacatgg gacatgatgg aggaaggaat gaatgttctc catgactttg ggatccagtc 60
aacacattac ctccaggtga attaccaaga ctctacgtcg taggttcc 108
<210> 502
<211> 108
<212> DNA
<213>Artificial sequence
<400> 502
gactacatgg gacatttctg tttttccata ggattctctt tggacagcgt ccatactggt 60
gggttttgga tactgactac tacagcaaca ctttacgtcg taggttcc 108
<210> 503
<211> 108
<212> DNA
<213>Artificial sequence
<400> 503
gactacatgg gacatctctt tcctgccctt tagggagccc ctctggccat gccatgggca 60
cagcaggtgt atactacgtg atggtcacat ctatacgtcg taggttcc 108
<210> 504
<211> 108
<212> DNA
<213>Artificial sequence
<400> 504
gactacatgg gacattcttc tgttgcaggt gcttgaatgt cattttgtgg ttgggattct 60
gggctgtgca gctgaatgtc tgtctgtcac gaatacgtcg taggttcc 108
<210> 505
<211> 108
<212> DNA
<213>Artificial sequence
<400> 505
gactacatgg gacatggcat tgctgttgca gaaactttca gccacatcca cagcatctat 60
aatgccagcc tcaagaaata ttttctcatt acctacgtcg taggttcc 108
<210> 506
<211> 108
<212> DNA
<213>Artificial sequence
<400> 506
gactacatgg gacatcatgg gagtgaggca cccgccctgc tcccaccggc tcctggccgt 60
ctgcgccctc gtgtccttgg caaccgctgc acttacgtcg taggttcc 108
<210> 507
<211> 108
<212> DNA
<213>Artificial sequence
<400> 507
gactacatgg gacatgatca aagatccagc taacaggcgc tacgaggtgc ccttggagac 60
cccgcatgtc cacagccggg caccgtcccc acttacgtcg taggttcc 108
<210> 508
<211> 108
<212> DNA
<213>Artificial sequence
<400> 508
gactacatgg gacatggctg aacacgacgg tggcgcccct gttctttgcg gaccagttcc 60
ttcagctgtc cacctcgctg ccctcgcagt atatacgtcg taggttcc 108
<210> 509
<211> 108
<212> DNA
<213>Artificial sequence
<400> 509
gactacatgg gacatcgccg tctcctgcat gtcccagccc ggtgcgaacc tctacgggtc 60
tcaccctttc tacctggcgc tggaggacgg cggtacgtcg taggttcc 108
<210> 510
<211> 108
<212> DNA
<213>Artificial sequence
<400> 510
gactacatgg gacatttccc ttccagatgt ggtcctgcag ccgagccctg cccttagctg 60
gaggtcgaca ggtgggatcc tggatgtcta cattacgtcg taggttcc 108
<210> 511
<211> 108
<212> DNA
<213>Artificial sequence
<400> 511
gactacatgg gacatttggc ctgcaggata cccgttcatg ccgccatact ggggcctggg 60
cttccacctg tgccgctggg gctactcctc cactacgtcg taggttcc 108
<210> 512
<211> 108
<212> DNA
<213>Artificial sequence
<400> 512
gactacatgg gacattgcag gacgtccagt ggaacgacct ggactacatg gactcccgga 60
gggacttcac gttcaacaag gatggcttcc gggtacgtcg taggttcc 108
<210> 513
<211> 108
<212> DNA
<213>Artificial sequence
<400> 513
gactacatgg gacattttcc ctcttcccag gatcctgcca tcagcagctc gggccctgcc 60
gggagctaca ggccctacga cgagggtctg cggtacgtcg taggttcc 108
<210> 514
<211> 108
<212> DNA
<213>Artificial sequence
<400> 514
gactacatgg gacatctctc gttgtccagg tatggcccgg gtccactgcc ttccccgact 60
tcaccaaccc cacagccctg gcctggtggg aggtacgtcg taggttcc 108
<210> 515
<211> 108
<212> DNA
<213>Artificial sequence
<400> 515
gactacatgg gacattcacc taccagcagc gcttctcttg caggacatga acgagccttc 60
caacttcatc aggggctctg aggacggctg ccctacgtcg taggttcc 108
<210> 516
<211> 108
<212> DNA
<213>Artificial sequence
<400> 516
gactacatgg gacatcgcct cttccagggg tggttggggg gaccctccag gcggccacca 60
tctgtgcctc cagccaccag tttctctcca cactacgtcg taggttcc 108
<210> 517
<211> 108
<212> DNA
<213>Artificial sequence
<400> 517
gactacatgg gacatccagg gcgctggtga aggctcgggg gacacgccca tttgtgatct 60
cccgctcgac ctttgctggc cacggccgat acgtacgtcg taggttcc 108
<210> 518
<211> 108
<212> DNA
<213>Artificial sequence
<400> 518
gactacatgg gacatgaaat cctgcagttt aacctgctgg gggtgcctct ggtcggggcc 60
gacgtctgcg gcttcctggg caacacctca gagtacgtcg taggttcc 108
<210> 519
<211> 108
<212> DNA
<213>Artificial sequence
<400> 519
gactacatgg gacatgcccc aggagccgta cagcttcagc gagccggccc agcaggccat 60
gaggaaggcc ctcaccctgc gctacgcact ccttacgtcg taggttcc 108
<210> 520
<211> 108
<212> DNA
<213>Artificial sequence
<400> 520
gactacatgg gacatggttc cccaaggact ctagcacctg gactgtggac caccagctcc 60
tgtgggggga ggccctgctc atcaccccag tgctacgtcg taggttcc 108
<210> 521
<211> 108
<212> DNA
<213>Artificial sequence
<400> 521
gactacatgg gacatggtgc cagtagaggc ccttggcagc ctcccacccc cacctgcagc 60
tccccgtgag ccagccatcc acagcgaggg gcatacgtcg taggttcc 108
<210> 522
<211> 108
<212> DNA
<213>Artificial sequence
<400> 522
gactacatgg gacatgggcc ctggcctcac aaccacagag tcccgccagc agcccatggc 60
cctggctgtg gccctgacca agggtgggga ggctacgtcg taggttcc 108
<210> 523
<211> 108
<212> DNA
<213>Artificial sequence
<400> 523
gactacatgg gacatgaaca cgatcgtgaa tgagctggta cgtgtgacca gtgagggagc 60
tggcctgcag ctgcagaagg tgactgtcct gggtacgtcg taggttcc 108
<210> 524
<211> 108
<212> DNA
<213>Artificial sequence
<400> 524
gactacatgg gacattggga tctcgggctg ctccatttgt gctctctctt ttccaggtcc 60
tggacatctg tgtctcgctg ttgatgggag agctacgtcg taggttcc 108
<210> 525
<211> 108
<212> DNA
<213>Artificial sequence
<400> 525
gactacatgg gacatgttaa actggctttt ttgacttccc agaacaatat ctaattagca 60
aataacacaa ttcagtgaca ttcagcagga tgctacgtcg taggttcc 108
<210> 526
<211> 108
<212> DNA
<213>Artificial sequence
<400> 526
gactacatgg gacatcatgg actggaagac actccaggcc ctactgagcg gtgtgaacaa 60
gtactccaca gcgttcgggc gcatctggct gtctacgtcg taggttcc 108
<210> 527
<211> 108
<212> DNA
<213>Artificial sequence
<400> 527
gactacatgg gacatcacac cagccaccac tttctgatag gcagcctgca ctggtggggt 60
gaattctttg ccaaagtgat gggccagcac acatacgtcg taggttcc 108
<210> 528
<211> 108
<212> DNA
<213>Artificial sequence
<400> 528
gactacatgg gacatttcag gtttcaggct ttagggtgta acatgggggg gcccagtagg 60
ggctatgctg gttgcatggg gaggccccag gcctacgtcg taggttcc 108
<210> 529
<211> 108
<212> DNA
<213>Artificial sequence
<400> 529
gactacatgg gacattgata gactgcagca tgcttatgac agcgttctca ccgaaaagtt 60
cccgtggtat tcagtaacaa gatcctctag gtttacgtcg taggttcc 108
<210> 530
<211> 108
<212> DNA
<213>Artificial sequence
<400> 530
gactacatgg gacattctgg gcttctccaa atctcaccgt tccagccaga aatacacaca 60
gagaaggctg ataatcaatc ccatggagcc aactacgtcg taggttcc 108
<210> 531
<211> 108
<212> DNA
<213>Artificial sequence
<400> 531
gactacatgg gacatccttt tgaagtattg ctcccccagt ggattgggtg gctccattca 60
ctccaatgct gagcacttcc acagagtggg ttatacgtcg taggttcc 108
<210> 532
<211> 108
<212> DNA
<213>Artificial sequence
<400> 532
gactacatgg gacatcagtc cagctgtggt cccagtcagt ccggtactgc accaagtgct 60
ccaaacagtg gttcaagaat ctgttgttcc agttacgtcg taggttcc 108
<210> 533
<211> 108
<212> DNA
<213>Artificial sequence
<400> 533
gactacatgg gacatcccag attctgcagt tttagcatct gtgtggcctg tctcctgggt 60
tcccgtgggt cctggagctg aacaacaaat gtttacgtcg taggttcc 108
<210> 534
<211> 108
<212> DNA
<213>Artificial sequence
<400> 534
gactacatgg gacatccaat aatgcagagt gaggttggta ggctggggct cagagctgct 60
gttccaagtg caattcatgt actcgacatt gaatacgtcg taggttcc 108
<210> 535
<211> 108
<212> DNA
<213>Artificial sequence
<400> 535
gactacatgg gacatccaga tttcccacca gctgtggtgt cttcattccc attgggcgtc 60
agaattgtcg tgttcagccc cactcccagc aggtacgtcg taggttcc 108
<210> 536
<211> 108
<212> DNA
<213>Artificial sequence
<400> 536
gactacatgg gacatgctat acgatgtact ccattcggtt taagctctgg gcactttcca 60
agtctctgtt gtcctgtttg tttgtccagt ttgtacgtcg taggttcc 108
<210> 537
<211> 108
<212> DNA
<213>Artificial sequence
<400> 537
gactacatgg gacatcctgt tctgttcttc agaggccgcc tctgaactct tacttctgca 60
acggcagcaa tcagcgagct gtttccatca cgttacgtcg taggttcc 108
<210> 538
<211> 108
<212> DNA
<213>Artificial sequence
<400> 538
gactacatgg gacatcttac aatggccaca tgtatttcat tgttcgctga aggggaaggc 60
tcgcaagcga tgtagattga atattcagcg gaatacgtcg taggttcc 108
<210> 539
<211> 108
<212> DNA
<213>Artificial sequence
<400> 539
gactacatgg gacatctggt gacatcatct ccttgttaaa ggtaaatgtg atgttcgcac 60
agttatcctg gtaataggag tcagaggtgc acttacgtcg taggttcc 108
<210> 540
<211> 108
<212> DNA
<213>Artificial sequence
<400> 540
gactacatgg gacatagcca tcatgtccta cctttgagca ggcgatccgt ccattcaggc 60
actggcaggt attacagtca tcatcccatt tggtacgtcg taggttcc 108
<210> 541
<211> 108
<212> DNA
<213>Artificial sequence
<400> 541
gactacatgg gacatcctgg cacacatacc ttcctggcac ttggcaccac tgtgccctgg 60
agggcagaca caccggtagc cattgatctc atctacgtcg taggttcc 108
<210> 542
<211> 108
<212> DNA
<213>Artificial sequence
<400> 542
gactacatgg gacatgggaa aaccagacgg agacagtcct tacttattct gcagtcgggc 60
ccagcaaaac ccggggcaca ttcgcaccgg tactacgtcg taggttcc 108
<210> 543
<211> 108
<212> DNA
<213>Artificial sequence
<400> 543
gactacatgg gacatgatag tggatgagtg ctggcttaaa aggatgtcac acttaccagg 60
gatgagggct gcagtcattg gtatctgcaa agatacgtcg taggttcc 108
<210> 544
<211> 108
<212> DNA
<213>Artificial sequence
<400> 544
gactacatgg gacatgagga cactcactct gagcacagat gggcccctcc cagccttcct 60
tgcagacgca cgtaaaggac tcgccgttga ccatacgtcg taggttcc 108
<210> 545
<211> 108
<212> DNA
<213>Artificial sequence
<400> 545
gactacatgg gacatgggca taaagttacc tatgttacag gttgttcctt cccagccgcc 60
aggacacatg cacttaaaag catccccctc atctacgtcg taggttcc 108
<210> 546
<211> 108
<212> DNA
<213>Artificial sequence
<400> 546
gactacatgg gacatcaact accacttacg tgagtggcag gtctttcctt tccacccatt 60
tttacagtca cagtagaagt cattgaccag gtctacgtcg taggttcc 108
<210> 547
<211> 108
<212> DNA
<213>Artificial sequence
<400> 547
gactacatgg gacatagtgg cagactcact ggtttcacag taggccccct cccagccgtc 60
actacagatg cacttgtagg agttgacacc atctacgtcg taggttcc 108
<210> 548
<211> 108
<212> DNA
<213>Artificial sequence
<400> 548
gactacatgg gacatctttc atggcagtat gttcccgtga agcctttgtt acagtcacag 60
gtgaatttgc ctcccgactg actcttgcac ttctacgtcg taggttcc 108
<210> 549
<211> 108
<212> DNA
<213>Artificial sequence
<400> 549
gactacatgg gacatccttc acagggggtc gtgcggcagt ggtctttcag gtgtgagcag 60
ttcttgccct catagtcctc ggggcacttg cagtacgtcg taggttcc 108
<210> 550
<211> 108
<212> DNA
<213>Artificial sequence
<400> 550
gactacatgg gacatcctga cagaggtttc cagagaaacc agtgggacac agacactgga 60
atctgttgat ttcattctga cagtgacccc cattacgtcg taggttcc 108
<210> 551
<211> 108
<212> DNA
<213>Artificial sequence
<400> 551
gactacatgg gacattttgt tgtcaattgt caaagttttg atttaagcaa agatttacat 60
acccgacagg aggcgtcatt ctgacactgg ccatacgtcg taggttcc 108
<210> 552
<211> 108
<212> DNA
<213>Artificial sequence
<400> 552
gactacatgg gacatacaaa gtcactcact tatgtcacaa ttctgaccca tccagccggg 60
aagacagtcg cagtagtagc tggcaatgag atttacgtcg taggttcc 108
<210> 553
<211> 108
<212> DNA
<213>Artificial sequence
<400> 553
gactacatgg gacataggga tgttcttacc taactggcac gttttcccag tccactgtgg 60
ggggcacaca cacttaaatc cgttaaccag gtctacgtcg taggttcc 108
<210> 554
<211> 108
<212> DNA
<213>Artificial sequence
<400> 554
gactacatgg gacataaaat tggacttact tgtagagcat gtggggccgg tccagcctgg 60
ggaacactca cactcaaagc ccagggaggt ctctacgtcg taggttcc 108
<210> 555
<211> 108
<212> DNA
<213>Artificial sequence
<400> 555
gactacatgg gacatggacc acttaccaat ttcacagttg ggtcctgaat acccctcagg 60
gcaggaacac tgatatttgt cagggcctgt gtttacgtcg taggttcc 108
<210> 556
<211> 108
<212> DNA
<213>Artificial sequence
<400> 556
gactacatgg gacatccagt tggtctcaca gaggcactgc cagggctcat tacagatgcc 60
gtggacgcat cccgggtgtg ggatgcactt atctacgtcg taggttcc 108
<210> 557
<211> 108
<212> DNA
<213>Artificial sequence
<400> 557
gactacatgg gacatgaaaa ttaaaagaaa tctcacaaaa gaccagttga tttacctgca 60
gtcacctggg agtttgcaag acccatgctt aggtacgtcg taggttcc 108
<210> 558
<211> 108
<212> DNA
<213>Artificial sequence
<400> 558
gactacatgg gacatcctct gttacattcg gggcccatcc agccttccat gcaagttttg 60
ttgccattct ggtcacaggc atagtgtcca aagtacgtcg taggttcc 108
<210> 559
<211> 108
<212> DNA
<213>Artificial sequence
<400> 559
gactacatgg gacatacttc cacgtgtgtt tagagaaaag tccacagaag cgatacttac 60
gaacggtgtc attactggaa tcccacgcct ccatacgtcg taggttcc 108
<210> 560
<211> 108
<212> DNA
<213>Artificial sequence
<400> 560
gactacatgg gacatccggc caggcgaaac tgaaaggcag cacgatgcgg ttgcggtcgt 60
tgccgcggct ggccttgagg ttgaaggtgt tgctacgtcg taggttcc 108
<210> 561
<211> 108
<212> DNA
<213>Artificial sequence
<400> 561
gactacatgg gacattggga gggaggcccg gagaagggct cctaccttgg ctcgcagggc 60
acagagcagg gcgagcagga ggcttagggg gcgtacgtcg taggttcc 108
<210> 562
<211> 108
<212> DNA
<213>Artificial sequence
<400> 562
gactacatgg gacatgtcag ctaactctct cggtcacggg cgtccggctg tccacaggct 60
cctctctgtt tggccttggc atggaggatg aaatacgtcg taggttcc 108
<210> 563
<211> 108
<212> DNA
<213>Artificial sequence
<400> 563
gactacatgg gacatcttga tcaaatacac atcatacttc ccagcagagc ggccagattt 60
cctttgctta agcttccgtg tccagccttc aggtacgtcg taggttcc 108
<210> 564
<211> 108
<212> DNA
<213>Artificial sequence
<400> 564
gactacatgg gacatttacc tgagccctaa catcccagct accatggaat cctgttggag 60
ctggtctaca gaagcaaggt gtattctggg gagtacgtcg taggttcc 108
<210> 565
<211> 108
<212> DNA
<213>Artificial sequence
<400> 565
gactacatgg gacatggcaa gggtccccgc ccgcggccac ggcggtccca ctcacagtct 60
ctcctcctcg cctcctcctc ctcctccgct cggtacgtcg taggttcc 108
<210> 566
<211> 108
<212> DNA
<213>Artificial sequence
<400> 566
gactacatgg gacatcccca gcaagctcag cgtgtaacgt gcgctatgga gccgaaagtc 60
gcagagctga agcagaagat cgaggacacg ctatacgtcg taggttcc 108
<210> 567
<211> 108
<212> DNA
<213>Artificial sequence
<400> 567
gactacatgg gacatggtgg catggtacaa tgaactcttg cctccagcct tccacctacc 60
gctgccagga cctaccctgg ccttcctggt acttacgtcg taggttcc 108
<210> 568
<211> 108
<212> DNA
<213>Artificial sequence
<400> 568
gactacatgg gacatgagcc tcccagagct gcagatagaa atcattgctg actacgaggt 60
gcaccccaac cgacgcccca agatcctggc ccatacgtcg taggttcc 108
<210> 569
<211> 108
<212> DNA
<213>Artificial sequence
<400> 569
gactacatgg gacatgcgca tatcaggtgt gtgcatacac ccccgatttg ggggctggtt 60
tgccatccga ggggtagtgc tgctgccagg gattacgtcg taggttcc 108
<210> 570
<211> 108
<212> DNA
<213>Artificial sequence
<400> 570
gactacatgg gacataggat attatacaga ttgctgcttc ttttccaaac acttctcaat 60
atcatcaagc acctgaacgg cagcctttgg aattacgtcg taggttcc 108
<210> 571
<211> 108
<212> DNA
<213>Artificial sequence
<400> 571
gactacatgg gacatcctga ggtggtatca cccctccaca catgacaaga atatctggcc 60
gtccaaggga gttaagttct ttgatgagtt cagtacgtcg taggttcc 108
<210> 572
<211> 108
<212> DNA
<213>Artificial sequence
<400> 572
gactacatgg gacatcctgg aaaagagggc ctatgtccac atcaaaacca agatcagcaa 60
atcctgtagc aataactttt gctcctctgt cattacgtcg taggttcc 108
<210> 573
<211> 108
<212> DNA
<213>Artificial sequence
<400> 573
gactacatgg gacatattac ctcttgatag cagatgttat ctctttactt tctccaaatt 60
cctggcgata tgctccactc accattcgat cattacgtcg taggttcc 108
<210> 574
<211> 108
<212> DNA
<213>Artificial sequence
<400> 574
gactacatgg gacattatat atcttcacct tgcccgagat gcatccactg caagagccag 60
gatatttcca tctccgctag cagcacattc ggttacgtcg taggttcc 108
<210> 575
<211> 108
<212> DNA
<213>Artificial sequence
<400> 575
gactacatgg gacataagct attaatacct tcttaagttt ttcaatctgc ctgtttcgca 60
ctgaagtatt atcaattgcc agaacttcta cagtacgtcg taggttcc 108
<210> 576
<211> 108
<212> DNA
<213>Artificial sequence
<400> 576
gactacatgg gacatttctc actatcttac cagaatctat tctagcttgt cttcgggcag 60
cacattcttc aattcgaagt ttaggtattc ccttacgtcg taggttcc 108
<210> 577
<211> 108
<212> DNA
<213>Artificial sequence
<400> 577
gactacatgg gacatccttt aaagcagcat cataaacatc atttgtgaga cattccatca 60
tgtaagaacc tccccaagga tcagccactt tggtacgtcg taggttcc 108
<210> 578
<211> 108
<212> DNA
<213>Artificial sequence
<400> 578
gactacatgg gacatcctgc tcagtaagtg accatccaga tgtctgacag tgtgctctta 60
gaagaagaga ttttgagttt ttaggctgaa acatacgtcg taggttcc 108
<210> 579
<211> 108
<212> DNA
<213>Artificial sequence
<400> 579
gactacatgg gacatccttg gtgcaaattc atcaattgtc aggccagcct ggagtccagt 60
tctagagtac tccaatccat ctgctaaagt atatacgtcg taggttcc 108
<210> 580
<211> 108
<212> DNA
<213>Artificial sequence
<400> 580
gactacatgg gacatccttt gctgtatatt caaatatgtc agcaataatt ttcatggatg 60
gttctggagg aaaaatgtat gtatttcgaa ccatacgtcg taggttcc 108
<210> 581
<211> 108
<212> DNA
<213>Artificial sequence
<400> 581
gactacatgg gacatccctt aatgttgtcc ttatagaact tattgctttc ttccacagta 60
ctaaaaccag catactggcg gatggtccag ggctacgtcg taggttcc 108
<210> 582
<211> 108
<212> DNA
<213>Artificial sequence
<400> 582
gactacatgg gacatgcggg gaggacatgg ccgcgcacag gccggtggaa tgggtccagg 60
ccgtggtcag ccgcttcgac gagcaggtaa ccgtacgtcg taggttcc 108
<210> 583
<211> 108
<212> DNA
<213>Artificial sequence
<400> 583
gactacatgg gacatgcttc caataaaaac aggacagcag aacacacata ccaaagtcag 60
tactgagcac aacaaggaat gtctaatcaa tattacgtcg taggttcc 108
<210> 584
<211> 108
<212> DNA
<213>Artificial sequence
<400> 584
gactacatgg gacattttta tgttctgaat atcttttctg ttagagaata tttggagaag 60
ctgctgaaaa aaatttatat ctctctcagt tgatacgtcg taggttcc 108
<210> 585
<211> 108
<212> DNA
<213>Artificial sequence
<400> 585
gactacatgg gacatgcaac caaaggacac aatgagatta gatgaaacga tgctggtcaa 60
acagttgctg ccagaaatct gccattttct tcatacgtcg taggttcc 108
<210> 586
<211> 108
<212> DNA
<213>Artificial sequence
<400> 586
gactacatgg gacattggtt tttacttttt aggttacagg aattaactgt ttgttcagaa 60
gacaatgttg atgttcatga tatagaattg ttatacgtcg taggttcc 108
<210> 587
<211> 108
<212> DNA
<213>Artificial sequence
<400> 587
gactacatgg gacatttcta gagttaattt ttaaaaattg tgttttttcc agaaacagca 60
tttaaattta aagccctaaa gaaggttgcg cagtacgtcg taggttcc 108
<210> 588
<211> 108
<212> DNA
<213>Artificial sequence
<400> 588
gactacatgg gacattcact gtaaagacat gtggttcttt atttataggc attttggaac 60
tgggtagaaa attatccaga tgaatttaca aaatacgtcg taggttcc 108
<210> 589
<211> 108
<212> DNA
<213>Artificial sequence
<400> 589
gactacatgg gacatgaatg tgcagaaaag ctatttgact tggtggatgg ttttgctgaa 60
agcaccaaac gtaaagcagc agtttggcca ctatacgtcg taggttcc 108
<210> 590
<211> 108
<212> DNA
<213>Artificial sequence
<400> 590
gactacatgg gacattctag tccgcattgg attggtggcc taagattgat gctgtgtatt 60
gtcactcggt tgaacttcga aatatgtttg gtgtacgtcg taggttcc 108
<210> 591
<211> 108
<212> DNA
<213>Artificial sequence
<400> 591
gactacatgg gacatttttt tccttgcaga atccaagaaa acaggggccc gaaacccaag 60
gcagtacagc agaattaatt acagggctcg tcctacgtcg taggttcc 108
<210> 592
<211> 108
<212> DNA
<213>Artificial sequence
<400> 592
gactacatgg gacattagtg gaaataccag tcaaatgtcc atggatcatg aagaattact 60
acgtactcct ggagcctctc tccggaaggg aaatacgtcg taggttcc 108
<210> 593
<211> 108
<212> DNA
<213>Artificial sequence
<400> 593
gactacatgg gacattttga cacacttgca gaaacagtat tggctgatcg gtttgagaga 60
ttggtggaac tggtcacaat gatgggtgat caatacgtcg taggttcc 108
<210> 594
<211> 108
<212> DNA
<213>Artificial sequence
<400> 594
gactacatgg gacatagaag tagaattggc agactccatg cagactctct tccgaggcaa 60
cagcttggcc agtaaaataa tgacattctg ttttacgtcg taggttcc 108
<210> 595
<211> 108
<212> DNA
<213>Artificial sequence
<400> 595
gactacatgg gacattaggt tagaaccatc agagagcctt gaggaaaacc agcggaacct 60
ccttcagatg actgaaaagt tcttccatgc cattacgtcg taggttcc 108
<210> 596
<211> 108
<212> DNA
<213>Artificial sequence
<400> 596
gactacatgg gacatcggtg ctgtgacttg tttgtgctca tctctgttct gtaggcaact 60
tgccactccc tactgaataa agctacagta aaatacgtcg taggttcc 108
<210> 597
<211> 108
<212> DNA
<213>Artificial sequence
<400> 597
gactacatgg gacatgtgat gcagtaaatc atagtctttc cttcataagt gacggcaatg 60
tgcttgcttt acatcgtcta ctctggaaca atctacgtcg taggttcc 108
<210> 598
<211> 108
<212> DNA
<213>Artificial sequence
<400> 598
gactacatgg gacatggttc aaaactggtc aaatcaatgg tgatttgctg atataccatg 60
tcttactgac tttaaagcca tattatgcaa agctacgtcg taggttcc 108
<210> 599
<211> 108
<212> DNA
<213>Artificial sequence
<400> 599
gactacatgg gacatggttg gttctactgc tgtccaagta acttcagcag agcgaacaaa 60
agtcctaggg caatcagtct ttctaaatga cattacgtcg taggttcc 108
<210> 600
<211> 108
<212> DNA
<213>Artificial sequence
<400> 600
gactacatgg gacatggtca gctgcctata atcttctgtg tgccttaact tgtaccttta 60
atttaaaaat cgagggccag ttactagaga cattacgtcg taggttcc 108
<210> 601
<211> 108
<212> DNA
<213>Artificial sequence
<400> 601
gactacatgg gacatggtat tgaattgaaa cacctttgtt tggaatacat gactccatgg 60
ctgtcaaatc tagttcgttt ttgcaagcat aattacgtcg taggttcc 108
<210> 602
<211> 108
<212> DNA
<213>Artificial sequence
<400> 602
gactacatgg gacatgatta cagatctgct tgatgttgta ctagacagtt tcatcaaaac 60
cagtgcaaca ggtggcttgg gatcaataaa agctacgtcg taggttcc 108
<210> 603
<211> 108
<212> DNA
<213>Artificial sequence
<400> 603
gactacatgg gacatggtta ttggaaggat gtgcaaaata attgacaaga catgcttatc 60
tccaactcct actttagaac aacatcttat gtgtacgtcg taggttcc 108
<210> 604
<211> 108
<212> DNA
<213>Artificial sequence
<400> 604
gactacatgg gacatgaaga gaccaagcaa gttttgagac tcagtctgac agagttctca 60
ttacccaaat tttacttgct gtttggcatt agctacgtcg taggttcc 108
<210> 605
<211> 108
<212> DNA
<213>Artificial sequence
<400> 605
gactacatgg gacatattta tgtacaatat gtattcagag tatccccttt tttaggcatg 60
catgagagat attccaacgt gcaagtggct ggatacgtcg taggttcc 108
<210> 606
<211> 108
<212> DNA
<213>Artificial sequence
<400> 606
gactacatgg gacatctttt aattgcagat ttgcattcca atataatcca tccctgcaac 60
caagagctct tgttgtcttt gggtgtatta gcatacgtcg taggttcc 108
<210> 607
<211> 108
<212> DNA
<213>Artificial sequence
<400> 607
gactacatgg gacataaatt ctgttttcct aaaaggcact tgagagttgc ttaaaaggac 60
ctgacactta caacagtcaa gttctgatag aagtacgtcg taggttcc 108
<210> 608
<211> 108
<212> DNA
<213>Artificial sequence
<400> 608
gactacatgg gacatggact cgcctctgca caaagccctc ttttgggtag ctgtggctgt 60
gctgcagctt gatgaggtca acttgtattc agctacgtcg taggttcc 108
<210> 609
<211> 108
<212> DNA
<213>Artificial sequence
<400> 609
gactacatgg gacatttaat agagtccaga ggaagtattt atggcaatcc ggaatcctct 60
ggagtggcac tgcaagcaaa tggatcattt tgttacgtcg taggttcc 108
<210> 610
<211> 108
<212> DNA
<213>Artificial sequence
<400> 610
gactacatgg gacatagggt acaggcatcc ttcacctgct attgttgcaa gaacagtcag 60
aattttacat acactactaa ctctggttaa caatacgtcg taggttcc 108
<210> 611
<211> 108
<212> DNA
<213>Artificial sequence
<400> 611
gactacatgg gacattagct ttacttacag tgtctgaaga agttcgaagt cgctgcagcc 60
taaaacatag aaagtcactt cttcttactg atatacgtcg taggttcc 108
<210> 612
<211> 108
<212> DNA
<213>Artificial sequence
<400> 612
gactacatgg gacatggaca ctaaaggaga ctcagccatg gtcctctccc aaaggttctg 60
aaggatacct tgcagccacc tatccaactg tcgtacgtcg taggttcc 108
<210> 613
<211> 108
<212> DNA
<213>Artificial sequence
<400> 613
gactacatgg gacattgttt ataggaacaa ggaaaagttt tgatcacttg atatcagaca 60
caaaggctcc taaaaggcaa gaaatggaat cagtacgtcg taggttcc 108
<210> 614
<211> 108
<212> DNA
<213>Artificial sequence
<400> 614
gactacatgg gacattgcag aaactcagag gatttcctca tcacaacagc acccacattt 60
acgtaaagtt tcagtgtctg aatcaaatgt tcttacgtcg taggttcc 108
<210> 615
<211> 108
<212> DNA
<213>Artificial sequence
<400> 615
gactacatgg gacatacttt tttgcatctt ggcaggctac actggtaaaa tataccacag 60
atgagtttga tcaacgaatt ctttatgaat acttacgtcg taggttcc 108
<210> 616
<211> 108
<212> DNA
<213>Artificial sequence
<400> 616
gactacatgg gacatggcat aatttgttgg actctaagat caacaccctg ttatcattgt 60
gccaagatcc aaatttgtta aatccaatcc atgtacgtcg taggttcc 108
<210> 617
<211> 108
<212> DNA
<213>Artificial sequence
<400> 617
gactacatgg gacattaaaa gataccttgc ttgttataag agtaaaattt gatttgttgc 60
aggttttggt tttaatggct tgtggcggtt tgctacgtcg taggttcc 108
<210> 618
<211> 108
<212> DNA
<213>Artificial sequence
<400> 618
gactacatgg gacatgcaaa cacaaattcc agactatgct gagcttattg ttaagtttct 60
tgatgccttg attgacacgt acctgcctgg aattacgtcg taggttcc 108
<210> 619
<211> 108
<212> DNA
<213>Artificial sequence
<400> 619
gactacatgg gacatggaat cgacaaggag aacgttgaac tctcccctac cactggccac 60
tgtaacagtg gacgaactcg ccacggatcc gcatacgtcg taggttcc 108
<210> 620
<211> 108
<212> DNA
<213>Artificial sequence
<400> 620
gactacatgg gacattagtc ttcgagcaat agatggatgt ctattaattc catcccacca 60
ccacatgagc cacaaggaga taacacatcc caatacgtcg taggttcc 108
<210> 621
<211> 108
<212> DNA
<213>Artificial sequence
<400> 621
gactacatgg gacataattt aaagggaatt taaaagtacc tgaaaaattc catgaaggag 60
aacccatatc catgctgttc tgcaatccct gcatacgtcg taggttcc 108
<210> 622
<211> 108
<212> DNA
<213>Artificial sequence
<400> 622
gactacatgg gacatcccat gcagtcagca gccccttacc tcccaggcaa gcaccgaagg 60
ccagggcata catgagcggc ggtgcgggca ggctacgtcg taggttcc 108
<210> 623
<211> 108
<212> DNA
<213>Artificial sequence
<400> 623
gactacatgg gacattggac atgtgcaact caccatggta gcagtgaacg ggatgttgtc 60
aatcagggac gacgccaggg ctgagaccca cactacgtcg taggttcc 108
<210> 624
<211> 108
<212> DNA
<213>Artificial sequence
<400> 624
gactacatgg gacataacag tggctggagt gccttctatt atagcattta ttttaccttt 60
attagcaaag cagtttgttc tccaacatat tcttacgtcg taggttcc 108
<210> 625
<211> 108
<212> DNA
<213>Artificial sequence
<400> 625
gactacatgg gacatatctt acctccatca gaacaaagag cgctgcaaaa aacagaaggg 60
ttgcccattc cactctgtgt agaattatct caatacgtcg taggttcc 108
<210> 626
<211> 108
<212> DNA
<213>Artificial sequence
<400> 626
gactacatgg gacatgctaa attagactca ccaagatcaa gatgaatgcc agggacaaac 60
gaattgagga aaaacatgaa gataacaaat ccctacgtcg taggttcc 108
<210> 627
<211> 108
<212> DNA
<213>Artificial sequence
<400> 627
gactacatgg gacatgagaa gtgaatcaga aatccctgag gaaagaaagc tgggtacctt 60
tttttggagt tcttggatat tggtctccca atttacgtcg taggttcc 108
<210> 628
<211> 108
<212> DNA
<213>Artificial sequence
<400> 628
gactacatgg gacatcctgt ggaaggtgtg cagcctccgg gcgagcaggt gctccagtgc 60
cagcaccttc cccagcagca ggcggcgcac agctacgtcg taggttcc 108
<210> 629
<211> 108
<212> DNA
<213>Artificial sequence
<400> 629
gactacatgg gacattcacc aacaatctca ctgggttcct tgttataaag ctttctgttc 60
cagtaaagga gtctgaggag cggaaagcag acctacgtcg taggttcc 108
<210> 630
<211> 108
<212> DNA
<213>Artificial sequence
<400> 630
gactacatgg gacatccatc ttcctcagct cttggttgga aacaataatg acatttggag 60
ggtccccgat ggcagtggca gctcctccaa tgttacgtcg taggttcc 108
<210> 631
<211> 108
<212> DNA
<213>Artificial sequence
<400> 631
gactacatgg gacatttgcg taccttatgg tcacaggcgt gaagaggagc atggtggtga 60
cgttgtccaa gaaggcagag aggacggccg cgatacgtcg taggttcc 108
<210> 632
<211> 108
<212> DNA
<213>Artificial sequence
<400> 632
gactacatgg gacataatta atcaggatag aattattaaa tgcaacatca tacctacctt 60
tacagcacaa taatcgaaaa atcccgtttc tgatacgtcg taggttcc 108
<210> 633
<211> 108
<212> DNA
<213>Artificial sequence
<400> 633
gactacatgg gacatggcgt ggagcccagt cccacgggga gagctgtaat taccatgcca 60
aacagcaggg ccagcgtctc aaaatcaatc cactacgtcg taggttcc 108
<210> 634
<211> 108
<212> DNA
<213>Artificial sequence
<400> 634
gactacatgg gacatgtggt aagccaggga ttgggactgt gacaacttac atcgccaatc 60
acagccagtg ctgccagtgc tgcaagggaa ccctacgtcg taggttcc 108
<210> 635
<211> 108
<212> DNA
<213>Artificial sequence
<400> 635
gactacatgg gacatcctca aatatgatca gcgcgtagac gcccgcgagg atggccgtcg 60
cgatggtcac ctgggtttct acacttccgc ggatacgtcg taggttcc 108
<210> 636
<211> 108
<212> DNA
<213>Artificial sequence
<400> 636
gactacatgg gacatcccca acacctcact cactgagaac tcacctggtc agtacctcaa 60
aggtcctgct catcactgag tgctcgcttc tcctacgtcg taggttcc 108
<210> 637
<211> 108
<212> DNA
<213>Artificial sequence
<400> 637
gactacatgg gacatcctgc tgtggccgcc gccacctgga gcccaaagcg tcagcctggg 60
tcagctccac cacgatgtgc tcttccctcc cagtacgtcg taggttcc 108
<210> 638
<211> 108
<212> DNA
<213>Artificial sequence
<400> 638
gactacatgg gacatggcgg ctggccatct cagagtggat tttggataca gtagttctcc 60
agcggtgata aggccaacag ctgccagagc ttttacgtcg taggttcc 108
<210> 639
<211> 108
<212> DNA
<213>Artificial sequence
<400> 639
gactacatgg gacatccacg gacccaacag tagtgctggg gcagctaagg tactcacaga 60
acacagcacc acaaaggcaa acaggcccat gactacgtcg taggttcc 108
<210> 640
<211> 108
<212> DNA
<213>Artificial sequence
<400> 640
gactacatgg gacatcctca gcttggaaag acggagtcgg atgtgcgggc tgtccagaag 60
gtctcccttc tcggaggagg cagatgcaga cagtacgtcg taggttcc 108
<210> 641
<211> 108
<212> DNA
<213>Artificial sequence
<400> 641
gactacatgg gacatatgag ggggaaaata tctcaccctt tctcctgtaa ggaattcctc 60
agcaaaggag tgttttctgt aaagcaggaa tcttacgtcg taggttcc 108
<210> 642
<211> 108
<212> DNA
<213>Artificial sequence
<400> 642
gactacatgg gacatcctcc cttttgtgag gaatgaagca aactcctggc ctgcaggagc 60
ccaagagctc tgcccggcag cccccctggg gcatacgtcg taggttcc 108
<210> 643
<211> 108
<212> DNA
<213>Artificial sequence
<400> 643
gactacatgg gacatttcat gccccaagga gctttttgac catgtagcca gggaggctgt 60
agaggaagag ccccaacatg agcagcccca acatacgtcg taggttcc 108
<210> 644
<211> 108
<212> DNA
<213>Artificial sequence
<400> 644
gactacatgg gacatctcag gccccgagga ttttcttgac caggtagcca ggcacagagt 60
agaggaacag ggcgaggagg aggagcagca gcatacgtcg taggttcc 108
<210> 645
<211> 108
<212> DNA
<213>Artificial sequence
<400> 645
gactacatgg gacattgggc cggcagggca ctcacttggg tttctctagg gggtcaggtt 60
cattgcgggc caggcccact gggttcttct ctgtacgtcg taggttcc 108
<210> 646
<211> 108
<212> DNA
<213>Artificial sequence
<400> 646
gactacatgg gacatccgtg agctcaaact catcgttctc attgcgggcc aggaggggcc 60
accagccttt gacgcgcttt tgcttgaaga tggtacgtcg taggttcc 108
<210> 647
<211> 108
<212> DNA
<213>Artificial sequence
<400> 647
gactacatgg gacatcccag gaagtcgtca gcggagaagt ggtccgcatc ccagatctgc 60
agggtgagcc gcgcggggat cttgtactcg gtctacgtcg taggttcc 108
<210> 648
<211> 108
<212> DNA
<213>Artificial sequence
<400> 648
gactacatgg gacatatgca gggactgctc acccaccccc tcacgaagat gtcactggac 60
ttctcccctg tgaagaagtc gtcgtcctcc aagtacgtcg taggttcc 108
<210> 649
<211> 108
<212> DNA
<213>Artificial sequence
<400> 649
gactacatgg gacatgtagc gctgggcccc aggccgctca cttcttgggc ttccgaggtg 60
agatgtccag aggcgtccca ggggctggca tgttacgtcg taggttcc 108
<210> 650
<211> 108
<212> DNA
<213>Artificial sequence
<400> 650
gactacatgg gacatcctgc tcgatgcccg gcttgtcggg gttgagcagc ggcctcgtct 60
ccacatgctc tggcaccagg cggcagcctg cgctacgtcg taggttcc 108
<210> 651
<211> 108
<212> DNA
<213>Artificial sequence
<400> 651
gactacatgg gacatccgtt ctcgtcctca atctcagagg gcccagtgaa gacgcggttg 60
gccaccttca ctctcccagg gggcccaaag tggtacgtcg taggttcc 108
<210> 652
<211> 108
<212> DNA
<213>Artificial sequence
<400> 652
gactacatgg gacatgttct ccaggtcgat cttggtttcc ccaatgaggt catcagtgcc 60
caccaggtcc cagtcataca cagccaccgt cagtacgtcg taggttcc 108
<210> 653
<211> 108
<212> DNA
<213>Artificial sequence
<400> 653
gactacatgg gacatgcctt acttcccaaa gacagggttg agctgcttgg agatgtagtt 60
ctccttgtcg cggatgtcag tcttgcctag ccgtacgtcg taggttcc 108
<210> 654
<211> 108
<212> DNA
<213>Artificial sequence
<400> 654
gactacatgg gacatacccg gaccacatag actcggacca gcacattgat ggggtcattg 60
ctcgggatgc cctggaacat gccgtaggtg gagtacgtcg taggttcc 108
<210> 655
<211> 108
<212> DNA
<213>Artificial sequence
<400> 655
gactacatgg gacatgacct tgaagcgtcc cacaatgcgc tcctcctcgg tggagccatc 60
ctcatcatcc ccggtcttgc cccgaagcaa gtttacgtcg taggttcc 108
<210> 656
<211> 108
<212> DNA
<213>Artificial sequence
<400> 656
gactacatgg gacatacctt aagctcatca atcttgggtt tcttcttctc gggggcctcg 60
gacccctggc cagagccaga gctctgagtt ttctacgtcg taggttcc 108
<210> 657
<211> 108
<212> DNA
<213>Artificial sequence
<400> 657
gactacatgg gacatgggag gaggaggcag agttccaggt tccagggctc accctcggta 60
ttgtccactt cctccttctc ctccaagtca atttacgtcg taggttcc 108
<210> 658
<211> 108
<212> DNA
<213>Artificial sequence
<400> 658
gactacatgg gacattctca cctccttcat ggtgtcaatg gaggcaaagt acttggacca 60
ccagtccagc atgctctcgt ctggctcctc ctctacgtcg taggttcc 108
<210> 659
<211> 108
<212> DNA
<213>Artificial sequence
<400> 659
gactacatgg gacataccac atccaccttg acaacagctt cagaagtctg cagaggaacc 60
aaggagacag gggcagaatc agccactggg gcctacgtcg taggttcc 108
<210> 660
<211> 108
<212> DNA
<213>Artificial sequence
<400> 660
gactacatgg gacatcttac cgcgtccagc ttcaccatgg tctccagttt cttgatgggt 60
acctctggct ccatagtcac cacaacctcc ccttacgtcg taggttcc 108
<210> 661
<211> 108
<212> DNA
<213>Artificial sequence
<400> 661
gactacatgg gacatcggtc tgggggccgg tagatgaagc gtcgcaggga gctgacggca 60
tgggagccca ccagtgtgta gcgaccgaag gcctacgtcg taggttcc 108
<210> 662
<211> 108
<212> DNA
<213>Artificial sequence
<400> 662
gactacatgg gacatccact tcaaaccact tgacgagggt gttgaagttg gggttcttct 60
tataattgtg gatcagggac gactgcaccc ccttacgtcg taggttcc 108
<210> 663
<211> 108
<212> DNA
<213>Artificial sequence
<400> 663
gactacatgg gacatagccc tcgcacctcc actcggtact tgctgagcac gggccggatg 60
cccatgggca cgggcatgat gggacctcgg tcctacgtcg taggttcc 108
<210> 664
<211> 108
<212> DNA
<213>Artificial sequence
<400> 664
gactacatgg gacatcctgc agcagctcga aggccgccag caggtctcca gctgtggcgt 60
tgccacggta gatctggtag tactcgagct gagtacgtcg taggttcc 108
<210> 665
<211> 108
<212> DNA
<213>Artificial sequence
<400> 665
gactacatgg gacattacca tggaatcctg gtcatagatt tcaatgacaa tgatgggcgg 60
atcgtccctc agctcatgag cttcaccata gagtacgtcg taggttcc 108
<210> 666
<211> 108
<212> DNA
<213>Artificial sequence
<400> 666
gactacatgg gacatgccct cacctctgtg cactgactct gattgatgaa gaagacgcgg 60
gcaaaggggt ctgagagtcc gctgctgtcg gcgtacgtcg taggttcc 108
<210> 667
<211> 108
<212> DNA
<213>Artificial sequence
<400> 667
gactacatgg gacatctggt gtagaccagg ctgacgggtg ggaaggcatg caggcccagg 60
ccctgggctg ccttgacctc ctggaagcca cagtacgtcg taggttcc 108
<210> 668
<211> 108
<212> DNA
<213>Artificial sequence
<400> 668
gactacatgg gacatcctta aggaagagcg tcttgacctt ggcgcagtcc ttgccagtct 60
cctcctccac gatggagaag agcaggtcct tggtacgtcg taggttcc 108
<210> 669
<211> 108
<212> DNA
<213>Artificial sequence
<400> 669
gactacatgg gacatcttgg gccgcacctc gtccgccagg aagcgcagct tctgcaggaa 60
gttctggcac agcctcagct tgtcccgcac cgttacgtcg taggttcc 108
<210> 670
<211> 108
<212> DNA
<213>Artificial sequence
<400> 670
gactacatgg gacatccccg ccgtccagtt gcgtcctcac cagctccctc atgcaggact 60
tgaggcgctc ccggtcaagc ctggtgcggg atgtacgtcg taggttcc 108
<210> 671
<211> 108
<212> DNA
<213>Artificial sequence
<400> 671
gactacatgg gacatccagc agccacagct cagctcctcc aggacgcccc gcaggcgacg 60
ctcagggtag gacttctccg ttttgatcat ctctacgtcg taggttcc 108
<210> 672
<211> 108
<212> DNA
<213>Artificial sequence
<400> 672
gactacatgg gacatatcag gagtgtgggt gatgctgggc cacagccccg cctccccagc 60
ctccccaaat gcctcctccc tgttgatcag gggtacgtcg taggttcc 108
<210> 673
<211> 108
<212> DNA
<213>Artificial sequence
<400> 673
gactacatgg gacatccagc ttgtcggcaa tgtggtccat gatgttggca ttgtagaggc 60
ggcggcgctg gtccggccac cagctcttga tgttacgtcg taggttcc 108
<210> 674
<211> 108
<212> DNA
<213>Artificial sequence
<400> 674
gactacatgg gacatcctgt cggtgacctg gggccgcatt ggtggagtgg aggagactga 60
ggccaggtcc ccggcatcac cggcctcgtc atctacgtcg taggttcc 108
<210> 675
<211> 108
<212> DNA
<213>Artificial sequence
<400> 675
gactacatgg gacattgggc ccagcactca cctatggtga cctcaaaggt gatgggcttg 60
tctccgtttc tccggtcgat cattgaggcc tcctacgtcg taggttcc 108
<210> 676
<211> 108
<212> DNA
<213>Artificial sequence
<400> 676
gactacatgg gacatcctcc gagatgggcg tggcctgctc cacctgcacc tctgtggagc 60
tggtgagctc agggttggag gtgtctacga tcttacgtcg taggttcc 108
<210> 677
<211> 108
<212> DNA
<213>Artificial sequence
<400> 677
gactacatgg gacatccttt gtctccgtca ttagaaatct tgcgcaggtc aatgaagtgg 60
gtgccgatgg ccacgtcgtt gaccttgtcc gagtacgtcg taggttcc 108
<210> 678
<211> 108
<212> DNA
<213>Artificial sequence
<400> 678
gactacatgg gacatccttc tggccagcaa agaagacttg cacgtagggg tccacgaggt 60
ccttgttttc accgatgaaa gccttcttta cattacgtcg taggttcc 108
<210> 679
<211> 108
<212> DNA
<213>Artificial sequence
<400> 679
gactacatgg gacatcccct caatgtcatc ttcgtcggtc tcattggcct tgtggggcgt 60
cttgatgttg tcccctttgc ccaccacggc aactacgtcg taggttcc 108
<210> 680
<211> 108
<212> DNA
<213>Artificial sequence
<400> 680
gactacatgg gacatgactg actggccatg cgcaggtact cacctggctg cgagtacacg 60
gttcccacgt ccattttgaa ggagcccacc aggtacgtcg taggttcc 108
<210> 681
<211> 108
<212> DNA
<213>Artificial sequence
<400> 681
gactacatgg gacatccggc caggggctgc tccccactca ccgaaatctt gatgatcttg 60
tcaaacatga catccggaga gacatggaag tcgtacgtcg taggttcc 108
<210> 682
<211> 108
<212> DNA
<213>Artificial sequence
<400> 682
gactacatgg gacatgggca gttagtggac tccttcatgg atgtgtactt cttgtcgtca 60
cccacctcca cgcacaccac agggtccatg ttctacgtcg taggttcc 108
<210> 683
<211> 108
<212> DNA
<213>Artificial sequence
<400> 683
gactacatgg gacatccagg tgcccaccta cctggtaatc catgggccgc ccagcacttg 60
gctccatctt aatgtctggc ttagatctga ggatacgtcg taggttcc 108
<210> 684
<211> 108
<212> DNA
<213>Artificial sequence
<400> 684
gactacatgg gacatggtga gagctgtgac tgaggctaga gacaccgagt cgggatccag 60
tccatctcct agccgaatgg ccagatggtc aagtacgtcg taggttcc 108
<210> 685
<211> 108
<212> DNA
<213>Artificial sequence
<400> 685
gactacatgg gacatgtcct acctggtctt tggggctcct ccttgtgaga ccggtttttg 60
ccgagcttca tggcggagaa cacgctcctc ccgtacgtcg taggttcc 108
<210> 686
<211> 108
<212> DNA
<213>Artificial sequence
<400> 686
gactacatgg gacatcctcc ggaagctctt ctctcctggg ggccgggagc tgggccggga 60
gcctgggagc agtccatccg tctcttggct gtctacgtcg taggttcc 108
<210> 687
<211> 108
<212> DNA
<213>Artificial sequence
<400> 687
gactacatgg gacataactc cgtggggcat acccaccttg atgatagcat tgttgtcatc 60
aatcagcgtg tcagtcacct ccacatggct ctctacgtcg taggttcc 108
<210> 688
<211> 108
<212> DNA
<213>Artificial sequence
<400> 688
gactacatgg gacatcccct cctgccccat cccacactta cttgttgctg aagactttgc 60
tgtagttgaa aacctgaatc tccagcatct cattacgtcg taggttcc 108
<210> 689
<211> 108
<212> DNA
<213>Artificial sequence
<400> 689
gactacatgg gacatgggct cagggctgag ggagggggga gtcttgggcc tcctacctca 60
tcaaagtcag ccacatcctc acagttctcc aggtacgtcg taggttcc 108
<210> 690
<211> 108
<212> DNA
<213>Artificial sequence
<400> 690
gactacatgg gacattggcg tccctctgag acagcggctt ccctacctcg gaaagtcact 60
ttggcgatcc ggtcgcccct gccccgcagc tcctacgtcg taggttcc 108
<210> 691
<211> 108
<212> DNA
<213>Artificial sequence
<400> 691
gactacatgg gacatatctc catcaacaga ttcacagctg acagaccaca ttctgtccat 60
ggctttactt tattttctgg agggcactgc aaatacgtcg taggttcc 108
<210> 692
<211> 108
<212> DNA
<213>Artificial sequence
<400> 692
gactacatgg gacatgtaaa ttacttactg ttaatggaat cagccaaaat cttaagctgc 60
tgggtattgt ccaagacctc aatcctttgg gtgtacgtcg taggttcc 108
<210> 693
<211> 108
<212> DNA
<213>Artificial sequence
<400> 693
gactacatgg gacattcacc ttactttctc cttggcatca ttaaaactct ctgccacgta 60
atagaggggc tggaactccg tgacagtgta atttacgtcg taggttcc 108
<210> 694
<211> 108
<212> DNA
<213>Artificial sequence
<400> 694
gactacatgg gacatcttgg ttcctgtgaa ggtcatacct gtaattcacc aaaggatgac 60
aggagcccag caccatatgc ctttatggag tcttacgtcg taggttcc 108
<210> 695
<211> 108
<212> DNA
<213>Artificial sequence
<400> 695
gactacatgg gacatctata gcactccacc atccacccag ggagagaagg gacttactgt 60
ggcgagcttt tcaatgtatt catcaggtgc acctacgtcg taggttcc 108
<210> 696
<211> 108
<212> DNA
<213>Artificial sequence
<400> 696
gactacatgg gacataccta taactagaag gctaaaaaat ccattcctta cctgggaaaa 60
ctgggcaaag ctgcgatctg aaaacaaggg cactacgtcg taggttcc 108
<210> 697
<211> 108
<212> DNA
<213>Artificial sequence
<400> 697
gactacatgg gacatcacgg ttcgggggta tacatgggct tggatccatg tctgatgtac 60
tgtgtgcagt ggaagactcg gaaggccagg ccatacgtcg taggttcc 108
<210> 698
<211> 108
<212> DNA
<213>Artificial sequence
<400> 698
gactacatgg gacatctctg caggaactga gaaacgtctt ccagctgggg aatgttatct 60
tcatggaagc cacagtactt ttcaagaagt ggatacgtcg taggttcc 108
<210> 699
<211> 108
<212> DNA
<213>Artificial sequence
<400> 699
gactacatgg gacatttttc tctcttcccc tcaacaagca aggcagactt actggcggta 60
gttgtaggca atgtcagcaa actgcttccg tcttacgtcg taggttcc 108
<210> 700
<211> 108
<212> DNA
<213>Artificial sequence
<400> 700
gactacatgg gacattctca tcctacgggc catggactca cagggtggtc agcatccagt 60
tccgctccat agctgagaat ctgattggca aattacgtcg taggttcc 108
<210> 701
<211> 108
<212> DNA
<213>Artificial sequence
<400> 701
gactacatgg gacatcctgt gtctttcttc ttatctcgtg aaagctcatg gacagtggca 60
ccaatgtcat gcctcaagat cttgatgatg ttttacgtcg taggttcc 108
<210> 702
<211> 108
<212> DNA
<213>Artificial sequence
<400> 702
gactacatgg gacatatgat tgtagcactg acctcaaata agcgcaatac tttggccaat 60
gcaccaactt cttctttgag tgagaagatc agttacgtcg taggttcc 108
<210> 703
<211> 108
<212> DNA
<213>Artificial sequence
<400> 703
gactacatgg gacatcaaat tcccctaact gagcagctca ggctgccgtg gctcacctgt 60
ccaaagtcag agagtttcct gcccaagcct gggtacgtcg taggttcc 108
<210> 704
<211> 108
<212> DNA
<213>Artificial sequence
<400> 704
gactacatgg gacatcctat tgcatctggc agcccgaatt gggcaacaat tcctgcaaat 60
aagaagccac tgctcttgtt aggtaggtca tcgtacgtcg taggttcc 108
<210> 705
<211> 108
<212> DNA
<213>Artificial sequence
<400> 705
gactacatgg gacatcctgg tcctgcaaga acagctgact ggccatctgc acgatctggt 60
ccacgtggat gatgcccccg atgctggtca tcttacgtcg taggttcc 108
<210> 706
<211> 108
<212> DNA
<213>Artificial sequence
<400> 706
gactacatgg gacatgtgaa cccacagagg ggcccgcctc tgcgtttttc tcatcgtacc 60
tctcgggtcg tcgaggatgg gaggacataa ccatacgtcg taggttcc 108
<210> 707
<211> 108
<212> DNA
<213>Artificial sequence
<400> 707
gactacatgg gacatccttc tggaggatct tccacaccct ctggtagaat cccacgggga 60
ccctgttgat ggccccatcc agccttctcc tgctacgtcg taggttcc 108
<210> 708
<211> 108
<212> DNA
<213>Artificial sequence
<400> 708
gactacatgg gacatgagga ggagcgggga cggacacaat aatcccgagg cactgttacc 60
gcagacttgg aggaatgcgc actgctggac gcgtacgtcg taggttcc 108
<210> 709
<211> 108
<212> DNA
<213>Artificial sequence
<400> 709
gactacatgg gacatacatt caagccagaa agaacaggaa gtaaaggacg aacaaggcaa 60
aggggtgtca cctgttcatc agcactaaac cgctacgtcg taggttcc 108
<210> 710
<211> 108
<212> DNA
<213>Artificial sequence
<400> 710
gactacatgg gacatggtgt tcttacctgt ttcatttcac tcctcagtct gttaatgcca 60
ctcctctcag ttttggtgac tccggtatgg ccctacgtcg taggttcc 108
<210> 711
<211> 108
<212> DNA
<213>Artificial sequence
<400> 711
gactacatgg gacataacag gagcatggaa cttaccactt ctttcaacgc caaactcttt 60
cccacttaga atatggtgca ggagattttt cattacgtcg taggttcc 108
<210> 712
<211> 108
<212> DNA
<213>Artificial sequence
<400> 712
gactacatgg gacattctca cctgagcagt tcaggctccg tgccagctcc gtggccatca 60
cctgaatgat cagtccaatc cggagtctca gcatacgtcg taggttcc 108
<210> 713
<211> 108
<212> DNA
<213>Artificial sequence
<400> 713
gactacatgg gacattggcc cgacccctcc cacaccagcc ccagacctgc gtgaggacgg 60
caatgctgat gtcctgccca ctggcctcgt agatacgtcg taggttcc 108
<210> 714
<211> 108
<212> DNA
<213>Artificial sequence
<400> 714
gactacatgg gacataaacc tgaggtcccc aaggctgagg acttacgcag agatgatctt 60
ctcccggggc tcgggcggca ggcccacggt gagtacgtcg taggttcc 108
<210> 715
<211> 108
<212> DNA
<213>Artificial sequence
<400> 715
gactacatgg gacatcctca gccaggacct ccactttctt cctgagaagg cctgagatgt 60
agcgaatcag accccactcc tggttcaagc cggtacgtcg taggttcc 108
<210> 716
<211> 108
<212> DNA
<213>Artificial sequence
<400> 716
gactacatgg gacatttact ttatgacata aagaatgtac agaatgtctg cttggtcctg 60
taggttcgaa caatctttta gctgctcaac cagtacgtcg taggttcc 108
<210> 717
<211> 108
<212> DNA
<213>Artificial sequence
<400> 717
gactacatgg gacataaaaa aagctgttcc atatacttta ccttttctag gagtggctga 60
ggagaatcaa caagattcag tgatttacgg tggtacgtcg taggttcc 108
<210> 718
<211> 108
<212> DNA
<213>Artificial sequence
<400> 718
gactacatgg gacatcatgg aacttccaaa ccctttgctt ttgccatcac agaaagtatg 60
tcccgcgtgg agtggatagc actgaagaca tggtacgtcg taggttcc 108
<210> 719
<211> 108
<212> DNA
<213>Artificial sequence
<400> 719
gactacatgg gacatccttg attacaggtg tcttccagat atcctaccaa atctgaatca 60
ctatcaggac tgaaagtccc ttcgctggca ttgtacgtcg taggttcc 108
<210> 720
<211> 108
<212> DNA
<213>Artificial sequence
<400> 720
gactacatgg gacattctta tattttttaa aaaaatcaca aattacctgg ctcctccaaa 60
atatccatcc tctagttttc taattgtgga gagtacgtcg taggttcc 108
<210> 721
<211> 108
<212> DNA
<213>Artificial sequence
<400> 721
gactacatgg gacatctgag catggtgcga ctgatgggga aggtgagtgt gggtctgccc 60
gtcatcctcc agcaggtgca caggtaggcc agctacgtcg taggttcc 108
<210> 722
<211> 108
<212> DNA
<213>Artificial sequence
<400> 722
gactacatgg gacatggcct gctctcctca cctggggtgt aaaagtaaag atttggttcc 60
taatcacata tagtttagag gttccaagga cactacgtcg taggttcc 108
<210> 723
<211> 108
<212> DNA
<213>Artificial sequence
<400> 723
gactacatgg gacattacca agcttggcat atatgtgact aagaatccgg cccggctgga 60
cttgaattgg atgaatgtcc gcgatactct ggatacgtcg taggttcc 108
<210> 724
<211> 108
<212> DNA
<213>Artificial sequence
<400> 724
gactacatgg gacatttaaa tatgaacagt aaacacgctc acaaaccttg tactacaaca 60
tcaggtttga ctgaagtgga aaatcttcta ttttacgtcg taggttcc 108
<210> 725
<211> 108
<212> DNA
<213>Artificial sequence
<400> 725
gactacatgg gacatggcca ctaagcccct acctctgcca acagcgagct gaggatgtac 60
aaggattggc cccacagatg aggcaccttc ccctacgtcg taggttcc 108
<210> 726
<211> 108
<212> DNA
<213>Artificial sequence
<400> 726
gactacatgg gacatagggc cctctgccac tgggttacct tgttaggcgg gacagcgtag 60
agttcaggca ccaggcggat cccattcttg ccttacgtcg taggttcc 108
<210> 727
<211> 108
<212> DNA
<213>Artificial sequence
<400> 727
gactacatgg gacatttttc tcacctgaac agcatcacca ctgaagactc catctattat 60
aaaatatgtc caaaacacag gccactcaca ttctacgtcg taggttcc 108
<210> 728
<211> 108
<212> DNA
<213>Artificial sequence
<400> 728
gactacatgg gacatatgaa acagttgagg aaagataaga aacaatattt aaatacaacc 60
tctcttggag ttttataacc atctcgaagg aagtacgtcg taggttcc 108
<210> 729
<211> 108
<212> DNA
<213>Artificial sequence
<400> 729
gactacatgg gacatcctgg agcttagaaa taatttcatt tttggtcaca tttacaaggt 60
ttacatcttc cactgcaaag gccgggaagg aaatacgtcg taggttcc 108
<210> 730
<211> 108
<212> DNA
<213>Artificial sequence
<400> 730
gactacatgg gacattgaaa tgcaagaggc tattacctgg cagtgctcga cctcatctgg 60
cagaacatga atcactgact tgcgtcctcc atgtacgtcg taggttcc 108
<210> 731
<211> 108
<212> DNA
<213>Artificial sequence
<400> 731
gactacatgg gacatagaag gaagaacaaa caggacaact gtcaccttgg ccattcctac 60
ggagcttgca ttcaattccg ggatgccctg atttacgtcg taggttcc 108
<210> 732
<211> 108
<212> DNA
<213>Artificial sequence
<400> 732
gactacatgg gacatctgaa aagactacca gggttgatac ttacagcgac tttatatgca 60
gcttctatgt aaaagacaag attctgtatg aagtacgtcg taggttcc 108
<210> 733
<211> 108
<212> DNA
<213>Artificial sequence
<400> 733
gactacatgg gacatcctga ggcggtcatc tgggccagga acaggaggaa gagagaggtg 60
gcatccacct ggaggtggcc ccactggtcg tcgtacgtcg taggttcc 108
<210> 734
<211> 108
<212> DNA
<213>Artificial sequence
<400> 734
gactacatgg gacattgaca tggaatgccc acttggcaaa cacgtgtgtg ggttctgcct 60
acctgtctca tcatgcactg gagaagacct cgctacgtcg taggttcc 108
<210> 735
<211> 108
<212> DNA
<213>Artificial sequence
<400> 735
gactacatgg gacatcctgc tccagctcgt aggccttggc cttgtcctca tcgcggtctg 60
cattcttacg gtaggccatg cccaggcccc acatacgtcg taggttcc 108
<210> 736
<211> 108
<212> DNA
<213>Artificial sequence
<400> 736
gactacatgg gacatccctg ggggcggtcc ctccttacct ggtaacacag gatggtttgc 60
tgcaccagcc gcgcgtaccc gtccaagcgg acctacgtcg taggttcc 108
<210> 737
<211> 108
<212> DNA
<213>Artificial sequence
<400> 737
gactacatgg gacatgatgg cagccagcag ctctgagatc tctgagatga agggggttga 60
ggagagtccc aaggttccag gcgaagggcc tggtacgtcg taggttcc 108
<210> 738
<211> 108
<212> DNA
<213>Artificial sequence
<400> 738
gactacatgg gacatttcaa tttccattga ctttgttaga ttcattggat agagaaatct 60
ttagatctga aggttccacg ttccagatgt ttttacgtcg taggttcc 108
<210> 739
<211> 108
<212> DNA
<213>Artificial sequence
<400> 739
gactacatgg gacataactg gttttcttta taaatcttgg caatttactc accatgtaca 60
gctgactcac tttatcttga cacttgacat aggtacgtcg taggttcc 108
<210> 740
<211> 108
<212> DNA
<213>Artificial sequence
<400> 740
gactacatgg gacatcacct gtcatgataa aatagcatgt tgatgatatc tttgaagagg 60
tcaggctgct tgggagaaaa aaagccattg tcatacgtcg taggttcc 108
<210> 741
<211> 108
<212> DNA
<213>Artificial sequence
<400> 741
gactacatgg gacatccctt tcttgtccaa agcagccaca tcatctatcc tcatgccaaa 60
gatgaacagg ttctcttccc cagcttcttc tgctacgtcg taggttcc 108
<210> 742
<211> 108
<212> DNA
<213>Artificial sequence
<400> 742
gactacatgg gacatccttt ttcagcaaga gatactctgt agttctccaa gaagatgact 60
ttcaacttgc ttccaaccat agggtcattg ttctacgtcg taggttcc 108
<210> 743
<211> 108
<212> DNA
<213>Artificial sequence
<400> 743
gactacatgg gacatgatta gagccctcaa gtccccattg aatagattca acttacttta 60
ccaccaatga taactgtcct tggcacgaat aactacgtcg taggttcc 108
<210> 744
<211> 108
<212> DNA
<213>Artificial sequence
<400> 744
gactacatgg gacatcggtt gtacatcgtg atcacatgca gacagttcaa gagctgtcgc 60
ttgtactcat gtatcctctt cacctggaca tcatacgtcg taggttcc 108
<210> 745
<211> 108
<212> DNA
<213>Artificial sequence
<400> 745
gactacatgg gacatcccac acctggaagg ctcacctgct tcaccttggc gagttcccgg 60
aggaagacat catcacccag gaagctgtgg agctacgtcg taggttcc 108
<210> 746
<211> 108
<212> DNA
<213>Artificial sequence
<400> 746
gactacatgg gacatacttc ccagttacct ctgctatgag ctctgcaagt cctgggttgc 60
agagtaggag ccagcgcctt ggagtgatcc cattacgtcg taggttcc 108
<210> 747
<211> 108
<212> DNA
<213>Artificial sequence
<400> 747
gactacatgg gacatcactt tagtcttcac gatgtctgag tggattttag ccacgccatt 60
cacagcatgg gaaccgacaa tgcagagatg ggctacgtcg taggttcc 108
<210> 748
<211> 108
<212> DNA
<213>Artificial sequence
<400> 748
gactacatgg gacatcatct aaatgcttct gatttatctc ataaatgatt tccaaatgtc 60
gagggagcag cttctccacc aggtccacgg gcctacgtcg taggttcc 108
<210> 749
<211> 108
<212> DNA
<213>Artificial sequence
<400> 749
gactacatgg gacataaaaa gaagccaaac tatccagacc ttggaccagg gcagtttttc 60
aatatccaca aaaatcctca tcagctcagg gattacgtcg taggttcc 108
<210> 750
<211> 108
<212> DNA
<213>Artificial sequence
<400> 750
gactacatgg gacatcctga tccgggaagg catcaaacac agttcctgca ccacgggtgg 60
agccaaactt ggaggctttg aaacggcgga tgatacgtcg taggttcc 108
<210> 751
<211> 108
<212> DNA
<213>Artificial sequence
<400> 751
gactacatgg gacatccact aagaaagcaa ccttgatcac tcacattgtc attgggatag 60
aggacccggg agatgttctc ggccaggttt cggtacgtcg taggttcc 108
<210> 752
<211> 108
<212> DNA
<213>Artificial sequence
<400> 752
gactacatgg gacatctgtg ctgtactcac agtctctgag gttaaagtca tttggtgccc 60
gagcagacca gaggcgcatg gtgttgacag tgttacgtcg taggttcc 108
<210> 753
<211> 108
<212> DNA
<213>Artificial sequence
<400> 753
gactacatgg gacataatac ttgagtgtca atccacttgg tcccggtgtt ggtgtgttct 60
acttttccat agaagtgcac aggcagcatg aattacgtcg taggttcc 108
<210> 754
<211> 108
<212> DNA
<213>Artificial sequence
<400> 754
gactacatgg gacataaaaa gatggctcac acacctgcca tccatctcgg atcttctgat 60
tgaaaatccc atattcatac cgaatgccgt atctacgtcg taggttcc 108
<210> 755
<211> 108
<212> DNA
<213>Artificial sequence
<400> 755
gactacatgg gacatgacaa tataatacac tcacaatgtc acttaccagc aagtctccca 60
agaccaccat tgccaagtcc agcatcttct tcatacgtcg taggttcc 108
<210> 756
<211> 108
<212> DNA
<213>Artificial sequence
<400> 756
gactacatgg gacatgaaat ctaggaacaa tgtacctggt aaatggcctc atcacaggca 60
ttttgcagac cgaggttgat catggtgttc tgttacgtcg taggttcc 108
<210> 757
<211> 108
<212> DNA
<213>Artificial sequence
<400> 757
gactacatgg gacatgcgtg aagtgcaggt gccggttgaa actcttcttc agctctgcca 60
cgttctccac gcccacgatg ccgcggatgc tgatacgtcg taggttcc 108
<210> 758
<211> 108
<212> DNA
<213>Artificial sequence
<400> 758
gactacatgg gacattcatg ccgcccaaaa ccccccgaaa aacgccctcc tgaggaggac 60
ccagagcagg acagcggccc ggaggacctg ccttacgtcg taggttcc 108
<210> 759
<211> 108
<212> DNA
<213>Artificial sequence
<400> 759
gactacatgg gacatttggt aggcttgagt ttgaagaaac agaagaacct gattttactg 60
cattatgtca gaaattaaag ataccagatc atgtacgtcg taggttcc 108
<210> 760
<211> 108
<212> DNA
<213>Artificial sequence
<400> 760
gactacatgg gacatttttt gttcccaggg aggttatatt caaaagaaaa aggaactgtg 60
gggaatctgt atctttattg cagcagttga ccttacgtcg taggttcc 108
<210> 761
<211> 108
<212> DNA
<213>Artificial sequence
<400> 761
gactacatgg gacatttcct ttgtagtgtc cataaattct ttaacttact aaaagaaatt 60
gataccagta ccaaagttga taatgctatg tcatacgtcg taggttcc 108
<210> 762
<211> 108
<212> DNA
<213>Artificial sequence
<400> 762
gactacatgg gacatacttc taaattacga aaaaatgtta aaaagtcata atgtttttct 60
tttcaggaca tgtgaactta tatatttgac acatacgtcg taggttcc 108
<210> 763
<211> 108
<212> DNA
<213>Artificial sequence
<400> 763
gactacatgg gacattttcc tgtttttttt ctgctttcta tttgtttaat aggatatcta 60
ctgaaataaa ttctgcattg gtgctaaaag ttttacgtcg taggttcc 108
<210> 764
<211> 108
<212> DNA
<213>Artificial sequence
<400> 764
gactacatgg gacatacatt tttttttcag gggaagtatt acaaatggaa gatgatctgg 60
tgatttcatt tcagttaatg ctatgtgtcc ttgtacgtcg taggttcc 108
<210> 765
<211> 108
<212> DNA
<213>Artificial sequence
<400> 765
gactacatgg gacatgaaac agctgttata cccattaatg gttcacctcg aacacccagg 60
cgaggtcaga acaggagtgc acggatagca aaatacgtcg taggttcc 108
<210> 766
<211> 108
<212> DNA
<213>Artificial sequence
<400> 766
gactacatgg gacattaatg atcatgttgt aacttcatct ttttcaggtg aaaaatgttt 60
atttcaaaaa ttttatacct tttatgaatt ctctacgtcg taggttcc 108
<210> 767
<211> 108
<212> DNA
<213>Artificial sequence
<400> 767
gactacatgg gacatacttt tttctttcaa ggttgaaaat ctttctaaac gatacgaaga 60
aatttatctt aaaaataaag atctagatgc aagtacgtcg taggttcc 108
<210> 768
<211> 108
<212> DNA
<213>Artificial sequence
<400> 768
gactacatgg gacatgtatg tgaatgactt cacttattgt tatttagttt tgaaacacag 60
agaacaccac gaaaaagtaa ccttgatgaa gagtacgtcg taggttcc 108
<210> 769
<211> 108
<212> DNA
<213>Artificial sequence
<400> 769
gactacatgg gacatacatt ttcctatttt tatcccctct aggactgtta tgaacactat 60
ccaacaatta atgatgattt taaattcagc aagtacgtcg taggttcc 108
<210> 770
<211> 108
<212> DNA
<213>Artificial sequence
<400> 770
gactacatgg gacattacct cctaaagaac tgcacagtga atccaaaaga aagtatactg 60
aaaagagtga aggatatagg atacatcttt aaatacgtcg taggttcc 108
<210> 771
<211> 108
<212> DNA
<213>Artificial sequence
<400> 771
gactacatgg gacatctaaa atagcaggct cttatttttc tttttgtttg tttgtagcga 60
tacaaacttg gagttcgctt gtattaccga gtatacgtcg taggttcc 108
<210> 772
<211> 108
<212> DNA
<213>Artificial sequence
<400> 772
gactacatgg gacataaata aggtttcaat taaacaactt cttttttttt ttttaaatta 60
tctgtttcag gaagaagaac gattatccat tcatacgtcg taggttcc 108
<210> 773
<211> 108
<212> DNA
<213>Artificial sequence
<400> 773
gactacatgg gacattgtct ttattggcgt gcgctcttga ggttgtaatg gccacatata 60
gcagtaagtt aaattttcat aaataaacac ttttacgtcg taggttcc 108
<210> 774
<211> 108
<212> DNA
<213>Artificial sequence
<400> 774
gactacatgg gacatggaag tacatctcag aatcttgatt ctggaacaga tttgtctttc 60
ccatggattc tgaatgtgct taatttaaaa gcctacgtcg taggttcc 108
<210> 775
<211> 108
<212> DNA
<213>Artificial sequence
<400> 775
gactacatgg gacatgtttc atataggatt cacctttatt tgatcttatt aaacaatcaa 60
aggaccgaga aggaccaact gatcaccttg aattacgtcg taggttcc 108
<210> 776
<211> 108
<212> DNA
<213>Artificial sequence
<400> 776
gactacatgg gacatggtat ctttctcctg taagatctcc aaagaaaaaa ggttcaacta 60
cgcgtgtaaa ttctactgca aatgcagaga cactacgtcg taggttcc 108
<210> 777
<211> 108
<212> DNA
<213>Artificial sequence
<400> 777
gactacatgg gacatgtgta tcggctagcc tatctccggc taaatacact ttgtgaacgc 60
cttctgtctg agcacccaga attagaacat atctacgtcg taggttcc 108
<210> 778
<211> 108
<212> DNA
<213>Artificial sequence
<400> 778
gactacatgg gacatcatca atttatttac tagattatga tgtgttccat gtatggcata 60
tgcaaagtga agaatataga ccttaaattc aaatacgtcg taggttcc 108
<210> 779
<211> 108
<212> DNA
<213>Artificial sequence
<400> 779
gactacatgg gacatctgtt cttcctcaga cattcaaacg tgttttgatc aaagaagagg 60
agtatgattc tattatagta ttctataact cggtacgtcg taggttcc 108
<210> 780
<211> 108
<212> DNA
<213>Artificial sequence
<400> 780
gactacatgg gacatgcccc ctaccttgtc accaatacct cacattcctc gaagccctta 60
caagtttcct agttcaccct tacggattcc tggtacgtcg taggttcc 108
<210> 781
<211> 108
<212> DNA
<213>Artificial sequence
<400> 781
gactacatgg gacatgcaaa attgtatatg gttttttatt actaattggt atttcatctt 60
aacttgacag aatcttagta tcaattggtg aattacgtcg taggttcc 108
<210> 782
<211> 108
<212> DNA
<213>Artificial sequence
<400> 782
gactacatgg gacatgactt ctgagaagtt ccagaaaata aatcagatgg tatgtaacag 60
cgaccgtgtg ctcaaaagaa gtgctgaagg aagtacgtcg taggttcc 108
<210> 783
<211> 108
<212> DNA
<213>Artificial sequence
<400> 783
gactacatgg gacatcattt ataaatacac atgaaatgtt ttgcattttt ttaatctgca 60
gtaaacatct cccaggagag tccaaatttc agctacgtcg taggttcc 108
<210> 784
<211> 108
<212> DNA
<213>Artificial sequence
<400> 784
gactacatgg gacatcaatg ctgttaacag ttcttcatcc tttttccagc ttctactcga 60
acacgaatgc aaaagcagaa aatgaatgat agctacgtcg taggttcc 108
<210> 785
<211> 108
<212> DNA
<213>Artificial sequence
<400> 785
gactacatgg gacatatcag gcacacttgc tgacgcactc cagcagctcc atccggatgg 60
caatgcggac gtgccagccc agcgggatga ggctacgtcg taggttcc 108
<210> 786
<211> 108
<212> DNA
<213>Artificial sequence
<400> 786
gactacatgg gacatcccgg ttgtttccag tctggtcctt gtagtaaatc cagttcaggc 60
gctcatcggt cctgtactgc acgctgtact tggtacgtcg taggttcc 108
<210> 787
<211> 108
<212> DNA
<213>Artificial sequence
<400> 787
gactacatgg gacatcccaa agccttgact gttgagccgg gccttgtttg cagtccacga 60
agaataccag cccacatact gctccgggtt agatacgtcg taggttcc 108
<210> 788
<211> 108
<212> DNA
<213>Artificial sequence
<400> 788
gactacatgg gacataggac aggggatact cacctggtat acagtccaag gaggtggcac 60
ctgcagacca cagagcattg ggtcctcctt ggctacgtcg taggttcc 108
<210> 789
<211> 108
<212> DNA
<213>Artificial sequence
<400> 789
gactacatgg gacattagga aaattttcaa aagtactatg catgtacatt acagccttct 60
tactgttaca tacctcggta gacgataatc ccatacgtcg taggttcc 108
<210> 790
<211> 108
<212> DNA
<213>Artificial sequence
<400> 790
gactacatgg gacatatgta ttaagtatgc aatgaatgtc aatggttgaa tagcacatac 60
cttcatagcc aaagagaagt aataacaaaa agctacgtcg taggttcc 108
<210> 791
<211> 108
<212> DNA
<213>Artificial sequence
<400> 791
gactacatgg gacatccctt tggctttttc atctttgcct tcttgctcat gtttttccac 60
aattggcttt gtcacccggt cataggaagg tggtacgtcg taggttcc 108
<210> 792
<211> 108
<212> DNA
<213>Artificial sequence
<400> 792
gactacatgg gacataaatc aaaaatattc catccaatgg taaaataata atggcgtaga 60
gagatgagtt tcagtacaca ctctccagta aattacgtcg taggttcc 108
<210> 793
<211> 108
<212> DNA
<213>Artificial sequence
<400> 793
gactacatgg gacattcatt tgatacttct tactcctggt cgaggtatag gcttttgcgg 60
ttttttcgat cctaattttt tcattgcatt atatacgtcg taggttcc 108
<210> 794
<211> 108
<212> DNA
<213>Artificial sequence
<400> 794
gactacatgg gacattctat gatgacacca ataaacaggt tcaaggtgaa gaaggaccca 60
aagatgatga aaataacaaa gtaaagatac atgtacgtcg taggttcc 108
<210> 795
<211> 108
<212> DNA
<213>Artificial sequence
<400> 795
gactacatgg gacatctgat caatattgta aaaagactta gaatacaagg aatacttaca 60
tttctggaat caactgctgc atacattata tcctacgtcg taggttcc 108
<210> 796
<211> 108
<212> DNA
<213>Artificial sequence
<400> 796
gactacatgg gacatcaact tgaagcaaag agagataccc aaatcctaca ttatcaaagt 60
ttactttcac atttttccat cgagcagtct cattacgtcg taggttcc 108
<210> 797
<211> 108
<212> DNA
<213>Artificial sequence
<400> 797
gactacatgg gacatttttc ttaccctcat cccttcaaat cgagataagg ctcttagagg 60
tctcagagct cttagtgtcc tgagagattt gattacgtcg taggttcc 108
<210> 798
<211> 108
<212> DNA
<213>Artificial sequence
<400> 798
gactacatgg gacatcaaac cagttatgtt caactattcg gaaacacgtc cttctcaggt 60
tccaccattg ttttcctctg ccttcttcca cattacgtcg taggttcc 108
<210> 799
<211> 108
<212> DNA
<213>Artificial sequence
<400> 799
gactacatgg gacatttttc tttaccttca gtgaaacaag cttctggttc aagagtttct 60
tcaggttcca ctacgggctg ttcttctaca ggttacgtcg taggttcc 108
<210> 800
<211> 108
<212> DNA
<213>Artificial sequence
<400> 800
gactacatgg gacatcctct ttgctttctt ccagatccga ttcactacta aagtcttccg 60
tgtttaaatt ttcaaagtca gattctccta cagtacgtcg taggttcc 108
<210> 801
<211> 108
<212> DNA
<213>Artificial sequence
<400> 801
gactacatgg gacataggag tggaagaagt cattcatgtg ccagcgtggg agttgacaat 60
cactggcgat cttgcagaca caatctttgt agctacgtcg taggttcc 108
<210> 802
<211> 108
<212> DNA
<213>Artificial sequence
<400> 802
gactacatgg gacatccaat cgaaatgaac ggagaacaga taatccttcc acattggcga 60
gtccaagttc taccaggcta agcgtcacaa taatacgtcg taggttcc 108
<210> 803
<211> 108
<212> DNA
<213>Artificial sequence
<400> 803
gactacatgg gacatccaag tttcctactg taagcacatt attgaaatgg tccgtcattg 60
gatagtgctc catggccatg aaaagagtat ttatacgtcg taggttcc 108
<210> 804
<211> 108
<212> DNA
<213>Artificial sequence
<400> 804
gactacatgg gacatcaacc ttctactgta tttgttagaa tgctggctat actcattgct 60
cgttgccttt gggaaggatc ttctagaaag tcctacgtcg taggttcc 108
<210> 805
<211> 108
<212> DNA
<213>Artificial sequence
<400> 805
gactacatgg gacatttatc acctctggca gaagctgtcc aacaggcgat gtaggaactg 60
aaggtccacc aaccaaggaa accacaccat tgctacgtcg taggttcc 108
<210> 806
<211> 108
<212> DNA
<213>Artificial sequence
<400> 806
gactacatgg gacatcctgg tgtggggagg agtacctctt ttcatatgtc aatcggttcc 60
cttcaatgga gaagcgaaaa cctttcctcc tgatacgtcg taggttcc 108
<210> 807
<211> 108
<212> DNA
<213>Artificial sequence
<400> 807
gactacatgg gacatccagt tgataaagat tttcccagaa gtcctgagtc attagtcgaa 60
acaaggacaa aaaagcccaa ctgaaggtat caatacgtcg taggttcc 108
<210> 808
<211> 108
<212> DNA
<213>Artificial sequence
<400> 808
gactacatgg gacataatta ttgacttacc ctgcatcaga gctatttcca catagtagtg 60
catctaaaaa accctccagg aaataatgat atctacgtcg taggttcc 108
<210> 809
<211> 108
<212> DNA
<213>Artificial sequence
<400> 809
gactacatgg gacatcttga atcttgaata tatgacttcc agtcaaactc aaagacagtt 60
tcatttataa gtgtaccatt ataattcaca gtttacgtcg taggttcc 108
<210> 810
<211> 108
<212> DNA
<213>Artificial sequence
<400> 810
gactacatgg gacatactta cgcaaatgta atgacagtga aatcgagcca gttccatgga 60
tcccgaagga aagtaaaatc ttctaaacag aattacgtcg taggttcc 108
<210> 811
<211> 108
<212> DNA
<213>Artificial sequence
<400> 811
gactacatgg gacatgttat taaaaatata agttgaactt actctacatt ctttgtccaa 60
tcaggagggt tactcattgt cataaacaca cagtacgtcg taggttcc 108
<210> 812
<211> 108
<212> DNA
<213>Artificial sequence
<400> 812
gactacatgg gacatttaat agctattttc ctaagaggat tgaagggagt taaaatgtac 60
agggcagagg tggcactgaa ccggaagatg gcctacgtcg taggttcc 108
<210> 813
<211> 108
<212> DNA
<213>Artificial sequence
<400> 813
gactacatgg gacatccaag tcactatttg gctttgggcc attttcgtcg tcatcttttt 60
tgtctggttt gggattcttt gccttttctt ctgtacgtcg taggttcc 108
<210> 814
<211> 108
<212> DNA
<213>Artificial sequence
<400> 814
gactacatgg gacataatgg cagaactgcc cacaacagag acgcctgggg acgccacttt 60
gtgcagcggg cgcttcacca tcagcacact gcttacgtcg taggttcc 108
<210> 815
<211> 108
<212> DNA
<213>Artificial sequence
<400> 815
gactacatgg gacatgcagg aaggcagaca cctgcatgcc ctggcctttg acagccggcc 60
cagccacgag atgactgatg ggctggtgga gggtacgtcg taggttcc 108
<210> 816
<211> 108
<212> DNA
<213>Artificial sequence
<400> 816
gactacatgg gacatcccag gtggcctctg acccccctgt cctcccagat tcgttgcatg 60
ctcaacattt ggggcgtgat cctctacctg cggtacgtcg taggttcc 108
<210> 817
<211> 108
<212> DNA
<213>Artificial sequence
<400> 817
gactacatgg gacattaagc tttgggtgcc ccctgcagtc ctgacctgga tcatcatcct 60
gctgtcggtc acggtgacct ccatcacagg ccttacgtcg taggttcc 108
<210> 818
<211> 108
<212> DNA
<213>Artificial sequence
<400> 818
gactacatgg gacatggtgg cacctacttc ctcatctccc ggagtctggg cccagagctt 60
gggggctcca tcggcctcat tttcgctttc gcctacgtcg taggttcc 108
<210> 819
<211> 108
<212> DNA
<213>Artificial sequence
<400> 819
gactacatgg gacatatttt ccctccccag gagtatgggg cacccatcgt ggaccccatt 60
aacgacatcc gcatcattgc cgtggtctcg gtctacgtcg taggttcc 108
<210> 820
<211> 108
<212> DNA
<213>Artificial sequence
<400> 820
gactacatgg gacatcttcg ccccctccag gcccaggtgc tgttcttcct tgtcatcatg 60
gtctcctttg ccaactattt agtggggacg ctgtacgtcg taggttcc 108
<210> 821
<211> 108
<212> DNA
<213>Artificial sequence
<400> 821
gactacatgg gacattccag cggacatttt tgtccagaac ttggtgcctg actggcgggg 60
tccagatggc accttcttcg gaatgttctc cattacgtcg taggttcc 108
<210> 822
<211> 108
<212> DNA
<213>Artificial sequence
<400> 822
gactacatgg gacataggac cctgctatag ccatccccaa ggggaccctc atggccattt 60
tctggacgac catttcctac ctggccatct cagtacgtcg taggttcc 108
<210> 823
<211> 108
<212> DNA
<213>Artificial sequence
<400> 823
gactacatgg gacatggctc ctgcgtggtg cgtgatgcct ctggggtcct gaatgacaca 60
gtgacccctg gctggggtgc ctgcgagggg ctgtacgtcg taggttcc 108
<210> 824
<211> 108
<212> DNA
<213>Artificial sequence
<400> 824
gactacatgg gacatgcccc aaatccccac agaccatgag catggtgtca ggcttcgcgc 60
ccctgatcac ggctggcatc ttcggggcca ccctacgtcg taggttcc 108
<210> 825
<211> 108
<212> DNA
<213>Artificial sequence
<400> 825
gactacatgg gacatgtgct gcagtgcctt tgcgaggacc agctgtaccc actgatcggc 60
ttcttcggca aaggctatgg caagaacaag gagtacgtcg taggttcc 108
<210> 826
<211> 108
<212> DNA
<213>Artificial sequence
<400> 826
gactacatgg gacattccct gggtccccga agctgagctc aacaccatag cccccatcat 60
ttccaacttc ttcctctgct cctatgccct cattacgtcg taggttcc 108
<210> 827
<211> 108
<212> DNA
<213>Artificial sequence
<400> 827
gactacatgg gacatgggtg gagaccttca ttccaatact acaacaagtg ggcggcgctg 60
tttggggcta tcatctccgt ggtcatcatg ttctacgtcg taggttcc 108
<210> 828
<211> 108
<212> DNA
<213>Artificial sequence
<400> 828
gactacatgg gacatgttgc tcccttgctc tcccagaggt aaattggggc tcctcggtac 60
aggctggctc ctacaacctg gccctcagct acttacgtcg taggttcc 108
<210> 829
<211> 108
<212> DNA
<213>Artificial sequence
<400> 829
gactacatgg gacatccctt ccctcctcag cccccagtgc ctggtgctca cggggccccc 60
caacttccgc ccggccctgg tggactttgt gggtacgtcg taggttcc 108
<210> 830
<211> 108
<212> DNA
<213>Artificial sequence
<400> 830
gactacatgg gacatgggac cccacaagca gaggatgcct gagctccagc tcatcgccaa 60
cgggcacacc aagtggctga acaagaggaa gattacgtcg taggttcc 108
<210> 831
<211> 108
<212> DNA
<213>Artificial sequence
<400> 831
gactacatgg gacatcccct atcccctggc aggccgcagg tctcgggaga atgaagccca 60
acattctggt ggttgggttc aagaagaact ggctacgtcg taggttcc 108
<210> 832
<211> 108
<212> DNA
<213>Artificial sequence
<400> 832
gactacatgg gacataagct ggacctcacc tcctctcttt ccagtgatgc ctttgatttc 60
aactatggcg tgtgtgtcat gaggatgcgg gagtacgtcg taggttcc 108
<210> 833
<211> 108
<212> DNA
<213>Artificial sequence
<400> 833
gactacatgg gacatgcctg tgaacaaagc tgcctcttct tttgcagtta accccgtgtt 60
tgacccagcg gaggacggga aggaagccag cgctacgtcg taggttcc 108
<210> 834
<211> 108
<212> DNA
<213>Artificial sequence
<400> 834
gactacatgg gacatcccgc ccccacctcc tgcagtggac cccaaggccc tggtgaagga 60
ggagcaggcc accaccatct tccagtcgga gcatacgtcg taggttcc 108
<210> 835
<211> 108
<212> DNA
<213>Artificial sequence
<400> 835
gactacatgg gacatgactc tccttgccag gcctcaccct cctcattccc tatctccttg 60
gccgcaagag gaggtggagc aaatgcaaga tcctacgtcg taggttcc 108
<210> 836
<211> 108
<212> DNA
<213>Artificial sequence
<400> 836
gactacatgg gacatccctc catgtgtcct ccaggatcat ttctctgctg agcaagttcc 60
gactgggatt ccatgaagtc cacatcctcc ctgtacgtcg taggttcc 108
<210> 837
<211> 108
<212> DNA
<213>Artificial sequence
<400> 837
gactacatgg gacatcagca ccaagaggtt tgaggacatg attgcaccct tccgtctgaa 60
tgatggcttc aaggatgagg ccactgtcaa cgatacgtcg taggttcc 108
<210> 838
<211> 108
<212> DNA
<213>Artificial sequence
<400> 838
gactacatgg gacatgatat gggaagtgac cactcggctt tctcccgccc agtcccttcg 60
gcaggtgagg ctgaatgaga ttgtgctgga ttatacgtcg taggttcc 108
<210> 839
<211> 108
<212> DNA
<213>Artificial sequence
<400> 839
gactacatgg gacatgcact ttgcccatag ggaggaaggg gaagtgcccc agctcgctgt 60
acatggcctg gctggagacc ctgtcccagg acctacgtcg taggttcc 108
<210> 840
<211> 108
<212> DNA
<213>Artificial sequence
<400> 840
gactacatgg gacatgctca gcgccagcat catccccaat ggcttcaccg gcctgtcctc 60
cgtgttcctg atagcgaccc cggagcaccg ctgtacgtcg taggttcc 108
<210> 841
<211> 108
<212> DNA
<213>Artificial sequence
<400> 841
gactacatgg gacattactc tctgcctgtc tctcctcctc aaaatggaag caagacagtg 60
gggcctacaa tgctatgaaa aacaggatgg gaatacgtcg taggttcc 108
<210> 842
<211> 108
<212> DNA
<213>Artificial sequence
<400> 842
gactacatgg gacatccctt tgctcatctt gcagtggaac ctggtgtgtg aggacgactg 60
gaaggcccca ctcacaatct ccttgttctt cgttacgtcg taggttcc 108
<210> 843
<211> 108
<212> DNA
<213>Artificial sequence
<400> 843
gactacatgg gacatggttt ggccggaaga atgtgctgtt cgtgaccatg ggcatgcaga 60
caggcttcag cttcctgcag atcttctcga agatacgtcg taggttcc 108
<210> 844
<211> 108
<212> DNA
<213>Artificial sequence
<400> 844
gactacatgg gacataagtc agttcgtata atattctcta cgttaggagt gtgcatattt 60
tatgcatttg gctacatggt gctgccactg ttttacgtcg taggttcc 108
<210> 845
<211> 108
<212> DNA
<213>Artificial sequence
<400> 845
gactacatgg gacataagag gcagaggtga tcatccgcaa ggctgccaaa gccaatggga 60
ttgttgtgcc ttccactatc tttgacccga gtgtacgtcg taggttcc 108
<210> 846
<211> 108
<212> DNA
<213>Artificial sequence
<400> 846
gactacatgg gacatttatg atgttgttcc tgcagttaca agacctaagt tccaagaagc 60
agcagtccca caacattctg gatctgcttc gaatacgtcg taggttcc 108
<210> 847
<211> 108
<212> DNA
<213>Artificial sequence
<400> 847
gactacatgg gacatggatg accatatcag tgggctattt tgggctttcg cttgatactc 60
ctaacttgca tggggacatc tttgtgaact gcttacgtcg taggttcc 108
<210> 848
<211> 108
<212> DNA
<213>Artificial sequence
<400> 848
gactacatgg gacatgactt gtattatttg gctacagtcc tggtgatggt gggcaagttt 60
ggagtcacgg ctgccttttc catggtctac gtgtacgtcg taggttcc 108
<210> 849
<211> 108
<212> DNA
<213>Artificial sequence
<400> 849
gactacatgg gacattaggt gcctacgacc gcttcctgcc ctacattctc atgggaagtc 60
tgaccatcct gacagccatc ctcaccttgt ttctacgtcg taggttcc 108
<210> 850
<211> 108
<212> DNA
<213>Artificial sequence
<400> 850
gactacatgg gacatctgac atatttttgc ttgtttttat agaatgaaac acagaaaaac 60
tccaagtcac acaaggatgt taaaagatgg tcatacgtcg taggttcc 108
<210> 851
<211> 108
<212> DNA
<213>Artificial sequence
<400> 851
gactacatgg gacatcctat gggcctccac caatagcctt tgaggtagat actgatggct 60
tgaagagagg taggtaaagt ccaaatttgt ttttacgtcg taggttcc 108
<210> 852
<211> 108
<212> DNA
<213>Artificial sequence
<400> 852
gactacatgg gacatgcagc agatttagca tgatacttac actcctccaa aatcaatgta 60
gaaccatcgc tgtagcaatt cgtaagtcag caatacgtcg taggttcc 108
<210> 853
<211> 108
<212> DNA
<213>Artificial sequence
<400> 853
gactacatgg gacatccacc agctcccttc cacagagctt ttggtccttc ttcacgcagt 60
atctttctaa agcagtctat cactccgctg taatacgtcg taggttcc 108
<210> 854
<211> 108
<212> DNA
<213>Artificial sequence
<400> 854
gactacatgg gacatccagc tatggcacca gctaagagca ggcttcctgg gctaacctgc 60
ccatcttcat ttgcaaagga agccttcaca tgatacgtcg taggttcc 108
<210> 855
<211> 108
<212> DNA
<213>Artificial sequence
<400> 855
gactacatgg gacatccttg tagatcccaa aaaaccccag gtcccgcacg acagacagag 60
cactgactcg aggaccagtg gtgatttctc ctgtacgtcg taggttcc 108
<210> 856
<211> 108
<212> DNA
<213>Artificial sequence
<400> 856
gactacatgg gacattcaat gaagagagct tcaaaaggta cttacgcagc ctccagcaag 60
aatttctgct gcaagtggga ccgaaccatc ttttacgtcg taggttcc 108
<210> 857
<211> 108
<212> DNA
<213>Artificial sequence
<400> 857
gactacatgg gacattgtac aaaatccctt aataagaagc accaactcaa aagacttact 60
gtaagtttta tggccttctc tggggcaact ccctacgtcg taggttcc 108
<210> 858
<211> 108
<212> DNA
<213>Artificial sequence
<400> 858
gactacatgg gacatcctct atacagtcca aagaagcctt catagcgtag cactttctta 60
aaacagtcaa agctgttttt atacatgagt tcttacgtcg taggttcc 108
<210> 859
<211> 108
<212> DNA
<213>Artificial sequence
<400> 859
gactacatgg gacataaaat ttttctctca tccatgacta acctccagca acagaaccca 60
gaccaaacct gtaggccgac tctgcaactt gtatacgtcg taggttcc 108
<210> 860
<211> 108
<212> DNA
<213>Artificial sequence
<400> 860
gactacatgg gacatgaatg caagtttgct cctctttgct cacctgcctc tgggcctcag 60
ccaagttaaa gggcagagtt ccctcttcca gagtacgtcg taggttcc 108
<210> 861
<211> 108
<212> DNA
<213>Artificial sequence
<400> 861
gactacatgg gacataaaaa aaaaaaaaag ccaacttacc cccttggctc atataaatct 60
gctaactgaa acaagatgtc aacttccatg ggttacgtcg taggttcc 108
<210> 862
<211> 108
<212> DNA
<213>Artificial sequence
<400> 862
gactacatgg gacatccctt agtcacttca acatctttcc tggtgccagc cagagtgcta 60
tagatctttc taatgagttc catgttgtta aggtacgtcg taggttcc 108
<210> 863
<211> 108
<212> DNA
<213>Artificial sequence
<400> 863
gactacatgg gacatcagct actagacatt cttctacaaa aggagtcaag acatgggggc 60
ggatggtgac catgatgtct cggaagtcga tggtacgtcg taggttcc 108
<210> 864
<211> 108
<212> DNA
<213>Artificial sequence
<400> 864
gactacatgg gacatccaat aaaaactgag taaattccgc atatgtcagg tgtctttttc 60
tttcttttcc aaaatgtagt tgcacaaatt ctgtacgtcg taggttcc 108
<210> 865
<211> 108
<212> DNA
<213>Artificial sequence
<400> 865
gactacatgg gacatgcttt gtcaaacagc tgaaaggcta ccataaacaa agcatcaggg 60
gcacacagga cagattcaaa ggcaacaaat tcttacgtcg taggttcc 108
<210> 866
<211> 108
<212> DNA
<213>Artificial sequence
<400> 866
gactacatgg gacatttctc caaaaatgtt caagtatcga gtgacaaagt cattggggga 60
catgaaaaat tcaccgtttt tctcaatgct tgctacgtcg taggttcc 108
<210> 867
<211> 108
<212> DNA
<213>Artificial sequence
<400> 867
gactacatgg gacataacac aaatcaaaca agaaacaaaa tagattcctt tatactgacc 60
ttcaaaaata ttgttctaag ctcagctgga tcttacgtcg taggttcc 108
<210> 868
<211> 108
<212> DNA
<213>Artificial sequence
<400> 868
gactacatgg gacatgcctc tcgcaccccc aggctgatcc ggcaggcgcg ctccccccgg 60
cctcgggccc gcggttacct tggcggccgc cattacgtcg taggttcc 108
<210> 869
<211> 108
<212> DNA
<213>Artificial sequence
<400> 869
gactacatgg gacatcatgg cagcgccagg cggcaggtcg gagccgccgc agctccccga 60
gtacagctgc agctacatgg tgtcgcggcc ggttacgtcg taggttcc 108
<210> 870
<211> 108
<212> DNA
<213>Artificial sequence
<400> 870
gactacatgg gacatgttgt tcaagaaaga gagcctttgg tgtgctaaag actcttgtgc 60
ccatcttgga gtggctcccc aaataccgag tcatacgtcg taggttcc 108
<210> 871
<211> 108
<212> DNA
<213>Artificial sequence
<400> 871
gactacatgg gacattgcat gtgctttcag ggatggcata tgccctacta gctgcagttc 60
ctgtcggata tggtctctac tctgcttttt tcctacgtcg taggttcc 108
<210> 872
<211> 108
<212> DNA
<213>Artificial sequence
<400> 872
gactacatgg gacatggacc ttttccagtg gtgagtttaa tggtgggatc tgttgttctg 60
agcatggccc ccgacgaaca ctttctcgta tcctacgtcg taggttcc 108
<210> 873
<211> 108
<212> DNA
<213>Artificial sequence
<400> 873
gactacatgg gacatgttga tatttggtgg cttgcagatt ggattcatag tgaggtactt 60
ggcagatcct ttggttggtg gcttcacaac agctacgtcg taggttcc 108
<210> 874
<211> 108
<212> DNA
<213>Artificial sequence
<400> 874
gactacatgg gacatgacgc tggttgagat ttttcaaaat attggtgata ccaatcttgc 60
tgatttcact gctggattgc tcaccattgt cgttacgtcg taggttcc 108
<210> 875
<211> 108
<212> DNA
<213>Artificial sequence
<400> 875
gactacatgg gacatagttt ttaacatctt ttgttttatt tcagacgata attgctactg 60
ccatttcata tggagccaac ctggaaaaaa atttacgtcg taggttcc 108
<210> 876
<211> 108
<212> DNA
<213>Artificial sequence
<400> 876
gactacatgg gacatggttt ttgcctcctg aacttccacc tgtgagcttg ttctcggaga 60
tgctggctgc atcattttcc atcgctgtgg tggtacgtcg taggttcc 108
<210> 877
<211> 108
<212> DNA
<213>Artificial sequence
<400> 877
gactacatgg gacatagtct cttccttagg aattcattgc ctttgggatc agcaacatct 60
tctcaggatt cttctcttgt tttgtggcca ccatacgtcg taggttcc 108
<210> 878
<211> 108
<212> DNA
<213>Artificial sequence
<400> 878
gactacatgg gacataatcc ttttcatagg aggtgtgtgt cttccaggtt gctggcatca 60
tctctgctgc gattgtgatg atcgccattc ttgtacgtcg taggttcc 108
<210> 879
<211> 108
<212> DNA
<213>Artificial sequence
<400> 879
gactacatgg gacatgcctt ctctgtctct cttggcagtc ggtcttggca gctgttgtaa 60
ttgccaacct gaaagggatg tttatgcagc tgttacgtcg taggttcc 108
<210> 880
<211> 108
<212> DNA
<213>Artificial sequence
<400> 880
gactacatgg gacattctat ttttttccct aggttatctg ggtgtttacg tgtatagtgt 60
ccatcattct ggggctggat ctcggtttac tagtacgtcg taggttcc 108
<210> 881
<211> 108
<212> DNA
<213>Artificial sequence
<400> 881
gactacatgg gacattccaa aaaatcttga ccttgatatt ttttcttcta gtccttcttg 60
gaatggcctt ggaagcatcc ctagcacaga tattacgtcg taggttcc 108
<210> 882
<211> 108
<212> DNA
<213>Artificial sequence
<400> 882
gactacatgg gacatccaga caatttcttt taatgccaga ttgaagaacc tcaaggagtg 60
aagattctta gattttccag tcctattttc tattacgtcg taggttcc 108
<210> 883
<211> 108
<212> DNA
<213>Artificial sequence
<400> 883
gactacatgg gacattaact tgacatttat ttccaaaggt tggatttgat gccattagag 60
tatataataa gaggctgaaa gcgctgagga aaatacgtcg taggttcc 108
<210> 884
<211> 108
<212> DNA
<213>Artificial sequence
<400> 884
gactacatgg gacatgaatg gcatcataag tgatgctgtt tcaacaaata atgcttttga 60
gcctgatgag gatattgaag atctggagga acttacgtcg taggttcc 108
<210> 885
<211> 108
<212> DNA
<213>Artificial sequence
<400> 885
gactacatgg gacatataag gttgttaatt gttacaaact ctcctttttt atttttagat 60
tgtcaaagaa ttccaaagaa ttgatgtgaa tgttacgtcg taggttcc 108
<210> 886
<211> 108
<212> DNA
<213>Artificial sequence
<400> 886
gactacatgg gacatgatta tgtgatagaa aagctggagc aatgcgggtt ctttgacgac 60
aacattagaa aggacacatt ctttttgacg gtctacgtcg taggttcc 108
<210> 887
<211> 108
<212> DNA
<213>Artificial sequence
<400> 887
gactacatgg gacattattt ctaccctgtg ttctcttttt caagatcact ctcattcagg 60
attgtaaaga tacccttgaa ttaatagaaa cagtacgtcg taggttcc 108
<210> 888
<211> 108
<212> DNA
<213>Artificial sequence
<400> 888
gactacatgg gacatatgca gacttaagga gaattcagtt gtatcaacac tttgttttcc 60
ccttgcttcc acaggctatg cgtacacttg cattacgtcg taggttcc 108
<210> 889
<211> 108
<212> DNA
<213>Artificial sequence
<400> 889
gactacatgg gacatggggg agggtctagg gcctgggccc gcccctcaca caggcatggc 60
cacttcgtcg tattcatccc gaccttcctc ctctacgtcg taggttcc 108
<210> 890
<211> 108
<212> DNA
<213>Artificial sequence
<400> 890
gactacatgg gacatcacac tgaagctcca cgttcctgaa gatgagcggc agcaggacgc 60
gccgcagcgg cacagtgagg atgaggacga aggtacgtcg taggttcc 108
<210> 891
<211> 108
<212> DNA
<213>Artificial sequence
<400> 891
gactacatgg gacatcccgc ttgacgtagg gcacatctgg gtgatacttg ggtggcttga 60
acagaagcaa gatgcggtca aagagctgga tgctacgtcg taggttcc 108
<210> 892
<211> 108
<212> DNA
<213>Artificial sequence
<400> 892
gactacatgg gacatcccac aagcacagcg accaggagtc cactgatccg ctgctctttg 60
acctcctgga tctgggctgc agcccctggg gtgtacgtcg taggttcc 108
<210> 893
<211> 108
<212> DNA
<213>Artificial sequence
<400> 893
gactacatgg gacatcgtgg tgatctgaga ctccaggaat atgaggatga agaccagcag 60
agcaggcagg gcggaggcaa acatcatcca gattacgtcg taggttcc 108
<210> 894
<211> 108
<212> DNA
<213>Artificial sequence
<400> 894
gactacatgg gacatgtctg agggctggga ggaggggtca cctgggtgta ggtatcctga 60
atgaagaaat ccaccaggac catgatcagg atgtacgtcg taggttcc 108
<210> 895
<211> 108
<212> DNA
<213>Artificial sequence
<400> 895
gactacatgg gacatccttg ccagggaaat aggagctgtt cttgaacttg cgcagcatca 60
tggcaaagaa gaaggtaccg gccatgagca caatacgtcg taggttcc 108
<210> 896
<211> 108
<212> DNA
<213>Artificial sequence
<400> 896
gactacatgg gacatccttg atcagcttgg agaaagtctc atagatgaag atgagggaaa 60
tgaggaagga gaagatctcc tgggtatagc gggtacgtcg taggttcc 108
<210> 897
<211> 108
<212> DNA
<213>Artificial sequence
<400> 897
gactacatgg gacatccgag aagaaggctt cctcaaacac cagcaggggt cctgagaagc 60
cgaccacaag caggggctga gcccccagca gggtacgtcg taggttcc 108
<210> 898
<211> 108
<212> DNA
<213>Artificial sequence
<400> 898
gactacatgg gacatcccag gaggccgccg aaggtgatgg cgggtgacag tgcagcaaag 60
tagatgaaga tgacggcagc caggacctgg gggtacgtcg taggttcc 108
<210> 899
<211> 108
<212> DNA
<213>Artificial sequence
<400> 899
gactacatgg gacatcctag gcccttgtag aagctggagt ctggcttggc agggctggac 60
tgatagcgcc ttcgaagtag ctccctctgc acatacgtcg taggttcc 108
<210> 900
<211> 108
<212> DNA
<213>Artificial sequence
<400> 900
gactacatgg gacatccctc tctgacatga gggtggcagc agcccggcca agctgggtgt 60
aatcgatgtg gggggcctca ggtcccagca acatacgtcg taggttcc 108
<210> 901
<211> 108
<212> DNA
<213>Artificial sequence
<400> 901
gactacatgg gacatggctg agggtagaga tgcctgttct tacccactag caccaacgtg 60
gcctctgaat ccgggggaat cttttccaga atttacgtcg taggttcc 108
<210> 902
<211> 108
<212> DNA
<213>Artificial sequence
<400> 902
gactacatgg gacatctgac tcacctgctc acagaagagc tgtgtctcca gtgaggagtg 60
ttgggggagc agaggctgtg aaggatcccc agatacgtcg taggttcc 108
<210> 903
<211> 108
<212> DNA
<213>Artificial sequence
<400> 903
gactacatgg gacatcacct gtgtttaagc agcagggccc ggagcagctc ctctcggtcc 60
tgaggccgga tctggtcttc aaagataaac ctgtacgtcg taggttcc 108
<210> 904
<211> 108
<212> DNA
<213>Artificial sequence
<400> 904
gactacatgg gacatccctt ggtgaagact ctacgcagct ctaggaggct ccagaaggtg 60
aggtgagaga ggtgcgggcg gccccaggcc ccatacgtcg taggttcc 108
<210> 905
<211> 108
<212> DNA
<213>Artificial sequence
<400> 905
gactacatgg gacataggca gcatgggaaa gaacggagga ggctggggtc ctcaccttgt 60
gggtacccgg gtgtgatgtg gtgtggtagt ctgtacgtcg taggttcc 108
<210> 906
<211> 108
<212> DNA
<213>Artificial sequence
<400> 906
gactacatgg gacatagctg agggagggag aggggctcac ctgccggctc ctccatctgg 60
gactcgggga tgtctgggtc ttcatattcc tcctacgtcg taggttcc 108
<210> 907
<211> 108
<212> DNA
<213>Artificial sequence
<400> 907
gactacatgg gacatagtct aggaccaggt ccccagagcc tccaggtggg agcactgctg 60
atgccaggga acacccacct gcagctcctc cattacgtcg taggttcc 108
<210> 908
<211> 108
<212> DNA
<213>Artificial sequence
<400> 908
gactacatgg gacatggccc cacgctgcgc acccgcgggt ttgctatggc gatgagcagc 60
ggcggcagtg gtggcggcgt cccggagcag gagtacgtcg taggttcc 108
<210> 909
<211> 108
<212> DNA
<213>Artificial sequence
<400> 909
gactacatgg gacatgaaca tgagttgttt ttatttctta ccctttccag agcgatgatt 60
ctgacatttg ggatgataca gcactgataa aagtacgtcg taggttcc 108
<210> 910
<211> 108
<212> DNA
<213>Artificial sequence
<400> 910
gactacatgg gacattattt tcgtagcatg ctctaaagaa tggtgacatt tgtgaaactt 60
cgggtaaacc aaaaaccaca cctaaaagaa aactacgtcg taggttcc 108
<210> 911
<211> 108
<212> DNA
<213>Artificial sequence
<400> 911
gactacatgg gacatgtgga aagttgggga caaatgttct gccatttggt cagaagacgg 60
ttgcatttac ccagctacca ttgcttcaat tgatacgtcg taggttcc 108
<210> 912
<211> 108
<212> DNA
<213>Artificial sequence
<400> 912
gactacatgg gacattgaga actccaggtc tcctggaaat aaatcagata acatcaagcc 60
caaatctgct ccatggaact cttttctccc tcctacgtcg taggttcc 108
<210> 913
<211> 108
<212> DNA
<213>Artificial sequence
<400> 913
gactacatgg gacatttcct ttgaaatatt ccttatagcc aggtctaaaa ttcaatggcc 60
cacttactat catgctggct gcctccattt ccttacgtcg taggttcc 108
<210> 914
<211> 108
<212> DNA
<213>Artificial sequence
<400> 914
gactacatgg gacatgatga tgctgatgct ttgggaagta tgttaatttc atggtacatg 60
agtggctatc atactggcta ttatatggta agttacgtcg taggttcc 108
<210> 915
<211> 108
<212> DNA
<213>Artificial sequence
<400> 915
gactacatgg gacattatct atatagctat tttttttaac ttcctttatt ttccttacag 60
ggttttagac aaaatcaaaa agaaggaagg tgctacgtcg taggttcc 108
<210> 916
<211> 108
<212> DNA
<213>Artificial sequence
<400> 916
gactacatgg gacatcttag ctgtgttcat gatgagtctc attgtagtcc atgatatgta 60
gctgtccaac actgtccggg gtcgggggag acgtacgtcg taggttcc 108
<210> 917
<211> 108
<212> DNA
<213>Artificial sequence
<400> 917
gactacatgg gacatccttt cttctgctgc ttcagctgct tctgcttttt cttcttcaag 60
ttttttcagg aggccatctt tctccaacct gcctacgtcg taggttcc 108
<210> 918
<211> 108
<212> DNA
<213>Artificial sequence
<400> 918
gactacatgg gacatccttg cctggagttt gacatcctct agatatttct tctgttccaa 60
aagaaggtgg tctttcttgg ccaggtgaga ttctacgtcg taggttcc 108
<210> 919
<211> 108
<212> DNA
<213>Artificial sequence
<400> 919
gactacatgg gacatctggc atacctttgt ggtatctgag tgcttgttct gcagttgttc 60
caaatagagc tcgttgacct ccccaagaac caatacgtcg taggttcc 108
<210> 920
<211> 108
<212> DNA
<213>Artificial sequence
<400> 920
gactacatgg gacatctcat ttcttcttac cttttgggaa acctgactga gcagcagctc 60
agtgtgacac accttgttgt tggccttctt cagtacgtcg taggttcc 108
<210> 921
<211> 108
<212> DNA
<213>Artificial sequence
<400> 921
gactacatgg gacatcctgt aattcctggc tctggttgta gaattcctct cggtcatgct 60
gcagctgtct gatctggctg tggagcttgg ttatacgtcg taggttcc 108
<210> 922
<211> 108
<212> DNA
<213>Artificial sequence
<400> 922
gactacatgg gacatccatg gcagcattat gttcctccag agctgctgct ttgatcacct 60
tgcggaggag ccgcctgttc cggagggcat gcttacgtcg taggttcc 108
<210> 923
<211> 108
<212> DNA
<213>Artificial sequence
<400> 923
gactacatgg gacatcaagc aggaaccatg tgggctggat ttggagctaa agtaacaact 60
ttacctccaa agtgggtcca gtcgacagac ttgtacgtcg taggttcc 108
<210> 924
<211> 108
<212> DNA
<213>Artificial sequence
<400> 924
gactacatgg gacatcttgt tcagctcctt gctgtgcgcg tctgctccct gctgtatcag 60
tctgtccagc acttccattg gggaggtaga gggtacgtcg taggttcc 108
<210> 925
<211> 108
<212> DNA
<213>Artificial sequence
<400> 925
gactacatgg gacatcaatc ccacatacat taccttcttc tttatctttt tcaatactat 60
cttcttcaga ggccagatca cctaaaaacc ctgtacgtcg taggttcc 108
<210> 926
<211> 108
<212> DNA
<213>Artificial sequence
<400> 926
gactacatgg gacataggca agcaaggcct gtagtaacgc agaaatttta cctgatcctc 60
tgtcattcag aagatggtgt tgtctgtgta gactacgtcg taggttcc 108
<210> 927
<211> 108
<212> DNA
<213>Artificial sequence
<400> 927
gactacatgg gacattggat cgcaccttcc tggggggtgt gactgtggcc tgggggagtg 60
aaatgtgcac gtagtcatcc gaatgacaga gtgtacgtcg taggttcc 108
<210> 928
<211> 108
<212> DNA
<213>Artificial sequence
<400> 928
gactacatgg gacatctaag acatacatac cagttgtacc aaagacttta ctgtaagggt 60
gtgacagatc aggtgggaca tttccaggag aagtacgtcg taggttcc 108
<210> 929
<211> 108
<212> DNA
<213>Artificial sequence
<400> 929
gactacatgg gacatgttga caccatactt gtggtggttc agttatcagc cgtgtcgatg 60
gggaactcag agtctgaggt agctgccctg gcatacgtcg taggttcc 108
<210> 930
<211> 108
<212> DNA
<213>Artificial sequence
<400> 930
gactacatgg gacatccata gctattctgt gtgtcagcat aagggctggt ggtgacatcg 60
gctgaacgat gaggaaagcg ggctgagatt tggtacgtcg taggttcc 108
<210> 931
<211> 108
<212> DNA
<213>Artificial sequence
<400> 931
gactacatgg gacatagatt ctttaaaatt ttgacactag tttctatacc ttcgagggtc 60
cagttcatgg tccttggatc cagtcactaa ttctacgtcg taggttcc 108
<210> 932
<211> 108
<212> DNA
<213>Artificial sequence
<400> 932
gactacatgg gacatccttg accacttctt caaaagtctc caggttttct ttcatactgt 60
aatgagaacg caaaaaggag acgaagttgc aagtacgtcg taggttcc 108
<210> 933
<211> 108
<212> DNA
<213>Artificial sequence
<400> 933
gactacatgg gacatcctgg tttcttcagg caccatgatg acagacggcc aaaaatgtca 60
aagaaatcaa gaagatgctg tttcccagac tgttacgtcg taggttcc 108
<210> 934
<211> 108
<212> DNA
<213>Artificial sequence
<400> 934
gactacatgg gacatccttg agacatttta gtaaagaagg caaaagaggt gcttgagaga 60
gcttatgctt ccaagatggc tgcagtctta tgatacgtcg taggttcc 108
<210> 935
<211> 108
<212> DNA
<213>Artificial sequence
<400> 935
gactacatgg gacatatgat atttcagcca ttaccttgtc atgtggctct tgcaaggtgg 60
tcaggatgtg caatgccggc tgagagctgg ttttacgtcg taggttcc 108
<210> 936
<211> 108
<212> DNA
<213>Artificial sequence
<400> 936
gactacatgg gacatggata ttattttgct aaccagaatt gaggttctct ttaaagacag 60
ctgtcacgtc gtcccgcaca cccagcatgg gggtacgtcg taggttcc 108
<210> 937
<211> 108
<212> DNA
<213>Artificial sequence
<400> 937
gactacatgg gacattagtt ttaagtcatg gcgggtgcga acgggtctct gctgcaggcg 60
gctccgtgac agctcctgct tcacatgggt agatacgtcg taggttcc 108
<210> 938
<211> 108
<212> DNA
<213>Artificial sequence
<400> 938
gactacatgg gacatgaggg gttttctggt gcgtcctggt ccaccatggc caaaccaaca 60
agcaaagatt caggcttgaa ggagaagttt aagtacgtcg taggttcc 108
<210> 939
<211> 108
<212> DNA
<213>Artificial sequence
<400> 939
gactacatgg gacatccttt ttcttctttc atctctctcc aggaactgag catggaatgt 60
ggcctcaaca atcgcatccg gatgataggg cagtacgtcg taggttcc 108
<210> 940
<211> 108
<212> DNA
<213>Artificial sequence
<400> 940
gactacatgg gacatctctg ctggtgacag cacgcagtgg aagcactctg gaaggcggtc 60
gcggatctgt tgcagccgga gcggccgctg gagtacgtcg taggttcc 108
<210> 941
<211> 108
<212> DNA
<213>Artificial sequence
<400> 941
gactacatgg gacatgggcg agcgtttggg ggtcctcaga gccctcttct ttaaggtcat 60
caaggattac ccttccaacg aagaccttca cgatacgtcg taggttcc 108
<210> 942
<211> 108
<212> DNA
<213>Artificial sequence
<400> 942
gactacatgg gacataattc cttctggtgc tggtgaactt ggtcaaattc aatagctgtt 60
acctcgacga gtacatcgca aggatggttc agttacgtcg taggttcc 108
<210> 943
<211> 108
<212> DNA
<213>Artificial sequence
<400> 943
gactacatgg gacatgccat ccaggcagtg ctgccgggac tgagctcggt gctccctgca 60
ggatgatctg tctgctgtgc gtccggaccg cgttacgtcg taggttcc 108
<210> 944
<211> 108
<212> DNA
<213>Artificial sequence
<400> 944
gactacatgg gacattccac caggtctccc tgcaggtgct ggacgccgtg gtctgctaca 60
actgcctgcc ggctgagagc ctcccgctgt tcatacgtcg taggttcc 108
<210> 945
<211> 108
<212> DNA
<213>Artificial sequence
<400> 945
gactacatgg gacatcctgc cagcccctga cacgcattgt gtctcgcagc tgatgcggaa 60
cctccttggc acccacctgg gccacagcgc cattacgtcg taggttcc 108
<210> 946
<211> 108
<212> DNA
<213>Artificial sequence
<400> 946
gactacatgg gacatctttt agagcctaca tggaggacgc gcccctgctg agaggagccg 60
tgttttttgt gggcatggct ctctggggag ccctacgtcg taggttcc 108
<210> 947
<211> 108
<212> DNA
<213>Artificial sequence
<400> 947
gactacatgg gacatggcca tggcatgtcc gaacgaggtg gtgtcctatg agatcgtcct 60
gtccatcacc aggctcatca agaagtatag gaatacgtcg taggttcc 108
<210> 948
<211> 108
<212> DNA
<213>Artificial sequence
<400> 948
gactacatgg gacatagacc ttggacagcc cggagctcag gaccatcgtc catgacctgt 60
tgaccacggt ggaggagctg tgtgaccaga acgtacgtcg taggttcc 108
<210> 949
<211> 108
<212> DNA
<213>Artificial sequence
<400> 949
gactacatgg gacatccggc tcttcttttg acaggagtcc tccctcctga acctgatctc 60
ctatagagcg cagtccatcc acccggccaa ggatacgtcg taggttcc 108
<210> 950
<211> 108
<212> DNA
<213>Artificial sequence
<400> 950
gactacatgg gacatcaccc gccccagcag gctgccgtcc cgcaggagcg agtcccgagg 60
cgccgtgcgc atcaaggtgc tggacgtgct gtctacgtcg taggttcc 108
<210> 951
<211> 108
<212> DNA
<213>Artificial sequence
<400> 951
gactacatgg gacatggagg agctgattaa ctcagtggtc atctcgcagc tctcccacat 60
ccccgaggat aaagaccacc aggtccgaaa gcttacgtcg taggttcc 108
<210> 952
<211> 108
<212> DNA
<213>Artificial sequence
<400> 952
gactacatgg gacatttctc ttcaaaggtg atggcccgct ccctctcccc acccccggag 60
ctggaagaaa gggatgtggc cgcatactcg gcctacgtcg taggttcc 108
<210> 953
<211> 108
<212> DNA
<213>Artificial sequence
<400> 953
gactacatgg gacattctct gcagaccaag ctgtacaccc tgcctgcaag ccacgccacg 60
cgtgtgtatg agatgctggt cagccacatt cagtacgtcg taggttcc 108
<210> 954
<211> 108
<212> DNA
<213>Artificial sequence
<400> 954
gactacatgg gacatcatcc tcttcctgac aggcctttga cttcctgttg ctgctgcggg 60
ccgactcact gcaccgcctg ggcctgccca acatacgtcg taggttcc 108
<210> 955
<211> 108
<212> DNA
<213>Artificial sequence
<400> 955
gactacatgg gacatgggag ccagagagag gctctgagaa gaagaccagc ggcccccttt 60
ctcctcccac agggcctcct ggcccggcgc ctgtacgtcg taggttcc 108
<210> 956
<211> 108
<212> DNA
<213>Artificial sequence
<400> 956
gactacatgg gacattcctc gcaggagtct gactggaagg tgctgaagct ggttctgggc 60
aggctgcctg agtccctgcg ctataaagtg ctctacgtcg taggttcc 108
<210> 957
<211> 108
<212> DNA
<213>Artificial sequence
<400> 957
gactacatgg gacatcagct ttcaggccca aagacactgg agcggctccg aggcgcccca 60
gaaggcttct ccagaactga cttgcacctg gcctacgtcg taggttcc 108
<210> 958
<211> 108
<212> DNA
<213>Artificial sequence
<400> 958
gactacatgg gacatgcgcg agatggtcta ctgcctggag cagggcctca tccaccgctg 60
tgccagccag tgcgtcgtgg ccttgtccat ctgtacgtcg taggttcc 108
<210> 959
<211> 108
<212> DNA
<213>Artificial sequence
<400> 959
gactacatgg gacattgacc accctctcca ttaccgcagc tctggccagg ctgccgcacc 60
tctacaggaa ctttgccgcg gagcagtatg ccatacgtcg taggttcc 108
<210> 960
<211> 108
<212> DNA
<213>Artificial sequence
<400> 960
gactacatgg gacatagccc ccttctcatc tcaggtttaa tcagtacatc gtgtgtctgg 60
cccatcacgt catagccatg tggttcatca ggttacgtcg taggttcc 108
<210> 961
<211> 108
<212> DNA
<213>Artificial sequence
<400> 961
gactacatgg gacattctgg gtgtgctcac tctgccaggg cctgcggtcc aatgtcctct 60
tgtcttttga tgacaccccc gagaaggaca gcttacgtcg taggttcc 108
<210> 962
<211> 108
<212> DNA
<213>Artificial sequence
<400> 962
gactacatgg gacatcgata gtctgaggat agccagaccc cccaaacaag gcttgaataa 60
ctctccaccc gtgaaagaat tcaaggagag ctctacgtcg taggttcc 108
<210> 963
<211> 108
<212> DNA
<213>Artificial sequence
<400> 963
gactacatgg gacatgcagg atacagacgt ccctcaccag tgccagcttg gggtctgcag 60
atgagaactc cgtggcccag gctgacgata gcctacgtcg taggttcc 108
<210> 964
<211> 108
<212> DNA
<213>Artificial sequence
<400> 964
gactacatgg gacatggtct cctgtgggcg agttcctcct agcgggtggc aggaccaaaa 60
cctggctggt tgggaacaag cttgtcactg tgatacgtcg taggttcc 108
<210> 965
<211> 108
<212> DNA
<213>Artificial sequence
<400> 965
gactacatgg gacatgattc tcttctcagc tccagccccg gggtgcatgt gagacagacc 60
aaggaggcgc cggccaagct ggagtcccag gcttacgtcg taggttcc 108
<210> 966
<211> 108
<212> DNA
<213>Artificial sequence
<400> 966
gactacatgg gacatggggg ccatggtctt cgagttggcg ccctggacgt gccggcctcc 60
cagttcctgg gcagtgccac ttctccagga ccatacgtcg taggttcc 108
<210> 967
<211> 108
<212> DNA
<213>Artificial sequence
<400> 967
gactacatgg gacatgggaa caccagctgg ctgatgagcc tggagaaccc gctcagccct 60
ttctcctcgg acatcaacaa catgcccctg cagtacgtcg taggttcc 108
<210> 968
<211> 108
<212> DNA
<213>Artificial sequence
<400> 968
gactacatgg gacatcctgc tgacgtggcc gcacacggcc ttcccttgca gtggcctctt 60
tctcctccct gtaccagtcc agctgccaag gactacgtcg taggttcc 108
<210> 969
<211> 108
<212> DNA
<213>Artificial sequence
<400> 969
gactacatgg gacatgtcct cccagactcc gccgtggtca tggaggaggg aagtccgggc 60
gaggttcctg tgctggtgga gcccccaggg ttgtacgtcg taggttcc 108
<210> 970
<211> 108
<212> DNA
<213>Artificial sequence
<400> 970
gactacatgg gacatgtcgt cctcagtctc cagccaggag gagaagtcgc tccacgcgga 60
ggagctggtt ggcaggggca tccccatcga gcgtacgtcg taggttcc 108
<210> 971
<211> 108
<212> DNA
<213>Artificial sequence
<400> 971
gactacatgg gacatcacct gggtgcccac catcccctcc ctgtgcagtt tcgtgttcct 60
gcagctctac cattccccct tctttggcga cgatacgtcg taggttcc 108
<210> 972
<211> 108
<212> DNA
<213>Artificial sequence
<400> 972
gactacatgg gacatcaggc agggctctgt gtgccacagt cacagtcctt tgagcggtcg 60
gtgcagctcc tcgaccagat cccatcatac gactacgtcg taggttcc 108
<210> 973
<211> 108
<212> DNA
<213>Artificial sequence
<400> 973
gactacatgg gacatgagca acagcgagct cgccatcctg tccaatgagc atggctccta 60
caggtacacg gagttcctga cgggcctggg ccgtacgtcg taggttcc 108
<210> 974
<211> 108
<212> DNA
<213>Artificial sequence
<400> 974
gactacatgg gacatgccgt cttccacatc gccaccctga tgcccaccaa ggacgtggac 60
aagcaccgct gcgacaagaa gcgccacctg ggctacgtcg taggttcc 108
<210> 975
<211> 108
<212> DNA
<213>Artificial sequence
<400> 975
gactacatgg gacatgcggg gatgaccctt tctcttgtcc gggcagggcc agttcaactt 60
tgtccacgtg atcgtcaccc cgctggacta cgatacgtcg taggttcc 108
<210> 976
<211> 108
<212> DNA
<213>Artificial sequence
<400> 976
gactacatgg gacattggcg tgaccaccaa gtctccccag acatggaggg ccttgtggac 60
accagcgtgg ccaagatcgt gtctgaccgc aactacgtcg taggttcc 108
<210> 977
<211> 108
<212> DNA
<213>Artificial sequence
<400> 977
gactacatgg gacatacccc ctgcctacgt ccccagatgg cctcacaggt gcatcatagc 60
cgctccaacc ccaccgatat ctacccctcc aagtacgtcg taggttcc 108
<210> 978
<211> 108
<212> DNA
<213>Artificial sequence
<400> 978
gactacatgg gacatgatct gcgaggaagc cgcctactcc aaccccagcc tacctctggt 60
gcaccctccg tcccatagca aagcccctgc acatacgtcg taggttcc 108
<210> 979
<211> 108
<212> DNA
<213>Artificial sequence
<400> 979
gactacatgg gacataatgc tcctggctgt tttgtactgc ctgctgtgga gtttccagac 60
ctccgctggc catttcccta gagcctgtgt ctctacgtcg taggttcc 108
<210> 980
<211> 108
<212> DNA
<213>Artificial sequence
<400> 980
gactacatgg gacatgattg tctgtagccg attggaggag tacaacagcc atcagtcttt 60
atgcaatgga acgcccgagg gacctttacg gcgtacgtcg taggttcc 108
<210> 981
<211> 108
<212> DNA
<213>Artificial sequence
<400> 981
gactacatgg gacatggatt tgctagtcca cttactggga tagcggatgc ctctcaaagc 60
agcatgcaca atgccttgca catctatatg aattacgtcg taggttcc 108
<210> 982
<211> 108
<212> DNA
<213>Artificial sequence
<400> 982
gactacatgg gacatcatgg ctgtggagtc ccagggcgga cgcccacttg tcctgggcct 60
gctgctgtgt gtgctgggcc cagtggtgtc ccatacgtcg taggttcc 108
<210> 983
<211> 108
<212> DNA
<213>Artificial sequence
<400> 983
gactacatgg gacatttgtg gttttctctt tgggatcaat ggtctcagaa attccagaga 60
agaaagctat ggcaattgct gatgctttgg gcatacgtcg taggttcc 108
<210> 984
<211> 108
<212> DNA
<213>Artificial sequence
<400> 984
gactacatgg gacatggtca cccgatgacc cgtgccttta tcacccatgc tggttcccat 60
ggtgtttatg aaagcatatg caatggcgtt ccctacgtcg taggttcc 108
<210> 985
<211> 108
<212> DNA
<213>Artificial sequence
<400> 985
gactacatgg gacatacaag gaccgcccgg tggagccgct ggacctggcc gtgttctggg 60
tggagtttgt gatgaggcac aagggcgcgc cactacgtcg taggttcc 108
<210> 986
<211> 108
<212> DNA
<213>Artificial sequence
<400> 986
gactacatgg gacatgcacc atgagtgggg gcccaatggg aggaaggccc gggggccgag 60
gagcaccagc ggttcagcag aacataccct ccatacgtcg taggttcc 108
<210> 987
<211> 108
<212> DNA
<213>Artificial sequence
<400> 987
gactacatgg gacatgacgc tggccactgc agttgttcag ctgtacctgg cgctgccccc 60
tggagctgag cactggacca aggagcattg tggtacgtcg taggttcc 108
<210> 988
<211> 108
<212> DNA
<213>Artificial sequence
<400> 988
gactacatgg gacattgtgc ctcccaccct acacctctcc aggctggtcg gctgctctgg 60
gaacaggagc tgtactcaca gcttgtctac tcctacgtcg taggttcc 108
<210> 989
<211> 108
<212> DNA
<213>Artificial sequence
<400> 989
gactacatgg gacatgaccc caaggtatgt gcaggactgc caagcggggc tgaactttgc 60
agacgaggac gaggcccagg ccttccgggc ccttacgtcg taggttcc 108
<210> 990
<211> 108
<212> DNA
<213>Artificial sequence
<400> 990
gactacatgg gacatctaga aaagtcccct ctcatggtcc tggctcccaa tccatctatc 60
cacagacaga cgccagctac ccccaccacc aactacgtcg taggttcc 108
<210> 991
<211> 108
<212> DNA
<213>Artificial sequence
<400> 991
gactacatgg gacattgtgg cagggctgtg ataactctct acacattcca tcttcccaga 60
gagaagagga gggctcccac ccctgcccct gcatacgtcg taggttcc 108
<210> 992
<211> 108
<212> DNA
<213>Artificial sequence
<400> 992
gactacatgg gacatggccc tccagtgggt ccgctctccc tggggctggc gacagtggac 60
atccagaacc ctgacatcac gagttcacga tactacgtcg taggttcc 108
<210> 993
<211> 108
<212> DNA
<213>Artificial sequence
<400> 993
gactacatgg gacatgggaa ggaagggcag tgaggattca ctggagtctc ttcacctctc 60
ccaggcatgt cagccacgtg gggtgggacc ccctacgtcg taggttcc 108
<210> 994
<211> 108
<212> DNA
<213>Artificial sequence
<400> 994
gactacatgg gacatggtga acaacctcga cccagatctg cggagtctgt tctccagggc 60
aggaatcagc gaggcccagc tcaccgacgc cgatacgtcg taggttcc 108
<210> 995
<211> 108
<212> DNA
<213>Artificial sequence
<400> 995
gactacatgg gacatgagcc acttccgccg cccccaccgc catctcgagg agggaaccag 60
ctcccccggc cccctattgt ggggggtaac aagtacgtcg taggttcc 108
<210> 996
<211> 108
<212> DNA
<213>Artificial sequence
<400> 996
gactacatgg gacatctgcc tgctgcagac ccctggggcc ccagagagct cagcgctgca 60
gccaccacct cagagctcag agggactggt gggtacgtcg taggttcc 108
<210> 997
<211> 108
<212> DNA
<213>Artificial sequence
<400> 997
gactacatgg gacatccacc aacctcccag ggcatcttat ctttctcttt ccctccagac 60
gaaggggagg accaggctgg cgatgaagat gaatacgtcg taggttcc 108
<210> 998
<211> 108
<212> DNA
<213>Artificial sequence
<400> 998
gactacatgg gacatgttgc caatgtgcat tagctgtttg cagcctcacc ttctttcatg 60
gagtttaaga tatagtgtat tttcccaagg ttttacgtcg taggttcc 108
<210> 999
<211> 108
<212> DNA
<213>Artificial sequence
<400> 999
gactacatgg gacatatgtt ttaaatgcac tgacctccca cattcccttt ttagtaaaat 60
attcagaaat aatttaaata catcattgca atgtacgtcg taggttcc 108
<210> 1000
<211> 108
<212> DNA
<213>Artificial sequence
<400> 1000
gactacatgg gacatcccag tttagtagtt ggacttaggg aacaaaggaa cctttaatag 60
aaattggaca gcaagaaagc gagcttagtg atatacgtcg taggttcc 108
<210> 1001
<211> 108
<212> DNA
<213>Artificial sequence
<400> 1001
gactacatgg gacatgaaga taagaggtat gaacatgatt agcaaaaggg cctagcttgg 60
actcagaata atccagcctt atcccaacca taatacgtcg taggttcc 108
<210> 1002
<211> 108
<212> DNA
<213>Artificial sequence
<400> 1002
gactacatgg gacattatcc ccttcctatg acatgaactt aaccatagaa aagaagggga 60
aagaaaacat caagcgtccc atagactcac ccttacgtcg taggttcc 108
<210> 1003
<211> 108
<212> DNA
<213>Artificial sequence
<400> 1003
gactacatgg gacattctct gtctccacat gcccagtttc tattggtctc cttaaacctg 60
tcttgtaacc ttgataccaa cctgcccagg gcctacgtcg taggttcc 108
<210> 1004
<211> 108
<212> DNA
<213>Artificial sequence
<400> 1004
gactacatgg gacattgaac acagttgtgt cagaagcaaa tgtaagcaat agatggctct 60
gccctgactt ttatgcccag ccctggctcc tgctacgtcg taggttcc 108
<210> 1005
<211> 108
<212> DNA
<213>Artificial sequence
<400> 1005
gactacatgg gacatgccct gacttttatg cccagccctg gctcctgccc tccctgctcc 60
tgggagtaga ttggccaacc ctagggtgtg gcttacgtcg taggttcc 108
<210> 1006
<211> 108
<212> DNA
<213>Artificial sequence
<400> 1006
gactacatgg gacattcccc acagactcag agagaaccca ccatggtgct gtctcctgcc 60
gacaagacca acgtcaaggc cgcctggggt aagtacgtcg taggttcc 108
<210> 1007
<211> 108
<212> DNA
<213>Artificial sequence
<400> 1007
gactacatgg gacatggctc cctcccctgc tccgacccgg gctcctcgcc cgcccggacc 60
cacaggccac cctcaaccgt cctggccccg gactacgtcg taggttcc 108
<210> 1008
<211> 108
<212> DNA
<213>Artificial sequence
<400> 1008
gactacatgg gacatcacgt ggacgacatg cccaacgcgc tgtccgccct gagcgacctg 60
cacgcgcaca agcttcgggt ggacccggtc aactacgtcg taggttcc 108
<210> 1009
<211> 108
<212> DNA
<213>Artificial sequence
<400> 1009
gactacatgg gacatggcgg gccgggagcg atctgggtcg aggggcgaga tggcgccttc 60
ctcgcagggc agaggatcac gcgggttgcg ggatacgtcg taggttcc 108
<210> 1010
<211> 108
<212> DNA
<213>Artificial sequence
<400> 1010
gactacatgg gacatgcggg aggtgtagcg caggcggcgg ctgcgggcct gggccctcgg 60
ccccactgac cctcttctct gcacagctcc taatacgtcg taggttcc 108
<210> 1011
<211> 108
<212> DNA
<213>Artificial sequence
<400> 1011
gactacatgg gacatcctcg gtggccatgc ttcttgcccc ttgggcctcc ccccagcccc 60
tcctcccctt cctgcacccg tacccccgtg gtctacgtcg taggttcc 108
<210> 1012
<211> 108
<212> DNA
<213>Artificial sequence
<400> 1012
gactacatgg gacatggcgc gctcgcgggc cggcactctt ctggtcccca cagactcaga 60
gagaacccac catggtgctg tctcctgccg acatacgtcg taggttcc 108
<210> 1013
<211> 108
<212> DNA
<213>Artificial sequence
<400> 1013
gactacatgg gacatccgac aagaccaacg tcaaggccgc ctggggtaag gtcggcgcgc 60
acgctggcga gtatggtgcg gaggccctgg agatacgtcg taggttcc 108
<210> 1014
<211> 108
<212> DNA
<213>Artificial sequence
<400> 1014
gactacatgg gacatccgac ccgggctcct cgcccgcccg gacccacagg ccaccctcaa 60
ccgtcctggc cccggaccca aaccccaccc ctctacgtcg taggttcc 108
<210> 1015
<211> 108
<212> DNA
<213>Artificial sequence
<400> 1015
gactacatgg gacatcaccc tcaaccgtcc tggccccgga cccaaacccc acccctcact 60
ctgcttctcc ccgcaggatg ttcctgtcct tcctacgtcg taggttcc 108
<210> 1016
<211> 108
<212> DNA
<213>Artificial sequence
<400> 1016
gactacatgg gacattcaag gtgagcggcg ggccgggagc gatctgggtc gaggggcgag 60
atggcgcctt cctctcaggg cagaggatca cgctacgtcg taggttcc 108
<210> 1017
<211> 108
<212> DNA
<213>Artificial sequence
<400> 1017
gactacatgg gacattcctc tcagggcaga ggatcacgcg ggttgcggga ggtgtagcgc 60
aggcggcggc tgcgggcctg ggccgcactg acctacgtcg taggttcc 108
<210> 1018
<211> 108
<212> DNA
<213>Artificial sequence
<400> 1018
gactacatgg gacattcacg cgggttgcgg gaggtgtagc gcaggcggcg gctgcgggcc 60
tgggccgcac tgaccctctt ctctgcacag ctctacgtcg taggttcc 108
<210> 1019
<211> 108
<212> DNA
<213>Artificial sequence
<400> 1019
gactacatgg gacatcagct cctaagccac tgcctgctgg tgaccctggc cgcccacctc 60
cccgccgagt tcacccctgc ggtgcacgcc tcctacgtcg taggttcc 108
<210> 1020
<211> 108
<212> DNA
<213>Artificial sequence
<400> 1020
gactacatgg gacatgacaa gttcctggct tctgtgagca ccgtgctgac ctccaaatac 60
cgttaagctg gagcctcggt agccgttcct ccttacgtcg taggttcc 108
<210> 1021
<211> 108
<212> DNA
<213>Artificial sequence
<400> 1021
gactacatgg gacatggagc ctcggtagcc gttcctcctg cccgctgggc ctcccaacgg 60
gccctcctcc cctccttgca ccggcccttc ctgtacgtcg taggttcc 108
<210> 1022
<211> 108
<212> DNA
<213>Artificial sequence
<400> 1022
gactacatgg gacattttga ataaagtctg agtgggcagc agcctgtgtg tgcctgggtt 60
ctctctatcc cggaatgtgc caacaatgga ggttacgtcg taggttcc 108
<210> 1023
<211> 108
<212> DNA
<213>Artificial sequence
<400> 1023
gactacatgg gacatttaac tgcagcctaa taattgtttt ctttgggata acttttaaag 60
tacattaaaa gactatcaac ttaatttctg atctacgtcg taggttcc 108
<210> 1024
<211> 108
<212> DNA
<213>Artificial sequence
<400> 1024
gactacatgg gacatataaa ataagtaaaa tgtcttgtga aacaaaatgc tttttaacat 60
ccatataaag ctatctatat atagctatct atgtacgtcg taggttcc 108
<210> 1025
<211> 108
<212> DNA
<213>Artificial sequence
<400> 1025
gactacatgg gacatttttt tttaacttcc tttattttcc ttacagggtt tcagacaaaa 60
tcaaaaagaa ggaaggtgct cacattcctt aaatacgtcg taggttcc 108
<210> 1026
<211> 108
<212> DNA
<213>Artificial sequence
<400> 1026
gactacatgg gacatacttt tgtaaaactt tatggtttgt ggaaaacaaa tgtttttgaa 60
catttaaaaa gttcagatgt taaaaagttg aaatacgtcg taggttcc 108
<210> 1027
<211> 108
<212> DNA
<213>Artificial sequence
<400> 1027
gactacatgg gacatacaat caatattaaa gaattttgat gccaaaacta ttagataaaa 60
ggttaatcta catccctact agaattctca tactacgtcg taggttcc 108
<210> 1028
<211> 108
<212> DNA
<213>Artificial sequence
<400> 1028
gactacatgg gacatactgg ttggttatgt ggaagaaaca tactttcaca ataaagagct 60
ttaggatatg atgccatttt atatcactag tagtacgtcg taggttcc 108
<210> 1029
<211> 108
<212> DNA
<213>Artificial sequence
<400> 1029
gactacatgg gacattagta ggcagaccag cagacttttt tttattgtga tatgggataa 60
cctaggcata ctgcactgta cactctgaca tattacgtcg taggttcc 108
<210> 1030
<211> 108
<212> DNA
<213>Artificial sequence
<400> 1030
gactacatgg gacatacata tgaagtgctc tagtcaagtt taactggtgt ccacagagga 60
catggtttaa ctggaattcg tcaagcctct ggttacgtcg taggttcc 108
<210> 1031
<211> 108
<212> DNA
<213>Artificial sequence
<400> 1031
gactacatgg gacatcacag aggacatggt ttaactggaa ttcgtcaagc ctctggttct 60
aatttctcat ttgcaggaaa tgctggcata gagtacgtcg taggttcc 108
<210> 1032
<211> 108
<212> DNA
<213>Artificial sequence
<400> 1032
gactacatgg gacattgacg ggcgtctcgc cagctggcgc ccgcctgctg tggaactggt 60
ggaagctccg gagcctccac ctcccgcctc ttgtacgtcg taggttcc 108
<210> 1033
<211> 108
<212> DNA
<213>Artificial sequence
<400> 1033
gactacatgg gacatcttac ctgtaagggc cgggggcaaa gtgtgagcca cctttggggc 60
atccccaatc caggtccctg gaagctcttg gggtacgtcg taggttcc 108
<210> 1034
<211> 108
<212> DNA
<213>Artificial sequence
<400> 1034
gactacatgg gacatccagg tccctggaag ctcttggggg ggcatatctg gtggggagaa 60
agcaggggtt ggggaggccg aagaaggtca ggctacgtcg taggttcc 108
<210> 1035
<211> 108
<212> DNA
<213>Artificial sequence
<400> 1035
gactacatgg gacatcagcc cccacctcct cctgcagaca agctggtgtc taggaactac 60
ccggacctgt ccttgggaga ctactccctg ctctacgtcg taggttcc 108
<210> 1036
<211> 108
<212> DNA
<213>Artificial sequence
<400> 1036
gactacatgg gacatcgtga ctccatggag ccagtggtgg agcagctgac ccaggagttc 60
tgtgaggtaa ggctgggctc ctgaggccac ctctacgtcg taggttcc 108
<210> 1037
<211> 108
<212> DNA
<213>Artificial sequence
<400> 1037
gactacatgg gacattcctg aggccacctc gggtcagcct cgcctctcac agtagccccc 60
gccctgcccg ctgcacagcg gcctgctgaa ctctacgtcg taggttcc 108
<210> 1038
<211> 108
<212> DNA
<213>Artificial sequence
<400> 1038
gactacatgg gacatgctgc acagcggcct gctgaactca cactgtttct ccacagcgca 60
tgagagccca gcccggcacc cctgtggcca ttgtacgtcg taggttcc 108
<210> 1039
<211> 108
<212> DNA
<213>Artificial sequence
<400> 1039
gactacatgg gacatctgaa ctgaaagtac tccctccttt tctggcagga cgacaactta 60
atgcctgcct attacaaatg tatccaggag gtgtacgtcg taggttcc 108
<210> 1040
<211> 108
<212> DNA
<213>Artificial sequence
<400> 1040
gactacatgg gacattatta caaatgtatc caggaggtgt taaaaacctg gagccactgg 60
tccatccaaa ttgtggacgt gattcccttt ctctacgtcg taggttcc 108
<210> 1041
<211> 108
<212> DNA
<213>Artificial sequence
<400> 1041
gactacatgg gacatgtgat tccctttctc agggtgagga cctggagcct agacacccct 60
gggttgtagg ggagaggctg gggtggaggg agatacgtcg taggttcc 108
<210> 1042
<211> 108
<212> DNA
<213>Artificial sequence
<400> 1042
gactacatgg gacatgggag aggctccttc ccacagctgc attctcatgc ttcctgccgc 60
agttcttccc caatccaggt ctccggaggc tgatacgtcg taggttcc 108
<210> 1043
<211> 108
<212> DNA
<213>Artificial sequence
<400> 1043
gactacatgg gacattgcta ccggcctcag cattgctatg aggcgggttc ttttgcatac 60
cccagttatg ggcctgttgc cactctgtac tcctacgtcg taggttcc 108
<210> 1044
<211> 108
<212> DNA
<213>Artificial sequence
<400> 1044
gactacatgg gacatcccca ggccagccgc tcagcccgct cctttcaccc tctgcaggag 60
agcctcgtgg caggccagtg gagggacatg atgtacgtcg taggttcc 108
<210> 1045
<211> 108
<212> DNA
<213>Artificial sequence
<400> 1045
gactacatgg gacatgcagg ccagtggagg gacatgatgg actacatgct ccaaggggtg 60
gcgcagccga gcatggaaga gggctctgga cagtacgtcg taggttcc 108
<210> 1046
<211> 108
<212> DNA
<213>Artificial sequence
<400> 1046
gactacatgg gacataacac cctctcctgg gccgtggttt ttttgcttca ccaccctgag 60
gtgcgtcctg gggacaagca aaaggctcct tcctacgtcg taggttcc 108
<210> 1047
<211> 108
<212> DNA
<213>Artificial sequence
<400> 1047
gactacatgg gacatgggca ccctcactca gctctgagca ctgtgcggct ggggctgtgc 60
ttgcctcacc ggcactcagg ctcactgggt tgctacgtcg taggttcc 108
<210> 1048
<211> 108
<212> DNA
<213>Artificial sequence
<400> 1048
gactacatgg gacatctggt gcctccagct cccgggtccc ctacaaggac cgtgcacggc 60
tgcccttgct caatgccacc atcgccgagg tgctacgtcg taggttcc 108
<210> 1049
<211> 108
<212> DNA
<213>Artificial sequence
<400> 1049
gactacatgg gacatcctta gccttgcccc accgcaccac acggcccagc aggtgactcc 60
cgagggttgg ggatgagtga ggaaagcccg agctacgtcg taggttcc 108
<210> 1050
<211> 108
<212> DNA
<213>Artificial sequence
<400> 1050
gactacatgg gacatgggag gtcctggcca gcctctaact ccagccccct tcagcatctc 60
cggctacgac atccctgagg gcacagtcat cattacgtcg taggttcc 108
<210> 1051
<211> 108
<212> DNA
<213>Artificial sequence
<400> 1051
gactacatgg gacatgacgg tctgggagag gccacatgag ttctggcctg gtatgtgggg 60
ggccgggggc ctgccgtgaa aatgtggtgg aggtacgtcg taggttcc 108
<210> 1052
<211> 108
<212> DNA
<213>Artificial sequence
<400> 1052
gactacatgg gacataccca cctgtccacc cgcccgcaga tcgcttcctg gagccaggca 60
agaactccag agctctggcc ttcggctgcg gtgtacgtcg taggttcc 108
<210> 1053
<211> 108
<212> DNA
<213>Artificial sequence
<400> 1053
gactacatgg gacattcttc gtggtgctga cccgactgct gcaggccttc acgctgctgc 60
cctccgggga cgccctgccc tccctgcagc ccctacgtcg taggttcc 108
<210> 1054
<211> 108
<212> DNA
<213>Artificial sequence
<400> 1054
gactacatgg gacatggggg atgggggccc acagcccggg ccagagccag tgatggggca 60
ggaccgatgc cagccgggta cctcagtttc tcctacgtcg taggttcc 108
<210> 1055
<211> 108
<212> DNA
<213>Artificial sequence
<400> 1055
gactacatgg gacataagga cgtgtgttgg tccagccccc cggttccccg agacccacgc 60
ggccgggcaa ccgctctggg tctcgcggtc ccttacgtcg taggttcc 108
<210> 1056
<211> 108
<212> DNA
<213>Artificial sequence
<400> 1056
gactacatgg gacatctggg gctcctgcgc tcctaggcgg gtcctgggcc gggcgccgcc 60
gaggggctcc gagtcgggga gaggagcgcg cggtacgtcg taggttcc 108
<210> 1057
<211> 108
<212> DNA
<213>Artificial sequence
<400> 1057
gactacatgg gacatacccc gcctcttccc tcggagactg ggaaagttac ggatctgggt 60
cctcagagct tcccgggtcc gcgaaccccc gactacgtcg taggttcc 108
<210> 1058
<211> 108
<212> DNA
<213>Artificial sequence
<400> 1058
gactacatgg gacatgttga acagggccct gaagcgcgta cacaccgccc gtcaccctcc 60
tcaagtatac ttcaaaggac atttaactaa aactacgtcg taggttcc 108
<210> 1059
<211> 108
<212> DNA
<213>Artificial sequence
<400> 1059
gactacatgg gacatcattt aactaaaacc cctacgcatt tatatagagg agacaagtcg 60
taacatggta agtgtactgg aaagtgcact tggtacgtcg taggttcc 108
<210> 1060
<211> 15
<212> DNA
<213>Artificial sequence
<400> 1060
gactacatgg gacat 15
<210> 1061
<211> 15
<212> DNA
<213>Artificial sequence
<400> 1061
ggaacctacg acgta 15
<210> 1062
<211> 50
<212> DNA
<213>Artificial sequence
<400> 1062
aatgatacgg cgaccaccga gatctacact ctttccctac acgacgatct 50
<210> 1063
<211> 50
<212> DNA
<213>Artificial sequence
<400> 1063
caagcagaag acggcatacg agatcggtct cggcattcct gctgaaccgc 50
<210> 1064
<211> 21
<212> DNA
<213>Artificial sequence
<400> 1064
aatgatacgg cgaccaccga g 21
<210> 1065
<211> 21
<212> DNA
<213>Artificial sequence
<400> 1065
caagcagaag acggcatacg a 21
<210> 1066
<211> 42
<212> DNA
<213>Artificial sequence
<220>
<221> misc_feature
<222> (34)..(41)
<223> n is a, c, g, or t
<400> 1066
acactctttc cctacacgac gctcttccga tctnnnnnnn nt 42
<210> 1067
<211> 29
<212> DNA
<213>Artificial sequence
<220>
<221> misc_feature
<222> (1)..(8)
<223> n is a, c, g, or t
<400> 1067
nnnnnnnnag atcggaagag cacacgtct 29

Claims (11)

1. A kit for detecting whether a subject or a fetus to be detected has a genetic disease single gene mutation comprises a probe set;
the probe set comprises 1059 specific probes; each specific probe comprises a DNA fragment 2;
the DNA fragment 2 is a part of a mutant gene corresponding to a monogenic genetic disease shown in the following table;
Figure FDA0003549524430000011
Figure FDA0003549524430000021
the DNA fragment 2 is a single-stranded DNA molecule consisting of 78 nucleotides;
the nucleotide sequences of the DNA fragment 2 of the 1059 specific probes are shown as SEQ ID NO: 1 from position 16-93 from the 5' end to SEQ ID NO: 1059 is shown at positions 16-93 from the 5' end.
2. The kit of claim 1, wherein: each specific probe also comprises a DNA fragment 1 and a DNA fragment 3; the DNA segment 1 is positioned at the 5' end of the DNA segment 2; the DNA segment 3 is positioned at the 3' end of the DNA segment 2;
the nucleotide sequence of the DNA fragment 1 is shown as a sequence 1060 in a sequence table;
the nucleotide sequence of the DNA fragment 3 is shown as a sequence 1061 in a sequence table;
the DNA segment 1 and/or the DNA segment 3 has a biotin label.
3. The kit of claim 1, wherein: the kit also comprises a primer pair A; the primer pair A consists of a primer 1 and a primer 2; the primer 1 comprises the DNA fragment 1; the primer 2 comprises the DNA fragment 3;
the nucleotide sequence of the primer 1 is shown as a sequence 1060 in a sequence table;
the nucleotide sequence of the primer 2 is shown as a sequence 1061 in the sequence table;
the primer 1 and/or the primer 2 has a biotin label.
4. The kit of claim 1, wherein: the kit also comprises a joint 1, a joint 2, a primer 3, a primer 4, a primer 5 and a primer 6;
the nucleotide sequence of the linker 1 is shown as a sequence 1066 in a sequence table;
the nucleotide sequence of the linker 2 is shown as a sequence 1067 in the sequence table;
the nucleotide sequence of the primer 3 is shown as a sequence 1062 in the sequence table;
the nucleotide sequence of the primer 4 is shown as a sequence 1063 in the sequence table;
the nucleotide sequence of the primer 5 is shown as a sequence 1064 in the sequence table;
the nucleotide sequence of the primer 6 is shown as a sequence 1065 in the sequence table.
5. The kit of claim 4, wherein: the 3' ends of the joint 1, the primer 5 and the primer 6 are all subjected to thio modification; the 5' end of the linker 2 is modified by phosphorylation.
6. The kit of any one of claims 1 to 5, wherein: the kit also comprises a carrier recorded with a judgment standard A and/or a judgment standard B;
the judgment standard A is used for judging whether the person to be tested has 50 genetic disease single gene mutations;
the judgment standard A is as follows: obtaining SNP indels of a person to be tested about 50 monogenic genetic disease mutant genes; counting the condition of mutation sites in each mutant gene;
the steps for obtaining the SNP indels of the testee about 50 monogenic genetic disease mutant genes are as follows:
(K1) preparing a genomic DNA library of a to-be-detected person; preparing the adaptor of the genomic DNA library of the subject as the adaptor 1 and the adaptor 2 in claim 4;
(K2) after the completion of step (K1), hybridizing the genomic DNA library of the subject with the probe set of claim 1 or 2 to obtain a hybridization product;
(K3) after step (K2) is completed, collecting the target sequence from the hybridization product to obtain a target sequence capture library;
(K4) performing high-throughput sequencing on the target sequence capture library obtained in the step (K3) to obtain sequencing original data;
(K5) cutting off an adaptor sequence and low-quality bases from the sequencing original data obtained in the step (K4), filtering, and aligning to a corresponding position of the hg19 of the reference genome;
(K6) after the step (K5) is completed, removing repeated sequences caused by PCR amplification preference to obtain the data of the testee; then analyzing to obtain related information of SNP and INDEL;
(K7) annotating the information obtained in the step (K6), and then screening to obtain the SNP Indel of the person to be tested;
(K8) annotating sites reported by an HGMD database, and then screening to obtain 6636 pathogenic mutation sites; if the SNP Indel of the person to be detected contains any point mutation in 6636 pathogenic mutation sites, the person to be detected carries the mutation site of the corresponding mutant gene; otherwise, the person to be detected does not carry the corresponding gene mutation site;
the "method of determining spinal muscular atrophy due to SMN1 gene mutation" and the "method of determining α thalassemia due to HBA1 gene and HBA2 gene mutation" were as follows:
(1) counting the coverage of each gene target area, then drawing a graph by taking the position information of each target area site as an abscissa and the corresponding coverage of each position as an ordinate, and carrying out site statistical analysis to obtain a repeated and missing analysis graph through the reading depth of each site;
(2) after the step (1) is completed, obtaining copy values of the SMN1 and SMN2 by calculating absolute copy numbers of target region depths of the test sample, the negative sample SMN1 and the SMN2, and further judging specific copy values of the SMN1 and SMN 2;
(3) comparing the sequencing result with the SMN1 gene and the SMN2 gene in the human genome version Hg19, and calculating an f (Z) value of the SMN1 gene and an f (Z) value of the SMN2 gene in the sample to be detected to judge the copy number of the SMN1 gene and the SMN2 gene in the sample to be detected so as to determine whether the sample to be detected is a spinal muscular atrophy patient or a spinal muscular atrophy carrier, wherein the method comprises the following steps:
median of f (z) ═ B/all negative sample B values for SMN1 gene
B-sample sequencing depth D/alignment base number A of SMN1 gene
Wherein the D value represents the sequencing depth of the SMN1 gene of a single sample, the A value represents the number of comparison bases of the SMN1 gene of the single sample, and the B value is the ratio of the D to the A;
median of f (z) ═ B/all negative sample B values for SMN2 gene
B-sample sequencing depth D/alignment base number A of SMN2 gene
Wherein the D value represents the sequencing depth of the SMN2 gene of a single sample, the A value represents the number of comparison bases of the SMN2 gene of the single sample, and the B value is the ratio of the D to the A;
and (3) judging whether the sample to be detected is a spinal muscular atrophy patient or a spinal muscular atrophy carrier by using the f (Z) value of the SMN1 gene:
if f (Z) of the SMN1 gene is 0.75< 1.25, the copy number of the SMN1 gene of the sample to be detected is normal, namely the copy number of the SMN1 gene of the sample to be detected is 2;
if f (Z) of the SMN1 gene is not less than 0.25 and not more than 0.75, the copy number of the SMN1 gene of the sample to be detected is abnormal, namely the copy number of the SMN1 gene of the sample to be detected is 1;
if f (Z) of the SMN1 gene is 0< 0.25, the SMN1 gene of the sample to be detected is completely deleted, namely the copy number of the SMN1 gene of the sample to be detected is 0;
judging the disease degree of the spinal muscular atrophy patient to be detected by using the f (Z) value of the SMN2 gene:
0< f (Z) <0.25 of SMN2 gene, and the degree of disease of the spinal muscular atrophy patient to be detected is more than 0.25 and less than or equal to f (Z) < 0.75 of SMN1 gene, and the spinal muscular atrophy patient to be detected is detected;
(4) depth statistics is carried out on the regions HBA1 and HBA2, the copy values of the samples HBA1 and HBA2 are obtained by calculating the absolute copy number of the depth of the test sample and the negative sample, and then the specific copy values of the samples HBA1 and HBA2 are judged; calculating f (z) values for HBA1 and HBA2 as SMN1, SMN2 calculated copy number;
if f (Z) of the HBA1 gene is not less than 0.25 and not more than 0.75, f (Z) of the HBA2 gene is more than 0.75, or f (Z) of the HBA2 gene is not less than 0.25 and not more than 0.75 and f (Z) of the HBA1 gene is more than 0.75, the alpha gene of the sample to be detected is deleted;
if f (Z) of the HBA1 gene is not less than 0.25 and not more than 0.75 and f (Z) of the HBA1 gene is not less than 0.25 and not more than 0.75, two alpha genes are deleted from the sample to be detected;
if f (Z) of the HBA1 gene is more than or equal to 0.25 and less than or equal to 0.75, f (Z) of the HBA2 gene is more than or equal to 0.25, or f (Z) of the HBA2 gene is more than or equal to 0.25 and less than or equal to 0.75, and f (Z) of the HBA1 gene is more than or equal to 0.25, three alpha genes of the sample to be detected are deleted;
if 0< f (Z) <0.25 of HBA1 gene and 0< f (Z) <0.25 of HBA2 gene, the sample to be detected lacks four alpha genes;
the judgment standard B is used for judging whether the fetus to be detected has 45 genetic disease single gene mutations; 45 genetic disease monogenes except CYP21A2, SMN1, HBA1, HBA2 and MT-RNR1 genes in the 150 genes in the table;
the judgment standard B is as follows:
(a1) obtaining the types, mutation frequencies and sequencing depths of the mutation sites of 45 monogenic genetic disease mutation genes of the mother of the fetus;
(a2) obtaining the type, mutation frequency and sequencing depth of mutation sites of 45 monogenic genetic disease mutation genes of the father of the fetus;
(a3) obtaining the types, mutation frequencies and sequencing depths of the mutation sites of the 45 monogenic genetic disease mutation genes of the mother and the fetus;
(a4) judging whether the fetus has 24 autosomal recessive genetic disease single gene mutations, wherein the target mutant gene is at least one of DYSF, CYPN3, MMACHC, MUT, PAH, ATP7B, SLC25A13, SLC22A5, G6PC, GAA, AGL, PYGL, ETFDH, UGT1A1, HBB, FANCA, ABCA4, CYP4V2, TYR, OCA2, SLC26A4, GJB2, OTOF and SLC12A 13;
dividing the types of the single gene mutation sites of the 24 autosomal recessive genetic diseases of the pregnant woman to be detected and the fetus obtained in the step three into the following three types: the first type: a mutation site that is identical only to the fetal father; the second type: a mutation site that is identical only to the mother of the fetus; in the third category: the same mutation site as both the fetal father and the fetal mother;
(a4-1) when the father and mother of the fetus are both heterozygous mutations, the judgment method is as follows:
when the type of the mutation site is the first type, if the mutation site is detected in the third step, the fetus carries the mutation site and is heterozygous for the mutation; if no mutation is detected at the mutation site in step three, the fetus does not carry the mutation site;
when the type of the mutation site is of the second type, if the mutation frequency of the mutation site in step three is below 0.43, the fetus does not carry the mutation site; if the mutation frequency of the mutation site in step three is more than 0.43 and less than 0.57, the fetus carries the mutation site and is heterozygous for the mutation;
when the type of the mutation site is of the third class, if the mutation frequency of the mutation site in step three is below 0.43, the fetus does not carry the mutation site; if the mutation frequency of the mutation site in step three is more than 0.43 and less than 0.57, the fetus carries the mutation site and is heterozygous for the mutation; if the mutation frequency of the mutation site in the step three is more than 0.57, the fetus carries the mutation site and is homozygous mutation;
(a4-2) when the mother of fetus is heterozygous and the father is homozygous, the judgment method is as follows:
when the type of the mutation site is the first type, if the mutation site is detected in the third step, the fetus carries the mutation site and is heterozygous for the mutation;
when the type of the mutation site is of the second type, if the mutation frequency of the mutation site in step three is below 0.43, the fetus does not carry the mutation site; if the mutation frequency of the mutation site in step three is more than 0.43 and less than 0.57, the fetus carries the mutation site and is heterozygous for the mutation;
when the type of the mutation site is of the third class, if the mutation frequency of the mutation site in step three is more than 0.43 and less than 0.57, the fetus carries the mutation site and is a heterozygous mutation; if the mutation frequency of the mutation site in the step three is more than 0.57, the fetus carries the mutation site and is homozygous mutation;
(a4-3) when the father of the fetus is heterozygous mutation and the mother is homozygous mutation, the judgment method is as follows:
when the type of the mutation site is the first type, if the mutation site is detected in the third step, the fetus carries the mutation site and is heterozygous mutation; if the mutation site is detected to be free of mutation in step three, the fetus does not carry the mutation site;
when the type of the mutation site is in the second class, if the mutation frequency of the mutation site is detected to be less than 1 in the third step, the fetus carries the mutation site and is heterozygous for the mutation;
when the mutation site is of the third type, if the mutation frequency of the mutation site in the third step is less than 1, the fetus is homozygous mutation, otherwise, the fetus is heterozygous mutation;
(a5) judging whether the fetus has 11 kinds of autosomal dominant genetic disease single gene mutations; the target mutant gene is at least one of SCN1A, PPRT2, FZD4, RB1, SLC4A1, COL1A1, FGFR3, NF1, TSC1, TSC2 and JAG 1;
(a5-1) when the mother of fetus is heterozygous mutant and the father is heterozygous mutant, the judgment method is as follows:
dividing the types of the mutation sites of the pregnant woman to be detected and the fetus obtained in the step three, which relate to the 11 autosomal monogenic dominant hereditary diseases of the mutant genes, into the following three types: the first type: a mutation site that is identical only to the fetal father; the second type: a mutation site that is identical only to the mother of the fetus; in the third category: the same mutation site as both the fetal father and the fetal mother;
when the type of the mutation site is the first type, if the mutation site is detected in the third step, the fetus carries the mutation site and is heterozygous for the mutation; if no mutation is detected at the mutation site in step three, the fetus does not carry the mutation site;
when the type of the mutation site is of the second type, if the mutation frequency of the mutation site in step three is below 0.43, the fetus does not carry the mutation site; if the mutation frequency of the mutation site in step three is more than 0.43 and less than 0.57, the fetus carries the mutation site and is heterozygous for the mutation;
when the type of the mutation site is of the third class, if the mutation frequency of the mutation site in step three is below 0.43, the fetus does not carry the mutation site; if the mutation frequency of the mutation site in step three is more than 0.43, the fetus carries the mutation site and is heterozygous for the mutation; if the mutation frequency of the mutation site in the step three is more than 0.57, the fetus carries the mutation site and is homozygous mutation;
(a5-2) when the mother of the fetus is heterozygous for the mutation and the father is not mutated, if the mutation frequency of the mutation site in step three is below 0.43, the fetus does not carry the mutation site; if the mutation frequency of the mutation site in step three is more than 0.43 and less than 0.57, the fetus carries the mutation site and is heterozygous for the mutation;
(a5-3) when the father of the fetus is heterozygous for the mutation and the mother is not mutated, if the mutation is detected at the mutation site in step three, the fetus carries the mutation site and is heterozygous for the mutation; if no mutation is detected at the mutation site in step three, the fetus does not carry the mutation site;
(a5-4) when the mother and father of the fetus have no mutation, if the mutation site is detected in step three, the fetus carries the mutation site;
(a6) judging whether the fetus has 7X chromosome recessive genetic disease monogenic mutations, wherein the target mutant gene is at least one of DMD, PHKA2, ABCD1, RS1, WAS, BTK and IL2 RG;
(a6-1) when the mother of fetus has heterozygous mutation and hemizygous mutation, the judgment method is as follows: dividing the types of the X chromosome monogenic recessive genetic disease monogenic mutation sites of the pregnant woman to be detected and the fetus obtained in the step three into the following three types: the first type: a mutation site that is identical only to the fetal father; the second type: a mutation site that is identical only to the mother of the fetus; in the third category: the same mutation site as both the fetal father and the fetal mother;
judging the gender of the fetus;
when the fetus is a girl, the type of the mutation site is a first type, and if the mutation site is detected in the step three, the fetus carries the mutation site and is heterozygous mutation; if no mutation is detected at the mutation site in step three, the fetus does not carry the mutation site; the type of the mutation site is a second type, if the mutation frequency of the mutation site in the step three is below 0.43, the fetus does not carry the mutation site; if the mutation frequency of the mutation site in step three is more than 0.43 and less than 0.57, the fetus carries the mutation site and is heterozygous for the mutation; the type of the mutation site is a third type, if the mutation frequency of the mutation site in the third step is more than 0.57, the fetus is subjected to homozygous mutation at the mutation site; if the mutation frequency of the mutation site in step three is more than 0.43 and less than 0.57, the fetus carries the mutation site and is heterozygous for the mutation;
when the fetus is a male fetus, if the mutation frequency of the mutation site in step three is below 0.43, the fetus does not carry the mutation site; if the mutation frequency of the mutation site in step three is more than 0.57, the fetus carries the mutation site and is heterozygous for the mutation;
(a6-2) when the mother of fetus has heterozygous mutation and no mutation in father, the judgment method is as follows:
judging the gender of the fetus;
when the fetus is a girl, if the mutation frequency of the mutation site in step three is below 0.43, the fetus does not carry the mutation site; if the mutation frequency of the mutation site in step three is more than 0.43 and less than 0.57, the fetus carries the mutation site and is heterozygous for the mutation;
when the fetus is a boy, if the mutation frequency of the mutation site in step three is below 0.43, the fetus does not carry the mutation site; if the mutation frequency of the mutation site in the step three is more than 0.57, the fetus is hemizygous mutated; 3. when the father and mother of fetus have no mutation site of the target gene, if the mutation frequency of the mutation site of the target gene in step three is more than 0, the fetus carries the mutation site and is spontaneous mutation;
(a7) judging whether the fetus suffers from 2X chromosome dominant genetic disease single gene mutations, wherein the target gene is at least one of MECP2 gene and COL4A5 gene;
(a7-1) when the father and mother of fetus have no mutation site of the target gene, if the mutation frequency of the mutation site of the target gene in step three is more than 0, the fetus carries the mutation site and is spontaneous mutation; otherwise, the fetus does not carry the mutation site;
(a7-2) when the mother of fetus is heterozygous and the father is hemizygous, the judgment method is as follows:
dividing the types of the X chromosome monogenic recessive genetic disease monogenic mutation sites of the pregnant woman to be detected and the fetus obtained in the step three into the following three types: the first type: a mutation site that is identical only to the fetal father; the second type: a mutation site that is identical only to the mother of the fetus; the third type: the same mutation site as both the fetal father and the fetal mother;
judging the gender of the fetus;
when the fetus is a female fetus, the type of the mutation site is a first type, and if the mutation site is detected in the step three, the fetus carries the mutation site and is heterozygous mutation; the type of the mutation site is a second type, if the mutation frequency of the mutation site in the step three is below 0.43, the fetus does not carry the mutation site; if the mutation frequency of the mutation site in step three is more than 0.43 and less than 0.57, the fetus carries the mutation site and is heterozygous for the mutation; the type of the mutation site is a third type, if the mutation frequency of the mutation site in the third step is more than 0.57, the fetus is subjected to homozygous mutation at the mutation site; if the mutation frequency of the mutation site in step three is more than 0.43 and less than 0.57, the fetus carries the mutation site and is heterozygous for the mutation;
when the fetus is a male fetus, if the mutation frequency of the mutation site in step three is below 0.43, the fetus does not carry the mutation site; if the mutation frequency of the mutation site in step three is more than 0.57, carrying the mutation site by the fetus;
(a7-3) when the mother of the fetus has the mutation site of the target gene and the father of the fetus does not have the mutation site of the target gene, the judging method is as follows:
judging the gender of the fetus;
when the fetus is a female fetus, if the mutation frequency of the target gene mutation site in the step III is more than 0.43 and less than 0.57, the fetus carries the site mutation and is a heterozygous mutation; if the mutation frequency of the target gene mutation site in the step three is less than 0.43, the fetus does not carry the site mutation;
when the fetus is a male fetus, if the mutation frequency of the target gene mutation site in the step III is more than 0.57, the fetus carries the site mutation; if the mutation frequency of the target gene mutation site in the step three is less than 0.43, the fetus does not carry the site mutation;
the steps for obtaining the types of mutation sites, mutation frequencies and sequencing depths of the 44 single-gene genetic disease mutant genes of the fetal mother or fetal father per se are as follows:
(w1) preparing a genomic DNA library of the mother or father of the fetus; preparing the linker of genomic DNA library of mother or father of fetus as the linker 1 and the linker 2 in claim 4;
(w2) after completion of step (w1), hybridizing the genomic DNA library of the mother or father of the fetus with the probe set of claim 1 or 2 to obtain a hybridization product;
(w3) after completion of step (w2), collecting target sequences from the hybridization products to obtain a target sequence capture library;
(w4) carrying out high-throughput sequencing on the target sequence capture library obtained in the step (w3) to obtain sequencing raw data;
(w5) cutting adaptor sequences, low-quality bases from the sequencing raw data obtained in the step (w4), filtering, and aligning to the corresponding position of hg19 of a reference genome;
(w6) after the step (w5) is completed, removing the repetitive sequences caused by the PCR amplification preference to obtain the data of the mother or father of the fetus; then analyzing to obtain related information of SNP and INDEL;
(w7) annotating the information obtained in the step (w6), and then screening to obtain the SNPINdel of the mother or father of the fetus;
(w8) annotating sites reported by an HGMD database, and then screening to obtain 6636 pathogenic mutation sites; if the SNP Indel of the mother or father of the fetus contains any point mutation in 6636 pathogenic mutation sites, the mother or father of the fetus carries the mutation site of the corresponding mutant gene; otherwise, the fetal mother or the fetal father does not carry the corresponding gene mutation site; drawing a target gene deletion and repeat analysis graph according to the mutation sites of the mutant genes carried by the mother or father of the fetus to obtain the types, mutation frequencies and sequencing depths of the mutation sites of the 44 single-gene genetic disease mutant genes of the mother or father of the fetus;
the steps for obtaining the types of mutation sites, mutation frequencies and sequencing depths of the fetal mother and the fetus relative to the 44 single-gene genetic disease mutant genes are as follows:
(Q1) preparing a fetal maternal plasma free DNA library; preparing the linker of the fetal mother plasma free DNA library as the linker 1 and the linker 2 in claim 4;
(Q2) after completion of step (Q1), hybridizing the fetal maternal plasma free DNA library with the probe set of claim 1 or 2 to obtain a hybridization product;
(Q3) after completion of step (Q2), collecting target sequences from the hybridization products to obtain a target sequence capture library;
(Q4) performing high-throughput sequencing on the target sequence capture library obtained in the step (Q3) to obtain sequencing raw data;
(Q5) cutting adaptor sequences, low-quality bases from the sequencing raw data obtained in step (Q4), filtering, and aligning to the corresponding position of hg19 in the reference genome;
(Q6) after completion of step (Q5), removing the repetitive sequences due to PCR amplification bias, resulting in fetal mother and fetal data; then analyzing to obtain related information of SNP and INDEL;
(Q7) annotating the information obtained in step (Q6) and then screening to obtain the SNP indels of "mother and fetus";
(Q8) annotating the sites reported by the HGMD database, and then screening to obtain 6636 pathogenic mutation sites; if SNP Indel of 'fetal mother and fetus' contains any one point mutation in 6636 pathogenic mutation sites, then 'fetal mother and fetus' carry the mutation site of the corresponding mutant gene; otherwise, the 'fetal mother and fetus' do not carry the corresponding gene mutation site; according to the mutation sites of the mutant genes carried by the mother and the fetus, a target gene deletion and repeated analysis graph is drawn, and the types, the mutation frequencies and the sequencing depths of the mutation sites of the 44 single-gene genetic disease mutant genes of the mother and the fetus are obtained.
7. A set of probes as claimed in claim 1 or 2.
8. A kit for detecting whether a fetus to be tested is normal, heterozygous or homozygous mutated based on the 50 genes corresponding to the monogenic genetic disorders as set forth in claim 1, comprising the probe set of claim 1 or 2.
9. A kit for detecting whether a subject is normal, heterozygous or homozygous mutated based on the 50 genes corresponding to the monogenic genetic disorders set forth in claim 1, comprising the probe set forth in claim 1 or 2.
10. The kit of claim 8 or 9, wherein: the kit further comprises the primer 3, the primer 4, the linker 1 and the linker 2 in claim 4.
11. The kit of claim 10, wherein: the kit further comprises the primer 5 and/or the primer 6 of claim 4.
CN202011284834.1A 2020-11-17 2020-11-17 Kit for detecting 50 genetic disease single gene mutations and probe set used by kit Active CN112301123B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011284834.1A CN112301123B (en) 2020-11-17 2020-11-17 Kit for detecting 50 genetic disease single gene mutations and probe set used by kit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011284834.1A CN112301123B (en) 2020-11-17 2020-11-17 Kit for detecting 50 genetic disease single gene mutations and probe set used by kit

Publications (2)

Publication Number Publication Date
CN112301123A CN112301123A (en) 2021-02-02
CN112301123B true CN112301123B (en) 2022-08-16

Family

ID=74334814

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011284834.1A Active CN112301123B (en) 2020-11-17 2020-11-17 Kit for detecting 50 genetic disease single gene mutations and probe set used by kit

Country Status (1)

Country Link
CN (1) CN112301123B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114990207A (en) * 2022-06-13 2022-09-02 迈基诺(重庆)基因科技有限责任公司 Kit for detecting chromosome aneuploidy and single gene mutation and application

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1970453A2 (en) * 2007-03-09 2008-09-17 Riken Primer, primer set, and nucleic acid amplification method and mutation detection method using the same
CA2797291A1 (en) * 2010-04-22 2011-10-27 British Columbia Cancer Agency Branch Novel biomarkers and targets for ovarian carcinoma
CN104673925A (en) * 2015-03-19 2015-06-03 绍兴锐创生物科技有限公司 RNA probe capable of detecting multiple neonatal hereditary diseases and gene screening kit
CN107937513A (en) * 2017-11-30 2018-04-20 东莞市第八人民医院 50 kinds of hereditary disease genetic test probe groups of neonate and screening method
CN108893532A (en) * 2018-07-20 2018-11-27 良培基因生物科技(武汉)有限公司 A kind of gene detecting kit and detection method for SMA genetic screening
CN109554485A (en) * 2018-12-26 2019-04-02 北京迈基诺基因科技股份有限公司 It is a kind of for Non-invasive detection fetal chromosomal to be measured whether be aneuploid kit and its application specific probe group
CN109628573A (en) * 2018-12-26 2019-04-16 北京迈基诺基因科技股份有限公司 A kind of kit and its application specific probe group for the micro- repetition syndrome of 12 kinds of microdeletions of noninvasive antenatal detection
CN110184337A (en) * 2019-05-16 2019-08-30 南京诺禾致源生物科技有限公司 Probe compositions, the reagent comprising it, kit, detection method and application
CN111440856A (en) * 2018-12-28 2020-07-24 北京迈基诺基因科技股份有限公司 Probe set and kit for detecting related pathogenic genes of methylmalonic acidemia

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1970453A2 (en) * 2007-03-09 2008-09-17 Riken Primer, primer set, and nucleic acid amplification method and mutation detection method using the same
CA2797291A1 (en) * 2010-04-22 2011-10-27 British Columbia Cancer Agency Branch Novel biomarkers and targets for ovarian carcinoma
CN104673925A (en) * 2015-03-19 2015-06-03 绍兴锐创生物科技有限公司 RNA probe capable of detecting multiple neonatal hereditary diseases and gene screening kit
CN107937513A (en) * 2017-11-30 2018-04-20 东莞市第八人民医院 50 kinds of hereditary disease genetic test probe groups of neonate and screening method
CN108893532A (en) * 2018-07-20 2018-11-27 良培基因生物科技(武汉)有限公司 A kind of gene detecting kit and detection method for SMA genetic screening
CN109554485A (en) * 2018-12-26 2019-04-02 北京迈基诺基因科技股份有限公司 It is a kind of for Non-invasive detection fetal chromosomal to be measured whether be aneuploid kit and its application specific probe group
CN109628573A (en) * 2018-12-26 2019-04-16 北京迈基诺基因科技股份有限公司 A kind of kit and its application specific probe group for the micro- repetition syndrome of 12 kinds of microdeletions of noninvasive antenatal detection
CN111440856A (en) * 2018-12-28 2020-07-24 北京迈基诺基因科技股份有限公司 Probe set and kit for detecting related pathogenic genes of methylmalonic acidemia
CN110184337A (en) * 2019-05-16 2019-08-30 南京诺禾致源生物科技有限公司 Probe compositions, the reagent comprising it, kit, detection method and application

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
p53-Independent Cell Cycle and Erythroid Differentiation Defects in Murine Embryonic Stem Cells Haploinsufficient for Diamond Blackfan Anemia-Proteins: RPS19 versus RPL5;Sharon A. Singh 等;《PLOS ONE》;20140228;第9卷(第2期);e89098 *
先天性肌营养不良1A型患儿临床特征及LAMA2变异分析:病例报告1例及文献复习;郭丽等;《中国当代儿科杂志》;20200615(第06期);第608-613页 *
遗传性疾病致病基因检测报告的解读;王彩月等;《中华肾病研究电子杂志》;20170228(第01期);第9-13页 *

Also Published As

Publication number Publication date
CN112301123A (en) 2021-02-02

Similar Documents

Publication Publication Date Title
AU2022203184A1 (en) Sequencing controls
CN110541025B (en) Detection method, primer composition and kit for Duchenne muscular dystrophy gene defect
KR20170120595A (en) Method and system for determining cancer status
AU2010263172A1 (en) Method of measuring adaptive immunity
CN106636344B (en) Gene detection kit for thalassemia based on second-generation high-throughput sequencing technology
CN111662983B (en) Kit for detecting lymphoma gene variation and application thereof
CN107988362B (en) Lung cancer related 33 gene targeted capture sequencing kit and application thereof
US20170321270A1 (en) Noninvasive prenatal diagnostic methods
CN109837273A (en) A kind of CRISPR assists DNA target to enrichment method and its application
CN111534579A (en) Capture sequencing based capture probe, kit and detection method for large fragment rearrangement detection
KR20200081380A (en) Genetic regulation
CN112301123B (en) Kit for detecting 50 genetic disease single gene mutations and probe set used by kit
CN110846409A (en) Primer combination for detecting TNNI3K gene mutation and application thereof
CN112280868B (en) Intrahepatic cholangiocellular carcinoma patient prognosis detection biomarker and detection kit
CN109628573B (en) Kit for noninvasive prenatal detection of 12 chromosome microdeletion and microduplication syndrome and special probe set thereof
CN109554485B (en) Kit for non-invasively detecting whether chromosome of fetus to be detected is aneuploid or not and special probe set thereof
CN111575379B (en) Kit for detecting 58 genes related to thyroid cancer and using method thereof
KR20200004977A (en) Probes for detecting gene mutations for cancer, method for producing the same and method for detecting cancer using thereof
CN110904212B (en) Kit for capturing related gene of sexual dysplasia and application thereof
CN114525344A (en) Kit for detecting or assisting in detecting tumor-related gene variation and application thereof
CN108441554A (en) A kind of genetic chip and detection method of screening heredity ophthalmology disease
CN111455041A (en) Probe combination for gene screening and application thereof
KR20190078715A (en) Next generation sequencing (ngs)-based hybrid diagnostic panel for analyzing variation of cancer gene and anticancer drug-related gene
KR102480121B1 (en) Single nucleotide polymorphisms associated with trypanotolerance of African taurine breeds and their application
KR20200004982A (en) Probes for detecting gene mutations for solid cancer, method for producing the same and method for detecting solid cancer using thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant