CN112292467A - 双相不锈钢带及其制造方法 - Google Patents

双相不锈钢带及其制造方法 Download PDF

Info

Publication number
CN112292467A
CN112292467A CN201980034473.4A CN201980034473A CN112292467A CN 112292467 A CN112292467 A CN 112292467A CN 201980034473 A CN201980034473 A CN 201980034473A CN 112292467 A CN112292467 A CN 112292467A
Authority
CN
China
Prior art keywords
stainless steel
duplex stainless
strip
steel strip
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201980034473.4A
Other languages
English (en)
Inventor
萨拉·维克隆德
托马斯·福斯曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Herui Mai Strip Technology Co.,Ltd.
Original Assignee
Sandvik Materials Technology AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sandvik Materials Technology AB filed Critical Sandvik Materials Technology AB
Publication of CN112292467A publication Critical patent/CN112292467A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/007Heat treatment of ferrous alloys containing Co
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本发明涉及一种由双相不锈钢制造的双相不锈钢带,其中所述双相不锈钢按重量%计具有如下组成:C,小于或等于0.02;Si,0.05~0.40;Mn,0.5~3.0;Cr,30.0~33.0;Ni,5.0~10.0;Mo,2.0~4.0;N,0.40~0.60;Al,0.010~0.035;B,0.0020~0.0030;Ca,0.0006~0.0040;Cu,0~0.60;V,0~0.15;W,0~0.05;Co,0~0.60;Ti,0~0.03;Nb,0~0.03;P,小于或等于0.03;S,小于或等于0.02;剩余物为铁和不可避免的杂质;并且其中所述双相不锈钢由30体积%~70体积%的奥氏体相和70体积%~30体积%的铁素体相构成;并且其中所述带具有铁素体相和奥氏体相的交替层,所述交替层与所述物体的平面基本上平行并且所述交替层具有小于或等于约10μm的平均层厚度。本发明还涉及一种制造包含所述双相不锈钢的带的方法。

Description

双相不锈钢带及其制造方法
技术领域
本发明涉及一种双相不锈钢带和制造所述双相不锈钢带的方法。
背景技术
将具有UNS:S32750组成的双相不锈钢带用于要求良好耐腐蚀性的普通带应用中。所述带在退火条件下的屈服强度(Rp0.2)为约600MPa,拉伸强度(Rm)为约800MPa,临界缝隙腐蚀温度(CCT)为约50℃,临界点蚀温度(CPT)为约80℃。
然而,对能够用于诸如海水应用或其他苛刻化学环境的最严酷环境中的宽范围应用中的具有更高强度和更高耐腐蚀性的带和由其制备的产品的需求持续增加。用于这些环境中的带应极耐腐蚀,并且在冷加工和退火条件下均具有出色的机械强度。
本发明的一个方面提供一种双相不锈钢带,所述双相不锈钢带将满足上述条件并且具有等于或高于上述现有技术的PRE值,其中将PRE值定义为PRE=Cr+3.3*Mo+16*N。
发明内容
因此,本发明的一个方面提供一种双相不锈钢带,所述双相不锈钢带按重量%计具有如下组成:
Figure BDA0002792111400000011
Figure BDA0002792111400000021
剩余物为铁和不可避免的杂质;
其中所述双相不锈钢由30体积%~70体积%的奥氏体相和70体积%~30体积%的铁素体相构成;并且其中所述双相不锈钢带具有铁素体相和奥氏体相的交替层,所述交替层与所述带的平面基本上平行并且所述交替层具有小于或等于约10μm的平均层厚度。本发明的双相不锈钢带将具有低含量的或不含σ相和/或沉淀的氮化铬。这是令人惊讶的,因为双相不锈钢带的Cr、Mo和N的含量很高。具有低含量的或不含σ相和/或沉淀的氮化铬是指存在的量不应严重劣化双相不锈钢带的耐腐蚀性和/或韧性。
另外,如上文或下文中所定义的双相不锈钢带将具有奥氏体相,所述奥氏体相足够稳定以抵抗在诸如冷轧的塑性变形期间转变为马氏体。此外,本发明的双相不锈钢带将具有优异的热延展性能,并且在双相不锈钢带中,奥氏体和铁素体相分别更均匀地分布。
本发明的另一个方面提供一种制造如上文或下文中所定义的双相不锈钢带的方法,所述方法包括如下步骤:
-提供大方坯(bloom),所述大方坯具有如上文或下文中所定义的双相不锈钢带组成;
-通过使用一种或多种热加工工艺将所述大方坯转变为板坯,其中所述一种或多种热加工工艺在约1000℃~约1300℃的温度下实施;
-通过使用一个或多个热轧步骤将所述板坯转变为热轧带,其中所述一个或多个热轧步骤在约1000℃~约1300℃的温度下实施;
-将所述热轧带淬火至约500℃的温度;
-将所述淬火的热轧带酸洗;
-通过使用一个或多个冷轧步骤对所述酸洗的热轧带进行冷加工。
冷轧步骤将对双相不锈钢的微观结构产生很大影响,因此它们将对平均铁素体或奥氏体厚度产生很大影响。此外,本发明的方法将提供一种具有高屈服强度和高拉伸强度的双相不锈钢带。
如本文中所使用的,术语“约”是指与其一起使用的数字的数值的±5%。而且,如本文中所使用的表述“基本上平行”旨在表示与平面的偏差小于10%。
具体实施方式
本发明涉及一种双相不锈钢带,其中所述双相不锈钢带按重量%计具有如下组成:
Figure BDA0002792111400000031
Figure BDA0002792111400000041
剩余物为铁和不可避免的杂质;
其中所述双相不锈钢带由30体积%~70体积%的奥氏体相和70体积%~30体积%的铁素体相构成;并且其中本发明的双相不锈钢带具有铁素体相和奥氏体相的交替层,所述交替层与所述带的平面基本上平行,并且所述交替层具有小于或等于约10μm的平均层厚度。
根据一个实施方案,如上文或下文中所定义的双相不锈钢带由40体积%~60体积%的奥氏体相和60体积%~40体积%的铁素体相构成,例如由45体积%~55体积%的奥氏体相和55体积%~45体积%的铁素体相构成。这意味着在双相不锈钢带中将不存在形变诱发马氏体。这是可能的,因为如上文或下文中所定义的双相不锈钢带是高度合金化的,因此双相不锈钢带将具有在不会将其奥氏体结构转变为马氏体结构的条件下经受由冷轧产生的冷变形的能力。
根据一个实施方案,双相不锈钢带的平均铁素体或奥氏体厚度为约1.0μm~约8.0μm,例如约1.0μm~约6.0μm,例如约1.0μm~约4.0μm,例如约1.0μm~约3.0μm。精细的结构提高了双相不锈钢带的屈服强度。此外,所有类型的扩散控制过程都将是快速的,例如在退火期间溶解σ相或在退火期间改变为无序结构。因为微观结构良好,所以本发明的双相不锈钢带将对氢致应力开裂(HISC)具有良好的抵抗性。
根据一个实施方案,双相不锈钢带的厚度将为约15μm~6mm。
如上文或下文中所定义的双相不锈钢带将提供高的耐腐蚀性。根据一个实施方案,双相不锈钢带具有大于46的PRE值。PRE值在本文中定义为PRE=Cr+3.3*Mo+16*N(要乘以相应合金元素的相应重量百分比的因子)。因此,如上文或下文中所定义的双相不锈钢带将提供具有高耐腐蚀性,特别是耐点蚀的双相不锈钢带,这是由于其在铁素体和奥氏体相中都具有高的PRE值,即,铁素体和奥氏体相的PRE值大于约46。因此,以使奥氏体中的PRE值大于约46并且铁素体相中的PRE值大于约46的方式选择Cr、Mo和N的相应量。这将使双相不锈钢带能够用于海水应用以及高温海水应用(100℃)中。
此外,根据另一个实施方案,双相不锈钢带将具有高于75℃的临界缝隙温度(CCT)。该性能将使双相不锈钢带能够用于海水应用以及高温海水应用(100℃)中。
本发明的另一个方面提供一种制造如上文或下文中所定义的具有所述组成的双相不锈钢带的方法,所述方法包括如下步骤:
-提供大方坯,所述大方坯具有如上文或下文中所定义的双相不锈钢带的组成;
-通过使用一种或多种热加工工艺将所述大方坯转变为板坯,其中所述一种或多种热加工工艺在约1000℃~约1300℃的温度下实施;
-通过使用一个或多个热轧步骤将所述板坯转变为热轧带,其中所述一个或多个热轧步骤在约1000℃~约1300℃的温度下实施;
-将所述热轧带淬火至约500℃的温度;
-将所述淬火的热轧带酸洗;
-通过使用一个或多个冷轧步骤对所述酸洗的热轧带进行冷加工。
根据一个实施方案,所述方法还包括可以在所述至少一个冷轧步骤之后实施的一个或多个热处理步骤。根据一个实施方案,所述一个或多个热处理步骤可以是退火,所述退火在约1080℃~约1200℃的温度下实施约5秒~约600秒的时间。可以应用感应加热以使退火时间在所述范围的较低区域中。在将冷轧带加热到该温度范围期间,重要的是避免使所述冷轧带暴露在750℃~1000℃的温度下太长的时间,因为这是σ相和/或氮化铬形成最快的温度范围。可以实施退火步骤以减少任何形成的金属间相如σ相和氮化铬,或者降低冷轧带的强度,或者改变冷轧带中奥氏体或铁素体相的含量。此外,退火步骤将对双相不锈钢的微观结构产生很大的影响,从而对平均铁素体和奥氏体厚度产生很大的影响。此外,退火步骤将使冷轧带具有高延展性和高强度。
根据一个实施方案,冷轧带至少可以在倒数第二个与最后一个冷轧步骤之间经历退火步骤。此外,根据另一个实施方案,可以在各个冷轧步骤(例如超过一个的冷轧步骤)之间应用几个退火步骤(例如超过一个)。根据另一个实施方案,可以在至少一个冷轧步骤之后对带进行退火步骤。因此,根据一个实施方案,可以实施超过一个的退火步骤,例如两个退火步骤或三个退火步骤。
根据一个实施方案,在露天或保护性气氛中实施所述退火步骤。根据又一个实施方案,可以对露天中的退火带实施另外的酸洗步骤。
作为所使用的方法步骤的结果,如前所述,在双相不锈钢带中将看到铁素体和奥氏体的交替层,所述层基本上平行于双相不锈钢带的平面。层的厚度将影响双相不锈钢带的屈服强度。为了获得足够的屈服强度,平均奥氏体和铁素体厚度应小于或等于约10μm。根据其他实施方案,每个相的平均厚度为1.0μm~约8.0μm,例如约2.0μm~约6.0μm,例如约1.0μm~约4.0μm,例如约1.0μm~约3.0μm。双相不锈钢带在其最终冷轧或退火条件下的厚度可以为15μm~6mm。
提供如上文或下文中所定义的双相不锈钢的大方坯的步骤可以包括提供所述双相不锈钢的熔体并铸造所述熔体以得到大方坯。铸造可以包括连续铸造包含本发明的双相不锈钢的熔体。
根据一个实施方案,将大方坯转变为板坯的所述至少一种热加工工艺可以选自初轧机(blooming mill)。所述至少一种热加工工艺在1000℃~1300℃、例如1050℃~1250℃的温度下实施的。另外,根据一个实施方案,将所述至少一种热加工工艺实施一次或超过一次,例如在一个实施方案中,可以在大方坯上实施热加工工艺几次,直到得到期望的板坯热加工压下率。根据又一个实施方案,可以在热加工工艺之间加热大方坯,从而形成板坯。
根据一个实施方案,将板坯转变为热轧带的所述至少一个热轧步骤是在粗轧机中在1000℃~1300℃、例如1050℃~1250℃的温度下实施的。另外,根据一个实施方案,将所述至少一个热轧步骤实施一次或超过一次,例如在一个实施方案中,可对热轧带实施几次热轧步骤,直到得到期望的热轧带的热轧压下率。
根据一个实施方案,可以通过水淬将热轧带淬火至约500℃的温度。
根据一个实施方案,酸洗步骤可以在包含Na2SO4的电解浴中、然后在包含HNO3和HF的混合物的混合酸浴中实施约5分钟~约10分钟的总时间。
根据一个实施方案,对于经淬火和酸洗的热轧带实施一次或超过一次的所述至少一个冷轧步骤。在一个实施方案中,可以对带实施几次冷轧步骤,直到获得最终带的期望的冷变形和厚度。
根据一个实施方案,最终的双相不锈钢带的冷轧,即物体的变形,为至少10%,例如至少25%,例如至少50%,例如至少75%。
根据一个实施方案,得到的最终双相不锈钢带在其冷轧条件下的厚度为15μm~6mm。
根据一个实施方案,得到的最终双相不锈钢带在其退火条件下的厚度为15μm~6mm。
在下文中,对如上文或下文中所定义的双相不锈钢带的合金元素进行讨论。量以重量%(wt%)为单位给出:
碳C是有害元素,因此含量应尽可能低。如果碳含量过多,则例如在焊接期间能够沉淀出碳化物,这会降低耐腐蚀性和延展性。因此,将碳含量限制为小于0.020重量%,例如小于0.015重量%,小于0.010重量%。
硅Si几乎总是存在于双相不锈钢带中,因为它可用于脱氧或存在于所用的废料(scrap)中。目的是使数量尽可能少。Si具有稳定铁素体的效果,并且至少部分由于该原因,Si的含量应小于0.60重量%,例如在0.05重量%~0.40重量%之间。
锰Mn具有变形硬化的效果并且抵消变形时从奥氏体到马氏体结构的转变。另外,Mn具有稳定奥氏体的效果,并且对屈服强度具有积极影响。此外,Mn和S形成改善热延展性能的MnS。为了具有这些效果,Mn必须以至少或等于0.50重量%、例如至少0.75重量%的量存在。然而,Mn过多会降低变形硬化效果以及耐腐蚀性。此外,奥氏体/铁素体的平衡可能会受到干扰,导致奥氏体的含量超过70%。由此,Mn的最大含量应不超过3.0重量%,例如不超过1.5重量%。
铬Cr对溶液硬化具有很大影响,从而对如上文或下文中所定义的双相不锈钢带的屈服强度以及耐点蚀性具有很大影响。此外,Cr抵消了在双相不锈钢带变形时奥氏体结构向马氏体结构的转变。Cr也具有稳定铁素体的效果。因此,Cr的含量应等于或大于30.0重量%。在高含量下,Cr含量的增加将导致用于有害的稳定σ相和氮化铬的更高的温度并导致更快速地产生σ相。因此,Cr的含量等于或小于33.0重量%。根据一个实施方案,Cr的含量为31.0重量%~32.5重量%。
镍Ni对抵抗一般腐蚀具有积极效果。镍还具有很强的稳定奥氏体的效果,并抵消了在双相不锈钢带变形时从奥氏体到马氏体结构的转变。因此,Ni的含量等于或大于5.0重量%。当含量高于10.0重量%时,Ni将导致奥氏体含量高于70体积%。因此,Ni的含量应不大于或等于10.0重量%。根据一个实施方案,Ni的含量为6.0重量%~8.0重量%。
钼Mo对如上文或下文中所定义的双相不锈钢带的耐腐蚀性具有强烈的影响,并且它将影响耐点蚀性并且有助于变形硬化并且非常有助于固溶硬化。因此,Mo的添加量等于或大于2.0重量%。然而,Mo还升高了使有害的σ相稳定的温度并增加了其产生速率,因此Mo的含量应等于或小于4.0重量%。根据一个实施方案,Mo的含量为3.0重量%~3.8重量%。
氮N对如上文或下文中所定义的双相不锈钢带的耐点蚀性具有积极影响,并且对耐点蚀当量(PRE)也具有很大影响。此外,N对双相不锈钢的固溶强化和变形硬化有很大贡献。N还具有很强的稳定奥氏体的效果,并抵消塑性变形时从奥氏体结构向马氏体结构的转变。为了发挥所有这些积极作用,N的添加量为0.40重量%以上。然而,含量过高时,N倾向于形成氮化铬,应避免这种情况,因为对延展性和耐腐蚀性具有负面影响。因此,N的含量因此应等于或低于0.60重量%。根据一个实施方案,N的含量为0.45重量%~0.55重量%。
铝Al对诸如热延展性的热加工性能具有积极影响。因此,Al的含量等于或大于0.010重量%。在含量高于0.035重量%时,存在产生AlN沉淀物的风险。
硼B对诸如热延展性的热加工性能具有积极影响。因此,B的含量等于或大于0.0020重量%。在含量超过0.0030重量%时,则存在形成硼化物的风险。
钙对诸如热延展性的热加工性能具有积极影响。因此,Ca的含量等于或大于0.0006重量%。在含量高于0.0040重量%时,没有看到额外的积极影响,并且形成了更多的非金属夹杂物。
铜Cu对耐腐蚀性和机械强度具有积极影响。然而,它也对延展性具有负面影响。因此,Cu可以作为杂质或作为不超过0.60重量%的有目的地添加的元素存在。根据一个实施方案,Cu可以以不超过0.30重量%的量存在。
钒V可以以不超过0.15重量%的杂质存在于双相不锈钢中。
磷P可能是杂质,并且包含在如上文或下文中所定义的双相不锈钢带中;量小于0.03重量%。
硫S可以是如上文或下文中所定义的双相不锈钢带中包含的杂质。S可能会劣化低温下的热加工性。由此,S的容许含量小于0.02重量%,例如小于0.0010重量%。
根据一个实施方案,可以任选地将如下元素中的一种或多种添加到双相不锈钢带中:钨W,小于或等于0.05重量%;钴Co,小于或等于0.60重量%;钛Ti,小于或等于0.03重量%;铌Nb,小于或等于0.03重量%。
如上文或下文中所定义的双相不锈钢带的其余元素是铁(Fe)和通常存在的杂质。
杂质的实例为不是故意添加的元素和化合物,但是由于它们通常以杂质的形式出现在用于制造双相不锈钢带的原材料中而不能完全避免。
根据一个实施方案,本发明的双相不锈钢带包含由上文或下文中提及的所有元素构成的双相不锈钢。根据另一个实施方案,本发明的双相不锈钢带以本文提及的任何范围包含其中提及的所有元素或由其构成。
当使用术语“小于或等于”时,本领域技术人员知道,所述范围的下限为0重量%,除非明确说明有另外的数字。这同样适用于术语“不超过”,如果没有另外说明,则下限为0重量%。
通过如下非限制性实例来进一步说明本发明。
实施例
根据表1的组成,制造了两个各75吨的炉料(heat)。通过连续铸造至365×265mm的尺寸来制造大方坯。然后将大方坯在炉中在约1250~约1300℃的温度下加热约12小时,并实施初轧,以得到尺寸为280×115~280×150mm的板坯。然后在约1250~约1300℃的温度下在炉中将板坯加热约2小时,并进行热轧直到达到尺寸为320×5mm的热轧带。将该热轧带水淬至约500℃的温度,然后卷取。将热轧带在包含Na2SO4的电解浴中酸洗,然后在包含HNO3和HF的混合物的混合酸浴中酸洗总共10分钟的时间。
表1.两个炉料的化学组成(重量%)
炉料 C Si Mn P S Cr Ni Mo W
540764 0.010 0.24 0.81 0.023 <0.0005 31.40 7.07 3.39 0.02
547452 0.013 0.19 0.91 0.020 0.0007 31.90 7.11 3.40 <0.01
Co V Ti Cu Al Nb B N Ca
540764 0.23 0.074 0.003 0.17 0.018 0.01 0.0024 0.493 0.0016
547452 0.25 0.084 0.004 0.15 0.020 <0.01 0.0020 0.486 0.0034
冷轧双相不锈钢带的性能
在酸洗和退火之后,将源自炉料547452的热轧带在轧机上从2.97mm的厚度冷轧降至0.68mm。通过根据SS EN ISO6892的拉伸试验在轧制方向(纵向)上以及垂直于轧制方向的方向(横向)上确定了冷轧带的强度。将具有各种压下率的样品在轧制方向和垂直于轧制方向的方向上的强度示于表2中。
表2.冷轧带的拉伸试验
Figure BDA0002792111400000121
能够注意到,拉伸性能非常高。由于冷轧期间的变形硬化而使得该等级的拉伸强度和屈服强度大大提高。注意,在77%的冷压下条件下,纵向和横向方向上的Rp0.2之比为0.99,因此令人惊奇地是各向同性的。
通过使用磁性标尺测量(magnetic scale measurements)来确定铁素体含量。根据IEC 60404-1进行磁性标尺测量。假定磁相的含量等于铁素体的含量,并且剩余物假定为奥氏体。表3显示了各种冷压下率的冷轧样品的磁平衡测量的结果。显然,在带的宽度上奥氏体和铁素体相的数量只有很小的变化,表明整个带的组成均匀。
表3.冷轧带的磁平衡测量
Figure BDA0002792111400000131
为了测量铁素体和奥氏体相的厚度,在垂直横截面上采集样品,然后对样品进行抛光和蚀刻(1M的HNO3)。使用合适的放大倍率(1000倍)在光学显微镜(Nikon)中进行测量,即,每个相可见并且观察到超过30个相界。沿着厚度方向测量每个铁素体和奥氏体相的厚度,并且分别计算平均铁素体和奥氏体厚度。将铁素体和奥氏体的相厚度示于表4中。
表4.冷轧带的相厚度
Figure BDA0002792111400000132
77%冷轧带的相厚度极小,为约1μm的值,这非常小。
退火的双相不锈钢带的性能
在酸洗之后,将热轧带在轧机中从2.97mm的厚度冷轧到0.62mm,并在约1100℃下退火120~300秒。通过根据SS EN ISO6892的拉伸试验在轧制方向(纵向)上以及垂直于轧制方向的方向(横向)上确定退火带的强度。将各种厚度的样品在轧制方向和垂直于轧制方向的方向上的强度示于表5中。
表5.退火带的拉伸试验。
Figure BDA0002792111400000141
能够注意到,拉伸强度和屈服强度非常高并且延展性高。
通过使用磁性标尺测量来确定铁素体含量。根据IEC 60404-1进行磁性标尺测量。假定磁相的含量等于铁素体的含量,并且剩余物假定为奥氏体。表6显示了各种厚度的退火样品的磁平衡测量的结果。
表6.退火带的磁平衡测量。
Figure BDA0002792111400000151
根据表6,明显的是,奥氏体和铁素体的含量在带的整个宽度上变化很小,表明在每个相中化学组成的分布均匀。
为了测量铁素体和奥氏体相的厚度,在带的垂直横截面上采集样品,然后对样品进行抛光和蚀刻(1M的HNO3)。使用合适的放大倍率(1000倍)在光学显微镜(Nikon)中进行测量,即,每个相可见并且观察到超过30个相界。沿着厚度方向测量每个铁素体和奥氏体相的厚度,并且分别计算平均铁素体和奥氏体厚度。将铁素体和奥氏体的相厚度示于表7中。
表7.冷轧和退火带的相厚度。
Figure BDA0002792111400000152
显然,微观结构非常精细,典型的相厚度为约3或约4μm。在带的边缘和中心以及奥氏体和铁素体中测得的厚度值几乎相等。
此外,根据ASTM G150(1M NaCl,相对于SCE的700mV电位),通过电化学临界点蚀温度(CPT)对批次34918(炉料540764)中的双相不锈钢带进行了测试。将样品用600粗砂纸研磨,并对86~87℃的CPT进行了测量。
因此,从上面的实验能够看出,本发明的冷轧和退火的双相不锈钢带将具有高屈服强度、高拉伸强度以及高延展性。此外,耐腐蚀性能是优异的。

Claims (13)

1.一种双相不锈钢带,所述双相不锈钢带包含按重量%计具有如下组成的双相不锈钢:
Figure FDA0002792111390000011
剩余物为铁和不可避免的杂质;
其中所述双相不锈钢由30体积%~70体积%的奥氏体相和70体积%~30体积%的铁素体相构成;
其中所述双相不锈钢带具有铁素体相和奥氏体相的交替层,所述交替层与所述带的平面基本上平行,并且所述交替层具有小于或等于约10μm的平均层厚度。
2.根据权利要求1所述的双相不锈钢带,其中所述双相不锈钢由40体积%~60体积%的奥氏体相和60体积%~40体积%的铁素体相构成。
3.根据权利要求1或2中任一项所述的双相不锈钢带,其中所述双相不锈钢由45体积%~55体积%的奥氏体相和55体积%~45体积%的铁素体相构成。
4.根据权利要求1~3中任一项所述的双相不锈钢带,其中平均铁素体或奥氏体厚度在约1.0μm~约8.0μm之间。
5.根据权利要求1~4中任一项所述的双相不锈钢带,其中平均铁素体或奥氏体厚度在约1.0μm~约4.0μm之间。
6.根据权利要求1~5中任一项所述的双相不锈钢带,其中所述双相不锈钢中Cr的含量在31重量%~32.5重量%的范围内。
7.根据权利要求1~6中任一项所述的双相不锈钢带,其中所述双相不锈钢中Mo的含量在3.0重量%~3.8重量%的范围内。
8.根据权利要求1~7中任一项所述的双相不锈钢带,其中所述双相不锈钢中N的含量在0.45重量%~0.55重量%的范围内。
9.根据权利要求1~8中任一项所述的双相不锈钢带,其中所述双相不锈钢中Ni的含量在6.0重量%~8.0重量%的范围内。
10.根据权利要求1~9中任一项所述的双相不锈钢带,其中所述双相不锈钢带的厚度为约15μm~约6mm。
11.一种制造根据权利要求1~10中任一项所述的双相不锈钢带的方法,所述方法包括如下步骤:
-提供大方坯,所述大方坯包含如权利要求1或权利要求6~9中任一项或权利要求1~9中任一项所定义的双相不锈钢;
-通过使用一种或多种热加工工艺将所述大方坯转变为板坯,其中所述一种或多种热加工工艺在约1000℃~约1300℃的温度下实施;
-通过使用一个或多个热轧步骤将所述板坯转变为热轧带,其中所述一个或多个热轧步骤在约1000℃~约1300℃的温度下实施;
-将所述热轧带淬火至约500℃的温度;
-将所述淬火的热轧带酸洗;
-通过使用一个或多个冷轧步骤对所述酸洗的热带进行冷加工。
12.根据权利要求11所述的方法,其中所述方法另外包括一个或多个热处理步骤。
13.根据权利要求12所述的方法,其中所述一个或多个热处理步骤是退火,所述退火在约1080℃~约1200℃的温度下实施约5秒~约600秒的时间段。
CN201980034473.4A 2018-06-15 2019-06-12 双相不锈钢带及其制造方法 Pending CN112292467A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP18178029.7 2018-06-15
EP18178029 2018-06-15
PCT/EP2019/065408 WO2019238787A1 (en) 2018-06-15 2019-06-12 A duplex stainless steel strip and method for producing thereof

Publications (1)

Publication Number Publication Date
CN112292467A true CN112292467A (zh) 2021-01-29

Family

ID=62684711

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980034473.4A Pending CN112292467A (zh) 2018-06-15 2019-06-12 双相不锈钢带及其制造方法

Country Status (7)

Country Link
US (1) US11098387B2 (zh)
EP (1) EP3807427A1 (zh)
JP (1) JP7277484B2 (zh)
KR (1) KR102263556B1 (zh)
CN (1) CN112292467A (zh)
BR (1) BR112020025305A2 (zh)
WO (1) WO2019238787A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114836606B (zh) * 2022-04-01 2023-05-26 山西太钢不锈钢股份有限公司 经济型双相不锈钢板材、提高其强度的方法及其应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87105993A (zh) * 1986-12-30 1988-07-13 日新制钢株式会社 高强度、高伸度以及低平面非均质性的双相结构的铬不锈钢带的生产方法
CN1125965A (zh) * 1993-06-21 1996-07-03 桑德维克公司 铁素体-奥氏体不锈钢
US20010031217A1 (en) * 2000-03-02 2001-10-18 Orjan Bergstrom Duplex stainless steel
US6689231B1 (en) * 1999-06-21 2004-02-10 Sandvik Ab Use of stainless steel alloy as umbilical tubes in seawater environment
US20050211344A1 (en) * 2003-08-07 2005-09-29 Tomohiko Omura Duplex stainless steel and manufacturing method thereof
KR20070073870A (ko) * 2004-11-04 2007-07-10 산드빅 인터렉츄얼 프로퍼티 에이비 2상 스테인리스강
KR20090128568A (ko) * 2001-09-02 2009-12-15 산드빅 인터렉츄얼 프로퍼티 에이비 이상 강 합금
JP2010513708A (ja) * 2006-12-14 2010-04-30 サンドビック インテレクチュアル プロパティー アクティエボラーグ プレート
CN107829043A (zh) * 2017-11-06 2018-03-23 东北大学 一种超级双相不锈钢薄带的近终成形制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUP0001237A3 (en) 1997-10-20 2002-01-28 Lilly Co Eli Methods for treating vascular disorders

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87105993A (zh) * 1986-12-30 1988-07-13 日新制钢株式会社 高强度、高伸度以及低平面非均质性的双相结构的铬不锈钢带的生产方法
CN1125965A (zh) * 1993-06-21 1996-07-03 桑德维克公司 铁素体-奥氏体不锈钢
KR100314232B1 (ko) * 1993-06-21 2001-12-28 레나르트 태퀴스트 페라이트-오스테나이트 스테인리스강
US6689231B1 (en) * 1999-06-21 2004-02-10 Sandvik Ab Use of stainless steel alloy as umbilical tubes in seawater environment
US20010031217A1 (en) * 2000-03-02 2001-10-18 Orjan Bergstrom Duplex stainless steel
KR20090128568A (ko) * 2001-09-02 2009-12-15 산드빅 인터렉츄얼 프로퍼티 에이비 이상 강 합금
US20050211344A1 (en) * 2003-08-07 2005-09-29 Tomohiko Omura Duplex stainless steel and manufacturing method thereof
KR20070073870A (ko) * 2004-11-04 2007-07-10 산드빅 인터렉츄얼 프로퍼티 에이비 2상 스테인리스강
JP2010513708A (ja) * 2006-12-14 2010-04-30 サンドビック インテレクチュアル プロパティー アクティエボラーグ プレート
CN107829043A (zh) * 2017-11-06 2018-03-23 东北大学 一种超级双相不锈钢薄带的近终成形制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
《汇编》编写小组: "《核反应堆用材料性能资料汇编》", 28 February 1975 *
徐峰: "《新编金属材料手册》", 31 March 2017 *

Also Published As

Publication number Publication date
KR20200128442A (ko) 2020-11-12
EP3807427A1 (en) 2021-04-21
KR102263556B1 (ko) 2021-06-10
WO2019238787A1 (en) 2019-12-19
US20210123116A1 (en) 2021-04-29
JP2021527169A (ja) 2021-10-11
US11098387B2 (en) 2021-08-24
JP7277484B2 (ja) 2023-05-19
BR112020025305A2 (pt) 2021-03-09

Similar Documents

Publication Publication Date Title
KR100912570B1 (ko) 성형성이 뛰어난 고강도 용융아연도금강판 및 그 제조방법
KR101411703B1 (ko) 내응력 부식 균열성과 가공성이 우수한 미세립 오스테나이트계 스테인리스 강판
CN112752862B (zh) 具有高扩孔性的高强度冷轧钢板、高强度热浸镀锌钢板及它们的制造方法
US20100000636A1 (en) Duplex stainless steel
US20060108035A1 (en) Cold rolled, dual phase, steel sheet and method of manufacturing same
WO2021104417A1 (zh) 一种碳钢奥氏体不锈钢轧制复合板及其制造方法
US10655195B2 (en) Martensitic stainless steel
CN109072387B (zh) 屈服比优异的超高强度高延展性钢板及其制造方法
US20230279531A1 (en) Austenitic stainless steel and manufacturing method thereof
CN109923233A (zh) 用于低温应用的中锰钢产品及其制造方法
JP5308726B2 (ja) 微細粒組織を有するプレス成形用オーステナイト系ステンレス鋼板およびその製造方法
CN112771194A (zh) 具有优异的硬度和冲击韧性的耐磨钢及其制造方法
CN110088323B (zh) 包含双相不锈钢的制品及其用途
US20240336989A1 (en) Austenitic stainless steel and method for manufacturing same
JP2019065373A (ja) 焼き入れ性および耐食性に優れた自転車ディスクブレーキロータ用マルテンサイト系ステンレス冷延鋼板、鋼帯およびその製造方法
JP5100144B2 (ja) バネ用鋼板およびそれを用いたバネ材並びにそれらの製造法
JP2018178144A (ja) 優れた熱間加工性を有する析出硬化型ステンレス鋼
KR102263556B1 (ko) 2 상 스테인리스 강 스트립 및 그 제조 방법
CN114080463B (zh) 高强度钢板及其制造方法
CN108884507B (zh) 锰钢中间产品的温度处理方法和以相应方式进行了温度处理的钢中间产品
KR101746404B1 (ko) 내식성 및 가공성이 향상된 린 듀플렉스 스테인리스강 및 이의 제조 방법
CN116018421A (zh) 具有优异的生产率和成本降低效果的高强度奥氏体不锈钢及其生产方法
KR100334148B1 (ko) 내식성이우수한Fe-Cr-Si강판및그제조방법
KR20200062428A (ko) 냉연 도금 강판 및 그 제조방법
WO2023153185A1 (ja) オーステナイト系ステンレス鋼およびオーステナイト系ステンレス鋼の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20240710

Address after: Sandviken

Applicant after: Herui Mai Strip Technology Co.,Ltd.

Country or region after: Sweden

Address before: Sandviken

Applicant before: Sandvik materials technology

Country or region before: Sweden