CN112291853B - 传输数据的方法、基站和用户设备 - Google Patents

传输数据的方法、基站和用户设备 Download PDF

Info

Publication number
CN112291853B
CN112291853B CN202011021561.1A CN202011021561A CN112291853B CN 112291853 B CN112291853 B CN 112291853B CN 202011021561 A CN202011021561 A CN 202011021561A CN 112291853 B CN112291853 B CN 112291853B
Authority
CN
China
Prior art keywords
tti
time
control channel
data channel
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011021561.1A
Other languages
English (en)
Other versions
CN112291853A (zh
Inventor
花梦
胡文权
焦淑蓉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Priority to CN202011021561.1A priority Critical patent/CN112291853B/zh
Publication of CN112291853A publication Critical patent/CN112291853A/zh
Application granted granted Critical
Publication of CN112291853B publication Critical patent/CN112291853B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提出了一种传输数据的方法,包括:基站确定当前控制信道的结束时刻在第一传输时间间隔TTI内所处的当前时间段,所述第一TTI包括至少两个时间段,所述至少两个时间段中的每个时间段上结束的控制信道所对应的数据信道的起始时刻分别位于不同的TTI;所述基站在所述第一TTI上向用户设备发送所述当前控制信道承载的控制信息,所述控制信息用于调度所述当前控制信道对应的当前数据信道;所述基站确定所述当前数据信道的起始时刻所处的第二TTI;所述基站在所述第二TTI上与所述用户设备进行当前数据信道的数据交互。因此,本申请所述的方法,通过规整地划分系统中的时频资源,减少了用于指示时频资源的控制信息的开销。

Description

传输数据的方法、基站和用户设备
技术领域
本发明涉及通信领域,尤其涉及通信领域中的传输数据的方法、基站和用户设备。
背景技术
现有的长期演进(Long Term Evolution,简称“LTE”)系统中,下行控制信道包括物理下行控制信道(Physical Downlink Control Channel,简称“PDCCH”)与增强的物理下行控制信道(Enhanced PDCCH,简称“EPDCCH”)两类信道。PDCCH信道占用的时频资源在一个传输时间间隔(Transmission Time Interval,简称“TTI”)的前1至4个符号上,通过物理控制格式指示信道(Physical Control Format Indicator Channel,简称“PCFICH”)信道或高层信令信息确定,并占用全部的系统带宽。而EPDCCH信道占用的时频资源在物理下行共享信道(Physical Downlink Shared Channel,简称“PDSCH”)占用的符号上,占用有限的频率资源。
第三代合作伙伴计划(3rd Generation Partnership Project,简称“3GPP”)在RP-67会议上通过了研究课题《Study on Latency reduction techniques for LTE》。在R1-83会议上,华为和爱立信均提出了各自的短TTI下的下行控制信道设计方法,华为的方案如图2所示。
华为的方案中指出,一个子帧(subframe)内除第一个短TTI(sTTI)外,其它短TTI内的短PDCCH(short PDCCH,简称“sPDCCH”)具有自包含特征,即sPDCCH信道所占资源均包含在下行控制信息(Downlink Control Information,简称“DCI”)调度的sPDSCH资源中,不管sPDCCH资源是集中式的还是分布式的,如图2所示。
爱立信的方案指出,在一个短TTI频带内最多只调度一个用户设备(UserEquipmen,简称“UE”)下行接收,并将短TTI的控制信道映射在短TTI的第一个符号上,以分布式方式占用频率资源以获得频率分集增益。
考虑到网络中不同的UE具有不同的时延需求,若仅考虑将控制信道占用的时频资源放在TTI的前几个符号,且不占用整个系统带宽,这样容易造成数据信道的时频资源不规整,带来数据信道资源指示开销较大的问题。
发明内容
有鉴于此,本发明实施例提供了一种传输数据的方法、基站和用户设备,通过对控制信道占用的时频资源以及其对应的数据信道占用的时频资源进行规划,解决了传输数据过程中用于指示数据信道时频资源的控制信息开销过大的问题。
第一方面,提供了一种传输数据的方法,其特征在于,所述方法包括:
基站确定当前控制信道的结束时刻在第一传输时间间隔TTI内所处的当前时间段,所述第一TTI包括至少两个时间段,所述至少两个时间段中的每个时间段上结束的控制信道所对应的数据信道的起始时刻分别位于不同的TTI;
所述基站在所述第一TTI上向用户设备发送所述当前控制信道承载的控制信息,所述控制信息用于调度所述当前控制信道对应的当前数据信道;
所述基站基于所述当前时间段确定所述当前数据信道的起始时刻所处的第二TTI;
所述基站在所述第二TTI上与所述用户设备进行所述当前数据信道的数据交互。
因此,本申请所述的方法,通过规整地划分系统中的时频资源,减少了基站用于指示时频资源的控制信息的开销,而且方便了进行资源指示,提高了时频资源的利用率。
作为另一个实施例,所述当前控制信道在时域上的长度是灵活可变的。
作为另一个实施例,所述当前时间段为第一参考时刻到第二参考时刻之间的时间范围,所述基站确定当前控制信道的结束时刻在第一TTI内所处的时间段,包括:
所述基站确定所述当前控制信道的结束时刻为所述第二参考时刻,或者所述当前控制信道的结束时刻在所述第一参考时刻和所述第二参考时刻之间的时间范围。
可选地,所述当前数据信道包括上行数据信道或下行数据信道。
其中,该当前控制信道上承载的控制信息能够同时支持调度上行数据信道和下行数据信道,也可以只支持调度上行数据信道或者只支持调度下行数据信道。
作为另一个实施例,如果所述基站确定所述当前控制信道的结束时刻所处的当前时间段为所述至少两个时间段中的第i个时间段,所述基站基于所述当前时间段确定所述当前数据信道的起始时刻所处的第二TTI,包括:
所述基站确定所述当前控制信道对应的所述下行数据信道的起始时刻所处的所述第二TTI为所述第一TTI之后的第ki个TTI,或所述当前控制信道对应的所述上行数据信道的起始时刻所处的所述第二TTI为所述第一TTI之后的第mi个TTI,所述ki和所述mi为非负整数,所述i为正整数。
其中,不同的i对应的ki或mi也不相同。
例如,假设当前的第一TTI为第n个TTI,且在第一TTI内按照时间先后顺序划分为三个子时间段,例如第一时间段、第二时间段和第三时间段。
对于下行数据信道的调度,如果当前控制信道的结束时刻在第一时间段上,其对应的下行数据信道的起始时刻所处的第二TTI为第n+k1个TTI;如果当前控制信道的结束时刻在第二时间段上,其对应的下行数据信道的起始时刻所处的第二TTI为第n+k2个TTI;如果当前控制信道的结束时刻在第三时间段上,其对应的下行数据信道的起始时刻所处的第二TTI为第n+k3个TTI。
对于上行数据信道的调度,如果当前控制信道的结束时刻在第一时间段上,其对应的上行数据信道的起始时刻所处的第二TTI为第n+m1个TTI;如果当前控制信道的结束时刻在第二时间段上,其对应的上行数据信道的起始时刻所处的第二TTI为第n+m2个TTI;如果当前控制信道的结束时刻在第三时间段上,其对应的上行数据信道的起始时刻所处的第二TTI为第n+m3个TTI。
其中,k1、k2、k3、m1、m2和m3为非负整数且各不相等,例如可以为k1=0、k2=1、k3=2、m1=3、m2=4和m3=5。其中,k1=0表示第二TTI为当前的第一TTI。
作为另一个实施例,所述当前控制信道承载的所述控制信息中包括定时偏移指示信息,所述定时偏移指示信息指示所述下行数据信道的起始时刻所处的第二TTI的偏移量为Δk,或所述上行数据信道的起始时刻所处的第二TTI的偏移量为Δm,
如果所述基站确定所述当前控制信道的结束时刻所处的所述当前时间段为所述至少两个时间段中的第i个时间段,所述基站基于所述当前时间段确定所述当前数据信道的起始时刻所处的所述第二TTI,包括:
所述基站确定所述当前控制信道对应的所述下行数据信道的起始时刻所处的所述第二TTI为所述第一TTI之后的第ki+Δk个TTI,或所述当前控制信道对应的所述上行数据信道的起始时刻所处的所述第二TTI为所述第一TTI之后的第mi+Δm个TTI,所述ki和所述mi为非负整数,所述i为正整数,且不同的i对应的ki或mi不相同,所述Δk和所述Δm为非负整数。
可选地,如果所述当前控制信道为所述基站为所述用户设备配置的专用控制信道,所述第一TTI和所述第二TTI中未使用的时间段对应的时频资源可以用于数据信道的数据交互;
如果所述当前控制信道为多个用户设备公共的控制信道,所述第一TTI和所述第二TTI中未使用的时间段对应的时频资源不用于数据信道的数据交互。
可选地,所述当前控制信道上承载的所述控制信息包括以下中的至少一种:资源指示信息、调制编码信息、功率控制指示信息、进程号指示信息或冗余版本信息。
作为另一个实施例,在所述基站确定当前控制信道的结束时刻在第一TTI内所处的当前时间段之前,所述方法还包括:
所述基站向所述用户设备发送控制信道指示信息,所述控制信道指示信息用于指示所述用户设备在包括所述当前时间段在内的至少一个时间段上结束的至少一个控制信道上检测所述控制信息。
其中,可选地,所述基站可以根据所述用户设备的时延要求,确定所述当前控制信道的结束时刻在所述第一TTI内所处的所述当前时间段。
这样,由于该基站指示该用户设备搜索控制信息的位置只在某些指定的控制信道时频资源上,因此有效地降低了系统的接收复杂度。
第二方面,提供了一种传输数据的方法,其特征在于,所述方法包括:
用户设备在第一传输时间间隔TTI中的当前时间段上接收基站发送的当前控制信道承载的控制信息,所述第一TTI包括至少两个时间段,所述至少两个时间段中的每个时间段上结束的控制信道所对应的数据信道分别位于不同的TTI,所述控制信息用于调度所述当前控制信道对应的当前数据信道;
所述用户设备基于所述当前时间段确定与所述当前控制信道对应的数据信道的起始时刻所处的第二TTI;
所述用户设备根据所述控制信息,在所述第二TTI上与所述基站进行所述当前数据信道的数据交互。
因此,本申请所述的方法,通过规整地划分系统中的时频资源,减少了用户设备接收的用于指示时频资源的控制信息的开销,而且便于进行资源指示,提高了时频资源的利用率。
作为另一个实施例,所述当前控制信道在时域上的长度是灵活可变的。
作为另一个实施例,所述当前时间段为第一参考时刻到第二参考时刻之间的时间范围,所述用户设备在第一TTI中的当前时间段上接收基站发送的当前控制信道承载的控制信息,包括:
所述用户设备在所述第二参考时刻,或者在所述第一参考时刻到所述第二参考时刻之间的时间范围内接收所述基站发送的所述控制信息。
可选地,所述当前数据信道包括上行数据信道或下行数据信道。
其中,该当前控制信道承载的控制信息能够同时支持调度上行数据信道和下行数据信道,也可以只支持调度上行数据信道或者只支持调度下行数据信道。
作为另一个实施例,如果所述用户设备在所述至少两个时间段中的第i个时间段上接收所述基站发送的当前控制信道承载的所述控制信息,所述用户设备基于所述当前时间段确定与所述当前控制信道对应的当前数据信道的起始时刻所处的第二TTI,包括:
所述用户设备确定所述当前控制信道对应的所述下行数据信道的起始时刻所处的所述第二TTI为所述第一TTI之后的第ki个TTI,或所述当前控制信道对应的所述上行数据信道的起始时刻所处的所述第二TTI为所述第一TTI之后的第mi个TTI,所述ki和所述mi为非负整数,所述i为正整数。
可选地,不同的i对应的ki或mi不相同。
作为另一个实施例,所述当前控制信道承载的所述控制信息中包括定时偏移指示信息,所述定时偏移指示信息指示所述下行数据信道的起始时刻所处的第二TTI的偏移量为Δk,或所述上行数据信道的起始时刻所处的第二TTI的偏移量为Δm,
如果所述用户设备在所述至少两个时间段中的第i个时间段上接收所述基站发送的当前控制信道承载的所述控制信息,所述用户设备基于所述当前时间段确定所述控制信道对应的数据信道的起始时刻所处的第二TTI,包括:
所述用户设备确定所述当前控制信道对应的所述下行数据信道的起始时刻所处的所述第二TTI为所述第一TTI之后的第ki+Δk个TTI,或所述当前控制信道对应的所述上行数据信道的起始时刻所处的所述第二TTI为所述第一TTI之后的第mi+Δm个TTI,所述ki和所述mi为非负整数,所述i为正整数,且不同的i对应的ki或mi不相同,所述Δk和所述Δm为非负整数。
可选地,如果所述当前控制信道为所述基站为所述用户设备配置的专用控制信道,所述第一TTI和所述第二TTI中未使用的时间段对应的时频资源用于数据信道的数据交互;
如果所述当前控制信道为多个用户设备公共的控制信道,所述第一TTI和所述第二TTI中未使用的时间段对应的时频资源不用于数据信道的数据交互。
可选地,所述当前控制信道上承载的所述控制信息包括以下中的至少一种:资源指示信息、调制编码信息、功率控制指示信息、进程号指示信息或冗余版本信息。
作为另一个实施例,所述方法还包括:
所述用户设备接收所述基站发送的控制信道指示信息;
所述用户设备根据所述控制信道指示信息,在所述控制信道指示信息指示的包括所述当前时间段在内的至少一个时间段上结束的至少一个控制信道上检测所述控制信息。
其中,可选地,所述控制信道指示信息可以是所述基站根据所述用户设备的时延要求确定的。
因此,用户设备通过根据该基站的指示在某些指定的控制信道时频资源上搜索控制信息,有效地降低了系统的接收复杂度。
第三方面,提供了一种基站,用于执行上述第一方面或第一方面的任意可能的实现方式中的方法。具体地,该基站包括:
确定模块,用于确定当前控制信道的结束时刻在第一传输时间间隔TTI内所处的当前时间段,所述第一TTI包括至少两个时间段,所述至少两个时间段中的每个时间段上结束的控制信道所对应的数据信道的起始时刻分别位于不同的TTI;
发送模块,用于在所述第一TTI上向用户设备发送所述当前控制信道,承载的控制信息,所述控制信息用于调度所述当前控制信道对应的当前数据信道;
所述确定模块还用于,基于所述当前时间段确定所述当前数据信道的起始时刻所处的第二TTI;
所述发送模块还用于,在所述确定模块确定的所述第二TTI上向所述用户设备发送所述数据信道的数据;
接收模块,用于在所述确定模块确定的所述第二TTI上接收所述用户设备发送的所述数据信道的数据。
第四方面,提供了一种用户设备,用于执行上述第二方面或第二方面的任意可能的实现方式中的方法。具体地,该用户设备包括:
接收模块,用于在第一传输时间间隔TTI中的当前时间段上接收基站发送的当前控制信道承载的控制信息,所述第一TTI包括至少两个时间段,所述至少两个时间段中的每个时间段上结束的控制信道所对应的数据信道分别位于不同的TTI,所述控制信息用于调度所述当前控制信道对应的当前数据信道;
确定模块,用于基于所述当前时间段确定与所述当前控制信道对应的所述当前数据信道的起始时刻所处的第二TTI;
发送模块,用于根据所述控制信息,在所述确定模块确定的所述第二TTI上向所述基站发送所述数据信道的数据;
所述接收模块还用于,根据所述控制信息,在所述确定模块确定的所述第二TTI上接收所述基站发送的所述数据信道的数据。
第五方面,提供了一种基站,包括处理器、存储器、总线系统、接收器和发送器,所述发送器和所述接收器分别用于在通信的过程中发送和接收信息,所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,并且对该存储器中存储的指令的执行使得该处理器执行第一方面或第一方面的任一方面的可能实现方式中的方法。具体地,所述处理器具体用于:
确定当前控制信道的结束时刻在第一传输时间间隔TTI内所处的当前时间段,所述第一TTI包括至少两个时间段,所述至少两个时间段中的每个时间段上结束的控制信道所对应的数据信道的起始时刻分别位于不同的TTI;
所述发送器,用于在所述第一TTI上向用户设备发送所述当前控制信道承载的控制信息,所述控制信息用于调度所述当前控制信道对应的当前数据信道;
所述处理器还用于,基于所述当前时间段确定所述当前数据信道的起始时刻所处的第二TTI;
所述发送器还用于,在所述处理器确定的所述第二TTI上向所述用户设备发送所述数据信道的数据;
所述接收器,用于在所述处理器确定的所述第二TTI上接收所述用户设备发送的所述数据信道的数据。
第六方面,提供了一种用户设备,包括处理器、存储器、总线系统、接收器和发送器,所述发送器和所述接收器分别用于在通信的过程中发送和接收信息,所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,并且对该存储器中存储的指令的执行使得该处理器执行第二方面或第二方面的任一方面的可能实现方式中的方法。具体地,所述接收器具体用于:
在第一传输时间间隔TTI中的当前时间段上接收基站发送的当前控制信道承载的控制信息,所述第一TTI包括至少两个时间段,所述至少两个时间段中的每个时间段上结束的控制信道所对应的数据信道分别位于不同的TTI,所述控制信息用于调度所述当前控制信道对应的当前数据信道;
所述处理器,用于基于所述当前时间段确定与所述当前控制信道对应的所述当前数据信道的起始时刻所处的第二TTI;
所述发送器,用于根据所述控制信息,在所述处理器确定的所述第二TTI上向所述基站发送所述数据信道的数据;
所述接收器还用于,根据所述控制信息,在所述处理器确定的所述第二TTI上接收所述基站发送的所述数据信道的数据。
第七方面,提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第一方面或第一方面的任意可能的实现方式中的方法的指令。
第八方面,提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第二方面或第二方面的任意可能的实现方式中的方法的指令。
基于上述技术方案,本发明实施例的传输数据的方法,通过规整地划分系统中的时频资源,使得控制信道和数据信道占用的时域资源之间具有固定的对应关系,不仅减少了用于指示数据信道的控制信息的开销,便于进行资源指示,而且提高了时频资源的利用率,降低了系统的接收复杂度。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例的一种应用场景的示意性架构图。
图2是现有技术中短TTI控制信道时频资源与数据信道时频资源复用的示意图。
图3是本发明实施例的传输数据的方法的流程交互图。
图4是本发明实施例的控制信道时频资源与数据信道时频资源的规划的示意图。
图5是本发明另一实施例的控制信道时频资源与数据信道时频资源的规划的示意图。
图6是本发明另一实施例的控制信道时频资源与数据信道时频资源的规划的示意图。
图7是本发明实施例的控制信息检测的流程交互图。
图8是本发明实施例的传输数据的基站的示意性框图。
图9是本发明实施例的传输数据的用户设备的示意性框图。
图10是本发明实施例的传输数据的基站的示意性框图。
图11是本发明实施例的传输数据的用户设备的示意性框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
应理解,本发明实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,简称为“GSM”)系统、码分多址(CodeDivision Multiple Access,简称为“CDMA”)系统、宽带码分多址(Wideband CodeDivision Multiple Access,简称为“WCDMA”)系统、通用分组无线业务(General PacketRadio Service,简称为“GPRS”)、长期演进(Long Term Evolution,简称为“LTE”)系统、LTE频分双工(Frequency Division Duplex,简称为“FDD”)系统、LTE时分双工(Time DivisionDuplex,简称为“TDD”)、通用移动通信系统(Universal Mobile TelecommunicationSystem,简称为“UMTS”)或全球互联微波接入(Worldwide Interoperability forMicrowave Access,简称为“WiMAX”)通信系统等。本发明实施例以LTE通信系统为例进行描述。
还应理解,在本发明实施例中,用户设备(User Equipment,简称为UE)可称之为终端(Terminal)、移动台(Mobile Station,简称为“MS”)或移动终端(Mobile Terminal)等,该用户设备可以经无线接入网(Radio Access Network,简称为“RAN”)与一个或多个核心网进行通信,例如,用户设备可以是移动电话(或称为“蜂窝”电话)或具有移动终端的计算机等,例如,用户设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语音和/或数据。
在本发明实施例中,基站可以是GSM或CDMA中的基站(Base TransceiverStation,简称为“BTS”),也可以是WCDMA中的基站(NodeB,简称为“NB”),还可以是LTE中的演进型基站(Evolutional Node B,简称为“eNB或eNodeB”),本发明并不限定,但为描述方便,下述实施例将以eNodeB为例进行说明。
图1是本发明实施例的一种应用场景的示意性架构图。如图1所示,LTE通信系统的基本网络架构可以包括基站20和至少一个无线终端,例如UE 10,UE 11,UE 12,UE 13,UE14,UE 15,UE 16和UE 17。如图1所示,eNodeB 20用于为UE 10至UE 17中的至少一个无线终端提供通信服务,并接入核心网。UE 10至UE 17中的任意一个无线终端和eNodeB 20可以包括至少一个天线,图1中示出的是多天线的情况。这里以UE 10与eNodeB20之间的通信为例进行说明。
在该应用场景下,UE 10和eNodeB 20之间进行控制信息和数据的传递时,控制信道占用的时频资源和数据信道占用的时频资源可以采用频分多路复用(FrequencyDivision Multiplexing,简称“FDM”)。为了简洁,这里将控制信道占用的时频资源简称为控制信道时频资源,将数据信道占用的时频资源简称为数据信道时频资源。
图3是本发明实施例的传输数据的方法的流程交互图。图3中示出了UE 10和eNodeB 20。如图3所示,该传输数据的流程具体包括:
310,eNodeB 20确定控制信道的结束时刻在第一TTI内所处的时间段。
具体地,eNodeB 20确定当前控制信道的结束时刻在第一TTI内所处的当前时间段。其中,该第一TTI中包括至少两个时间段,所述至少两个时间段中的每个时间段上结束的控制信道所对应的数据信道的起始时刻分别位于不同的TTI。eNodeB 20按照时间先后顺序对第一TTI内的时域资源进行了划分,使第一TTI内包括至少两个时间段,从而不同的控制信道承载的控制信息在第一TTI内占用不同的时间段进行发送。eNodeB 20可以根据UE10的时延要求等信息,来决定用于调度该UE 10的控制信道在第一TTI中的哪一个时间段上发送,并根据控制信道所占用的时间段与数据信道使用的第二TTI之间的定时关系,确定与该控制信道对应的数据信道传输时应该使用的第二TTI。控制信道的发送在该第一TTI内占用的时间段不同,该控制信道调度的数据信道所占用的第二TTI就不同。
对于一个信道,无论是数据信道还是控制信道,其在时域上均占用一部分时间,从起始时刻开始直到结束时刻。应理解,本实施例所称的时间段也可以称为子控制信道时域资源,其对应一定的频段资源。该时域资源和频段资源共同构成时频资源。也就是说,eNodeB20可以按照时间顺序在第一TTI内划分出至少两个子控制信道时频资源,该至少两个子控制信道时频资源中的频域资源相同且时域资源不同。占用不同子控制信道时频资源的控制信道,其承载的控制信息所调度的数据信道所占用TTI也不同。每一个子控制信道时频资源都对应一个数据信道时频资源,eNodeB 20确定了当前控制信道所占用的子控制信道时频资源,就能够确定其承载的控制信息所调度的数据信道所占用的时频资源,即该数据信道在传输时的起始时刻应该使用的第二TTI。
还应理解,这里所说的控制信道占用的时间段,是指该控制信道的结束时刻所处的时间段。确定该控制信道占用的该时间段,即确定该控制信道的结束时刻所处于的时间段。因为该控制信道可以在该TTI中的一个时间段内进行发送,也可以在连续的几个时间段上进行发送。也就是说,每个时间段上结束的控制信道的长度可以不相同。
还应理解,这里所说的数据信道占用的第二TTI,是指该数据信道的起始时刻所在的TTI。确定该数据信道占用的该第二TTI,即确定该数据信道的起始时刻所处于的该第二TTI。因为不同控制信道对应的数据信道的长度不同,可以在一个TTI内进行发送或接收,也可以指定其在连续的几个TTI内进行发送或接收。
作为另一个实施例,该时间段为第一参考时刻到第二参考时刻之间的时间范围,eNodeB 20确定当前控制信道的结束时刻在第一TTI内所处的当前时间段,包括:
eNodeB 20确定该当前控制信道的结束时刻为所述第二参考时刻,或者该当前控制信道的结束时刻在该第一参考时刻与该第二参考时刻之间的时间范围内。
具体地,该当前控制信道在该第一TTI内的结束时刻落在第一参考时刻到该第二参考时刻所组成的时间区间内时,认为该控制信道的结束时刻位于当前时间段中。例如,该控制信道发送时间的结束时刻设为t,该第一TTI的起始时刻设为T0,该时间段的第一参考时刻设为T1,第二参考时刻设为T2,如果t落在T1和T2之间,即满足T1<t≤T2,则认为该控制信道的结束时刻处于该时间段,于是该控制信道调度的数据信道,可以在该时间段(即该T1时刻)对应的用于数据信道的数据传输的第二TTI上进行传输。应理解,也可以当满足T1≤t<T2时认为当前控制信道的结束时刻处于当前时间段,本发明对此不作限定。
320,eNodeB 20向UE 10发送当前控制信道所承载的控制信息。
具体地,eNodeB 20确定了用于调度UE 10的当前控制信道的结束时刻在第一TTI内所处的时间段后,可以在该时间段上或者该时间段之前的时间段上向UE 10发送该控制信道。
可选地,所述当前控制信道上承载的所述控制信息包括以下中的至少一种:资源指示信息、调制编码信息、功率控制指示信息、进程号指示信息或冗余版本信息。
应理解,当前控制信道的发送可以只占用一个时间段,也可以占用多个时间段。eNodeB 20在确定其对应的数据信道所占用的第二TTI时,是根据当前控制信道的结束时刻所在的时间段来确定的。
330,eNodeB 20确定当前控制信道对应的当前数据信道的起始时刻所处的第二TTI。
需要说明的是,在一个时间段上结束的控制信道也就是说该控制信道在时域上的结束时刻位于该时间段内。此外,本实施例中提及的控制信道在时域上的长度是不固定的,也就是灵活的。例如,与现有技术控制信道固定占用若干个OFDM(正交频分复用)符号不同,本实施例的控制信道在时域上长度可变,可能位于第一TTI中的任意一个时间段内。根据不同时间段或不同控制信道与起始时刻位于不同TTI的不同数据信道的对应关系,通过控制信道落入具体的某一个时间段,eNodeB 20或UE10可确定当前控制信道对应的当前数据信道的起始时刻处于的第二TTI是哪个TTI。
具体地,eNodeB 20根据当前控制信道的结束时刻在该第一TTI内所处的当前时间段,确定当前控制信道对应的当前数据信道的起始时刻所处的第二TTI。当前控制信道在第一TTI内占用的时间段,与其对应的当前数据信道的起始时刻所处的第二TTI之间,保持一定的对应关系。不同时间段上结束的控制信道所对应的数据信道的时序不相同。由于发送控制信道的时间段和该控制信道对应的数据信道传输时所使用的第二TTI是eNodeB 20规划好的,只要确定了该控制信道发送时的结束时刻所处于的时间段,就能确定该数据信道在传输过程的起始时刻所处的第二TTI。所以在进行数据信道的接收和发送时,只需要对该数据信道所占用的频域资源进行指示即可,从而节省了用于指示数据信道占用的时域资源的控制信令。
可选地,该数据信道包括上行数据信道(Uplink,简称“UL”)或下行数据信道(Downlink,简称“DL”)。也就是说,该控制信道上承载的控制信息能够同时支持调度上行数据信道和下行数据信道,也可以只支持调度上行数据信道或者只支持调度下行数据信道。
作为另一个实施例,如果eNodeB 20确定当前控制信道的结束时刻所处的当前时间段为该至少两个时间段中的第i个时间段,eNodeB 20确定该当前控制信道对应的该当前数据信道的起始时刻所处的第二TTI,包括:
eNodeB 20确定该当前控制信道对应的该下行数据信道的起始时刻所处的该第二TTI为该第一TTI之后的第ki个TTI,或该当前控制信道对应的该上行数据信道的起始时刻所处的该第二TTI为该第一TTI之后的第mi个TTI。
其中,该ki和该mi为非负整数,该i为正整数。
具体地,如果eNodeB 20确定当前控制信道的结束时刻所处的时间段为该至少两个时间段中的第i个时间段,那么eNodeB 20根据当前控制信道结束时刻所处的时间段和该当前控制信道对应的当前数据信道起始时刻所处的第二TTI之间的对应关系,确定该第i个时间段对应的数据信道的起始时刻所处的第二TTI。如果当前控制信道为下行数据信道,该第二TTI为该第一TTI之后的第ki个TTI;如果当前控制信道为上行数据信道,该第二TTI为该第一TTI之后的第mi个TTI。
应理解,如果ki=0或者mi=0,该第二TTI就为当前控制信道结束时刻所处的第一TTI,即该上行数据信道或者下行数据信道就在当前的第一TTI上开始传输。为了简洁,后面不再赘述。
换句话说,假设该第一TTI为第n个TTI,那么eNodeB 20根据该第i个时间段,确定当前控制信道对应的该下行数据信道的起始时刻所处的第二TTI为第n+ki个TTI,或当前控制信道对应的该上行数据信道的起始时刻所处的第二TTI为第n+mi个TTI。
下面结合图4至图6具体描述eNodeB 20根据当前控制信道的结束时刻所处于的当前时间段,确定其对应的当前数据信道的起始时刻所处的第二TTI的方法。
图4是本发明实施例的控制信道时频资源与数据信道时频资源的规划的示意图。如图4所示,箭头指示的时频资源表示该时间段上发送的控制信道对应的数据信道所占用的时频资源。在第一TTI上划分的至少两个时间段中的每一个时间段上结束的控制信道所承载的控制信息,均能够同时支持调度下行数据信道和上行数据信道。
举例来说,假设当前的第一TTI为第n个TTI,且在第一TTI内按照时间先后顺序划分为三个子时间段,例如第一时间段、第二时间段和第三时间段。这第一时间段、第二时间段和第三时间段上结束的控制信道上承载的控制信息,其调度的数据信道的起始时刻所占用的第二TTI为第一TTI或第一TTI之后的任意一个TTI。
对于下行数据信道的调度,如果当前控制信道的结束时刻处在第一时间段上,其对应的下行数据信道的起始时刻所处的第二TTI为第n+k1个TTI,即eNodeB 20在第一TTI之后的第k1个TTI上发送该下行数据信道;如果当前控制信道的结束时刻处在第二时间段上,其对应的下行数据信道的起始时刻所处的第二TTI为第n+k2个TTI,即eNodeB 20在第一TTI之后的第k2个TTI上发送该下行数据信道;如果当前控制信道的结束时刻处在第三时间段上,其对应的下行数据信道的起始时刻所处的第二TTI为第n+k3个TTI,即eNodeB 20在第一TTI之后的第k3个TTI上发送该下行数据信道。
对于上行数据信道的调度,如果当前控制信道的结束时刻处在第一时间段上,其对应的上行数据信道的起始时刻所处的第二TTI为第n+m1个TTI,即eNodeB 20在第一TTI之后的第m1个TTI上开始接收该上行数据信道;如果当前控制信道的结束时刻处在第二时间段上,其对应的上行数据信道的起始时刻所处的第二TTI为第n+m2个TTI,即eNodeB 20在第一TTI之后的第m2个TTI上接收该上行数据信道;如果当前控制信道的结束时刻处在第三时间段上,其对应的上行数据信道的起始时刻所处的第二TTI为第n+m3个TTI,即eNodeB 20在第一TTI之后的第m3个TTI上接收该上行数据信道。
其中,k1、k2、k3、m1、m2和m3为非负整数且各不相等,例如可以为k1=0、k2=1、k3=2、m1=3、m2=4和m3=5。需要说明的是,当k1=0,意味着第二TTI是第一TTI之后的第零个TTI。第二TTI是第一TTI之后的第零个TTI说明该两个TTI是同一个TTI。
图5是本发明另一实施例的控制信道时频资源与数据信道时频资源的规划的示意图。如图5所示,箭头指示的时频资源表示该时间段上发送的控制信道对应的数据信道所占用的时频资源。在第一TTI内划分的至少两个时间段中,一部分时间段中的每一个时间段上结束的控制信道上承载的控制信息,支持上行数据信道的调度;而另一部分时间段中的每一个时间段上结束的控制信道承载的控制信息,用于下行数据信道的调度。
举例来说,假设当前的第一TTI为第n个TTI,且在该第一TTI内按照时间先后顺序划分了三个子时间段,即第一时间段、第二时间段和第三时间段。在第一时间段上结束的控制信道承载的控制信息用于调度下行数据信道,而第二时间段和第三时间段上结束的控制信道承载的控制信息用于调度上行数据信道。
如果控制信道的结束时刻处在第一时间段上,其对应的下行数据信道的起始时刻所处的第二TTI为第n+k1个TTI;如果控制信道的结束时刻处在第二时间段上,其对应的上行数据信道的起始时刻所处的第二TTI为第n+m1个TTI;如果控制信道的结束时刻处在第三时间段上,其对应的上行数据信道的起始时刻所处的第二TTI为第n+m2个TTI。
其中,k1、m1和m2为自然数且各不相等,例如可以为k1=0、m1=1和m2=2。
图6是本发明另一实施例的控制信道时频资源与数据信道时频资源的规划的示意图。如图6所示,箭头指示的时频资源表示该时间段上发送的控制信道对应的数据信道所占用的时频资源。在第一TTI内划分的至少两个时间段中,一部分时间段中的每一个时间段上结束的控制信道承载的控制信息,能够同时支持上行数据信道和下行数据信道的调度;而另一部分时间段中的每一个时间段上结束的控制信道中承载的控制信息,只支持上行数据信道或者只下行数据信道的调度。
举例来说,假设当前的第一TTI为第n个TTI,且在该第一TTI内按照时间先后顺序划分了三个子时间段,例如第一时间段、第二时间段和第三时间段。其中,在第一时间段上结束的控制信道中承载的控制信息,能够支持调度下行数据信道和上行数据信道,而在第二时间段和第三时间段上结束的控制信道中承载的控制信息,只用于调度上行数据信道。
如果当前控制信道的结束时刻处在第一时间段上,其调度的下行数据信道的起始时刻所处的第二TTI为第n+k1个TTI,即eNodeB 20在第一TTI之后的第k1个TTI上发送该下行数据信道;而第一时间段上结束的该控制信道对应的上行数据信道的起始时刻所处的第二TTI为第n+m1个TTI,即eNodeB 20在第一TTI之后的第m1个TTI上接收该上行数据信道;如果当前控制信道的结束时刻处在第二时间段上,其调度的上行数据信道的起始时刻所处的第二TTI为第n+m2个TTI,即eNodeB 20在第一TTI之后的第m2个TTI上接收该上行数据信道;如果当前控制信道的结束时刻处在第三时间段上,其调度的上行数据信道的起始时刻所处的第二TTI为第n+m3个TTI,即eNodeB 20在第一TTI之后的第m3个TTI上接收该上行数据信道。
其中,k1、k2、k3、m1、m2和m3为自然数且各不相等,例如可以为k1=0、m1=1、m2=2和m3=3。
应理解,对于在第n+1个TTI内发送的控制信道,可以参考上述描述的在第n个TTI上进行的传输数据的方法,对数据信道所占用的TTI进行规划。为了简洁,这里不再赘述。
还应理解,当该第一TTI上发送的当前控制信道中承载的控制信息即支持上行数据信道的调度也支持下行数据信道的调度时,eNodeB 20可以优先调度下行数据信道,后调度上行数据信道;也可以优先调度上行数据信道,后调度下行数据信道,本发明对此不做限定。只要控制信道结束时刻所处的时间段,与其承载的控制信息所调度的上行数据信道和下行数据信道所占用的TTI之间保持规划好的对应关系即可。
作为另一个实施例,如果当前控制信道中承载的控制信息中还包括定时偏移指示信息,该定时偏移指示信息指示该下行数据信道占用的第二TTI的偏移量为Δk或该上行数据信道占用的第二TTI的偏移量为Δm,那么,eNodeB 20根据当前控制信道的结束时刻所处的当前时间段,确定当前控制信道对应的当前数据信道的起始时刻所处的该第二TTI,包括:
eNodeB 20确定当前控制信道对应的所述下行数据信道占用的该第二TTI为该第一TTI之后的第ki+Δk个TTI,或当前控制信道对应的该上行数据信道占用的该第二TTI为该第一TTI之后的第mi+Δm个TTI,该Δk和该Δm为非负整数。
具体地,如果该控制信道中承载的下行控制信息中包括定时偏移指示信息,那么eNodeB 20根据当前控制信道的结束时刻所处的当前时间段,以及当前控制信道承载的下行控制信息中的该定时偏移指示信息,确定当前控制信道对应的当前数据信道的起始时刻所处的第二TTI。其中,该定时偏移指示信息用于指示当前数据信道起始时刻所占的第二TTI的偏移量,例如为Δk和Δm。
举例来说,假设该定时偏移指示信息指示当前数据信道起始时刻所占用的第二TTI的偏移量为Δk,则该第n个TTI内的第i个时间段上结束的控制信道上承载的控制信息,调度第n+ki+Δk个TTI上的下行数据信道的发送,或调度第n+mi+Δm个TTI上的上行数据信道的发送。
340,UE 10确定数据信道的起始时刻所处的第二TTI。
具体地,eNodeB 20确定了控制信道所占用的时间段与数据信道起始时使用的第二TTI之间的对应关系,并将该对应关系(或者说是定时关系)告知给UE 10。UE 10在当前控制信道结束时刻所处的当前时间段上接收eNodeB 20发送的当前控制信息,并确定当前控制信道对应的当前数据信道的起始时刻所处的第二TTI。
应理解,UE 10确定当前数据信道占用的第二TTI的方法可以参照对330中eNodeB20确定数据信道占用的第二TTI的方法的描述,为了简洁,这里不再赘述。
在确定了数据信道传输所占用的第二TTI之后,UE 10和eNodeB 20之间可以进行数据交互,即执行350或360。
350,eNodeB 20在第二TTI向UE 10发送所述数据信道的数据。UE 10具体可以根据所述控制信息接收所述eNodeB 20的数据,也即通过控制信息的调度实现数据接收。
360,UE 10在第二TTI向eNodeB 20发送所述数据信道的数据。UE 10具体可以根据所述控制信息向所述eNodeB 20发送数据,也即通过控制信息的调度实现数据发送。
当eNodeB 20和UE 10确定了当前控制信道对应的当前数据信道所占用的第二TTI后,就可以在当前数据信道起始时刻占用的该第二TTI上开始进行数据信道的数据交互,其中该数据交互可以包括数据的发送和接收。
作为另一个实施例,如果当前控制信道为eNodeB 20为UE 10配置的专用控制信道,该第一TTI和该第二TTI中未使用的时间段对应的时频资源可以用于数据信道的数据交互。
具体地,如果当前控制信道为eNodeB 20为UE 10配置的专用控制信道,即UE 10为特定用户设备(UE-specific),那么该第一TTI中未使用的时间段对应的时频资源能够用于数据信道的数据交互;如果该控制信道为多个用户设备的公共控制信道,那么该第一TTI中未使用的时间段对应的时频资源不被数据信道所使用。这时因为公共的控制信道时频资源域中的时频位置是所有用户设备都能够获知的,而UE-specific的控制信道时频资源域为eNodeB 20为该UE-specific单独配置的,其控制信道时频资源域的时频位置仅该UE-specific能够获知。
本发明实施例中对公共的控制信道时频资源域,以及UE-specific的控制信道时频资源域进行了区分。公共的控制信道时频资源域中的时频资源不可以用于数据信道的传输,而UE-specific的控制信道时频域中未被使用的时频资源可以用于数据信道的传输。
可选地,如果第一TTI内只包括一个子时间段,那么eNodeB 20指定该时间段上结束的控制信道中承载的控制信息仅用于调度上行数据信道或者仅用于调度下行数据信道。
举例来说,图6中的第一行所示公共控制信道所占用的时间段中,由于该TTI内只包括一个时间段,那么该时间段上结束的控制信道所承载的控制信息默认为只用于下行数据信道或者上行数据信道的调度。
作为另一个实施例,eNodeB 20可以根据UE 10的时延要求,来确定当前控制信道的结束时刻在该第一TTI内所处的所述当前时间段。其中,该传输数据的方法还可以包括图7中所示的370和380。图7是本发明实施例的控制信道检测的流程交互图。
370,eNodeB 20向UE 10发送控制信道指示信息。
其中,该控制信道指示消息用于指示UE 10在包括该控制信道结束时刻所处的当前时间段在内的至少一个时间段上结束的至少一个控制信道中检测所述控制信息。
具体地,假设UE 10的时延要求较高,需要的时延较短。例如在第一TTI内按照时序划分的时间段中,靠前的时间段上发送的控制信道,其对应的数据信道占用的TTI也较早,该控制信道对应的数据信道的发送或接收的时延就较小。因此,eNodeB 20可以指示UE 10在该至少两个时间段中靠前的时间段上检测其控制信息,例如指示UE 10在第一时间段上检测其控制信息,并根据该控制信息调度位于该第一TTI之后的第k1个TTI上的数据信道,从而根据该控制信息,在该第一TTI之后的第k1个TTI上与eNodeB 20之间进行数据信道的数据交互。例如当k1为0时该数据信道传输的第二TTI就为当前的第一TTI,保证了最短的时延。
380,UE 10在控制信道指示信息指示的时间段上检测控制信道。
具体地,UE 10根据该控制信道指示信息,在该控制信道指示信息指示的包括当前时间段在内的至少一个时间段上结束的至少一个控制信道中检测该控制信息。其中,当前时间段可以是eNodeB 20根据UE 10的时延要求确定的。
应理解,在370和380中,如果eNodeB 20有多个控制信道用来调度UE 10,那么UE10在该至少一个时间段上检测这些控制信道。其中,这些控制信道中的每一个控制信道,都可以对应该至少一个时间段中的一个时间段。UE 10可以根据eNodeB 20发送的控制信道指示信息,在该至少一个时间段上搜索这些控制信道上的控制信息。
由于eNodeB 20规定UE 10搜索控制信息的位置只在某些指定的控制信道时频资源上,因此有效地降低系统的接收复杂度。
因此,本发明实施所述的传输数据的方法,通过规整地划分系统中的时频资源,不仅减少了用于指示时频资源的控制信息的开销,便于进行资源指示,而且提高了时频资源的利用率,降低了系统的接收复杂度。
应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
上文中结合图3至图7,详细描述了根据本发明实施例的传输数据的方法,下面将结合图8和图11,详细描述根据本发明实施例的基站20和用户设备10。
图8是本发明一个实施例的基站20的结构框图。图8所示的基站20能够用于执行前述图3的方法实施例中由基站20所实现的各个过程。如图8所示,该基站20包括确定模块801、发送模块802、接收模块803。
确定模块801,用于确定当前控制信道的结束时刻在第一传输时间间隔TTI内所处的当前时间段,所述第一TTI包括至少两个时间段,所述至少两个时间段中的每个时间段上结束的控制信道所对应的数据信道的起始时刻分别位于不同的TTI;
发送模块802,用于在所述第一TTI上向用户设备发送所述当前控制信道承载的控制信息,所述控制信息用于调度所述当前控制信道对应的当前数据信道;
确定模块801,用于基于所述当前时间段确定所述当前数据信道的起始时刻所处的第二TTI;
发送模块802还用于,在所述确定模块确定的所述第二TTI上向UE 10发送所述当前数据信道的数据;
接收模块803,用于在所述确定模块确定的所述第二TTI上接收UE 10发送的所述当前数据信道的数据。
因此,本发明实施所述的传输数据的方法,通过规整地划分系统中的时频资源,不仅减少了基站20用于指示时频资源的控制信息的开销,而且便于进行资源指示,提高了时频资源的利用率。
可选地,作为另一个实施例,所述当前控制信道在时域上的长度是灵活可变的。
作为另一个实施例,所述当前时间段为第一参考时刻到第二参考时刻之间的时间范围,所述确定模块具体用于:
确定所述当前控制信道的结束时刻为所述第二参考时刻,或者所述当前控制信道的结束时刻在所述第一参考时刻到所述第二参考时刻之间的时间范围。
可选地,作为另一个实施例,所述当前数据信道包括上行数据信道或下行数据信道。
可选地,作为另一个实施例,如果确定模块801确定所述当前控制信道的结束时刻所处的当前时间段为所述至少两个时间段中的第i个时间段,确定模块801还用于:
确定所述当前控制信道对应的所述下行数据信道的起始时刻所处的所述第二TTI为所述第一TTI之后的第ki个TTI,或所述当前控制信道对应的所述上行数据信道的起始时刻所处的所述第二TTI为所述第一TTI之后的第mi个TTI,所述ki和所述mi为非负整数,所述i为正整数,且不同的i对应的ki或mi不相同。
可选地,作为另一个实施例,所述当前控制信道中的控制信息中包括定时偏移指示信息,所述定时偏移指示信息指示所述下行数据信道的起始时刻所处的第二TTI的偏移量为Δk,或所述上行数据信道的起始时刻所处的第二TTI的偏移量为Δm,
如果所述确定模块确定所述当前控制信道的结束时刻所处的所述当前时间段为所述至少两个时间段中的第i个时间段,确定模块801还用于:
确定所述当前控制信道对应的所述下行数据信道的起始时刻所处的所述第二TTI为所述第一TTI之后的第ki+Δk个TTI,或所述当前控制信道对应的所述上行数据信道的起始时刻所处的所述第二TTI为所述第一TTI之后的第mi+Δm个TTI,所述ki和所述mi为非负整数,所述i为正整数,且不同的i对应的ki或mi不相同,所述Δk和所述Δm为非负整数。
可选地,作为另一个实施例,发送模块802还用于:
向UE 10发送控制信道指示信息,所述控制信道指示消息用于指示UE 10在包括所述当前时间段在内的至少一个时间段上结束的至少一个控制信道上检测所述控制信息。
因此,通过指示UE 10搜索控制信息的位置只在某些指定的控制信道时频资源上,有效地降低了系统的接收复杂度。
图9是本发明一个实施例的用户设备10的结构框图。图9所示的用户设备10能够用于执行前述图3的方法实施例中由用户设备10所实现的各个过程。如图9所示,该用户设备10包括接收模块901、确定模块902和发送模块903。
接收模块901,用于在第一传输时间间隔TTI中的当前时间段上接收基站发送的当前控制信道上承载的控制信息,所述第一TTI包括至少两个时间段,所述至少两个时间段中的每个时间段上结束的控制信道所对应的数据信道分别位于不同的TTI,所述控制信息用于调度所述当前控制信道对应的当前数据信道;
确定模块902,用于基于所述当前时间段确定与所述当前控制信道对应的所述当前数据信道的起始时刻所处的第二TTI;
发送模块903,用于根据所述控制信息,在确定模块902确定的所述第二TTI上向eNodeB 20发送所述当前数据信道的数据;
接收模块901还用于,根据所述控制信道,在所述确定模块确定的所述第二TTI上接收eNodeB 20发送的所述当前数据信道的数据。
因此,本发明实施所述的传输数据的方法,通过规整地划分系统中的时频资源,减少了用户设备10接收的用于指示时频资源的控制信息的开销,而且便于进行资源指示,提高了时频资源的利用率。
可选地,作为另一个实施例,所述当前控制信道在时域上的长度灵活可变的。
作为另一个实施例,所述时间段为第一参考时刻到第二参考时刻之间的时间范围,所述确定模块具体用于:
在所述第二参考时刻,或者在所述第一参考时刻和所述第二参考时刻之间的时间范围内接收基站发送的所述控制信息。
可选地,作为另一个实施例,所述当前数据信道包括上行数据信道或下行数据信道。
可选地,作为另一个实施例,如果接收模块901在所述至少两个时间段中的第i个时间段上接收所述基站发送的所述当前控制信道承载的所述控制信息,确定模块902还用于:
确定所述当前控制信道对应的所述下行数据信道的起始时刻所处的所述第二TTI为所述第一TTI之后的第ki个TTI,或所述当前控制信道对应的所述上行数据信道的起始时刻所处的所述第二TTI为所述第一TTI之后的第mi个TTI,所述ki和所述mi为非负整数,所述i为正整数,且不同的i对应的ki或mi不相同。
可选地,作为另一个实施例,所述当前控制信道中的所述控制信息包括定时偏移指示信息,所述定时偏移指示信息指示所述下行数据信道的起始时刻所处的第二TTI的偏移量为Δk,或所述上行数据信道的起始时刻所处的第二TTI的偏移量为Δm,
如果所述用户设备在所述至少两个时间段中的第i个时间段上接收所述基站发送的当前控制信道承载的所述控制信息,所述用户设备基于所述当前时间段,确定模块902还用于:
确定所述当前控制信道对应的所述下行数据信道的起始时刻所处的所述第二TTI为所述第一TTI之后的第ki+Δk个TTI,或所述当前控制信道对应的所述上行数据信道的起始时刻所处的所述第二TTI为所述第一TTI之后的第mi+Δm个TTI,所述ki和所述mi为非负整数,所述i为正整数,且不同的i对应的ki或mi不相同,所述Δk和所述Δm为非负整数
可选地,作为另一个实施例,UE 10还包括检测模块904,接收模块901还用于:
接收eNodeB 20发送的控制信道指示信息;
检测模块904,用于根据所述接收模块接收的所述控制信道指示信息,在所述控制信道指示信息指示的包括所述当前时间段在内的至少一个时间段上结束的至少一个控制信道上检测所述控制信息。
因此,通过根据基站20的指示在某些指定的控制信道时频资源上搜索控制信道,有效地降低了系统的接收复杂度。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
如图10所示,本发明实施例还提供了基站20,该基站20包括处理器1001、存储器1002、总线系统1003、接收器1004和发送器1005。其中,处理器1001、存储器1002和接收器1004通过总线系统1003相连,存储器1002用于存储指令,处理器1001用于执行存储器1002存储的指令,并控制接收器1004接收信息。其中处理器1001、存储器1002、总线系统1003、接收器1004和发送器1005可以通过一个或多个芯片实现。例如,处理器1001、存储器1002、总线系统1003、接收器1004和发送器1005可以完全集成在一个或多个芯片中,或者处理器1001、总线系统1003、接收器1004和发送器1005可以集成在一个芯片中而存储器1002集成在另一个芯片中,具体形式此处不做限定。其中,处理器1001用于:
确定当前控制信道的结束时刻在第一传输时间间隔TTI内所处的当前时间段,所述第一TTI包括至少两个时间段,所述至少两个时间段中的每个时间段上结束的控制信道所对应的数据信道的起始时刻分别位于不同的TTI;
发送器1005用于,在处理器1001确定的第一TTI上向用户设备发送所述当前控制信道上承载的控制信息,所述控制信息用于调度所述当前控制信道对应的当前数据信道;
处理器1001还用于,基于所述当前时间段确定所述当前数据信道的起始时刻所处的第二TTI;
发送器1005还用于,在处理器1001确定的所述第二TTI上向用户设备10发送所述当前数据信道的数据;
接收器1004,用于在处理器1001确定的所述第二TTI上接收向用户设备10发送的所述当前数据信道的数据。
如图11所示,本发明实施例还提供了一种用户设备10,该用户设备10包括处理器1101、存储器1102、总线系统1103、接收器1104和发送器1105。其中,处理器1101、存储器1102和接收器1104通过总线系统1103相连,存储器1102用于存储指令,处理器1101用于执行存储器1102存储的指令,并控制接收器1104接收信息。其中处理器1101、存储器1102、总线系统1103、接收器1104和发送器1105可以通过一个或多个芯片实现。例如,处理器1101、存储器1102、总线系统1103、接收器1104和发送器1105可以完全集成在一个或多个芯片中,或者处理器1101、总线系统1103、接收器1104和发送器1105可以集成在一个芯片中而存储器1102集成在另一个芯片中,具体形式此处不做限定。其中,接收器1104用于:
在第一传输时间间隔TTI中的当前时间段上接收基站发送的控制信道上承载的控制信息,所述第一TTI包括至少两个时间段,所述至少两个时间段中的每个时间段上结束的控制信道所对应的数据信道分别位于不同的TTI,所述控制信息用于调度所述当前控制信道对应的当前数据信道;
处理器1101还用于,基于所述当前时间段确定与所述当前控制信道对应的当前数据信道的起始时刻所处的第二TTI;
发送器1105用于,根据所述控制信息,在处理器1101确定的所述第二TTI上向基站20发送所述当前数据信道的数据;
接收器1104还用于,根据所述控制信息,在处理器1101确定的所述第二TTI上接收基站20发送的所述当前数据信道的数据。
应注意,本发明实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-OnlyMemory,简称“ROM”)、可编程只读存储器(Programmable ROM,简称“PROM”)、可擦除可编程只读存储器(Erasable PROM,简称“EPROM”)、电可擦除可编程只读存储器(ElectricallyEPROM,简称“EEPROM”)或闪存。易失性存储器可以是随机存取存储器(Random AccessMemory,简称“RAM”),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,简称“SRAM”)、动态随机存取存储器(DynamicRAM,简称“DRAM”)、同步动态随机存取存储器(Synchronous DRAM,简称“SDRAM”)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,简称“DDR SDRAM”)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(SynchLink DRAM,简称“SLDRAM”)和直接内存总线随机存取存储器(Direct Rambus RAM,简称“DRRAM”)。本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read Only Memory,简称“ROM”)、随机存取存储器(Random Access Memory,简称“RAM”)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (46)

1.一种传输数据的方法,其特征在于,所述方法包括:
向终端发送第一控制信道承载的控制信息,所述控制信息用于调度所述第一控制信道对应的第一数据信道,所述第一控制信道的结束时刻位于第一传输时间间隔TTI中的第一时间段,其中,所述第一时间段是所述第一TTI中的不同时间段时,所述第一控制信道对应不同的第一数据信道;
基于所述第一时间段确定所述第一数据信道的起始时刻所处的第二TTI;
在所述第二TTI上与所述终端进行所述第一数据信道的数据交互。
2.如权利要求1所述的方法,其特征在于,所述第一时间段是所述第一TTI中的不同时间段时,所述第一控制信道对应不同的第一数据信道,包括:
所述第一时间段是所述第一TTI中的不同时间段时,所述第一数据信道是位于不同TTI的第一数据信道。
3.如权利要求1或2所述的方法,其特征在于,所述第一控制信道在时域上的长度是灵活可变的。
4.如权利要求1或2所述的方法,其特征在于,所述第一数据信道包括上行数据信道或下行数据信道。
5.如权利要求4所述的方法,其特征在于,如果所述第一控制信道的结束时刻位于所述第一TTI中的第i个时间段,所述基于所述第一时间段确定所述第一数据信道的起始时刻所处的第二TTI,包括:
确定所述第一控制信道对应的所述下行数据信道的起始时刻所处的所述第二TTI为所述第一TTI之后的第ki个TTI,或所述第一控制信道对应的所述上行数据信道的起始时刻所处的所述第二TTI为所述第一TTI之后的第mi个TTI,所述ki和所述mi为非负整数,所述i为正整数,且不同的i对应的ki或mi不相同。
6.如权利要求4所述的方法,其特征在于,所述第一控制信道承载的所述控制信息中包括定时偏移指示信息,所述定时偏移指示信息指示所述下行数据信道的起始时刻所处的所述第二TTI的偏移量为Δk,或所述上行数据信道的起始时刻所处的所述第二TTI的偏移量为Δm,
如果所述第一控制信道的结束时刻位于所述第一TTI中的第i个时间段,所述基于所述第一时间段确定所述第一数据信道的起始时刻所处的第二TTI,包括:
确定所述第一控制信道对应的所述下行数据信道的起始时刻所处的所述第二TTI为所述第一TTI之后的第ki+Δk个TTI,或所述第一控制信道对应的所述上行数据信道的起始时刻所处的所述第二TTI为所述第一TTI之后的第mi+Δm个TTI,所述ki和所述mi为非负整数,所述i为正整数,且不同的i对应的ki或mi不相同,所述Δk和所述Δm为非负整数。
7.如权利要求1所述的方法,其特征在于,所述第一控制信道上承载的所述控制信息包括以下中的至少一种:资源指示信息、调制编码信息、功率控制指示信息、进程号指示信息和冗余版本信息。
8.如权利要求1所述的方法,其特征在于,所述方法还包括:
向所述终端发送控制信道指示信息,所述控制信道指示信息用于指示所述终端在包括所述第一时间段在内的至少一个时间段上结束的至少一个控制信道上检测所述控制信息。
9.如权利要求1所述的方法,其特征在于,所述第一控制信道位于一个或多个连续时间段上。
10.如权利要求1所述的方法,其特征在于,所述第一数据信道位于一个或多个连续TTI上。
11.如权利要求1所述的方法,其特征在于,所述TTI包括传输时间间隔TTI。
12.一种传输数据的方法,其特征在于,所述方法包括:
接收来自基站的第一控制信道上承载的控制信息,所述控制信息用于调度所述第一控制信道对应的第一数据信道,所述第一控制信道的结束时刻位于第一时间间隔TTI中的第一时间段,其中,所述第一时间段是所述第一TTI中的不同时间段时,所述第一控制信道对应不同的第一数据信道;
基于所述第一时间段确定所述第一数据信道的起始时刻所处的第二TTI;
根据所述控制信息,在所述第二TTI上与所述基站进行所述第一数据信道的数据交互。
13.如权利要求12所述的方法,其特征在于,所述第一时间段是所述第一TTI中的不同时间段时,所述第一控制信道对应不同的第一数据信道,包括:
所述第一时间段是所述第一TTI中的不同时间段时,所述第一数据信道是位于不同TTI的第一数据信道。
14.如权利要求12或13所述的方法,其特征在于,所述第一控制信道在时域上的长度是灵活可变的。
15.如权利要求12或13所述的方法,其特征在于,所述第一数据信道包括上行数据信道或下行数据信道。
16.如权利要求15所述的方法,其特征在于,如果所述第一控制信道的结束时刻位于所述第一TTI中的第i个时间段,所述基于所述第一时间段确定所述第一数据信道的起始时刻所处的第二TTI,包括:
确定所述第一控制信道对应的所述下行数据信道的起始时刻所处的所述第二TTI为所述第一TTI之后的第ki个TTI,或所述第一控制信道对应的所述上行数据信道的起始时刻所处的所述第二TTI为所述第一TTI之后的第mi个TTI,所述ki和所述mi为非负整数,所述i为正整数,且不同的i对应的ki或mi不相同。
17.如权利要求15所述的方法,其特征在于,所述第一控制信道承载的所述控制信息中包括定时偏移指示信息,所述定时偏移指示信息指示所述下行数据信道的起始时刻所处的所述第二TTI的偏移量为Δk,或所述上行数据信道的起始时刻所处的所述第二TTI的偏移量为Δm,
如果所述第一控制信道的结束时刻位于所述第一TTI中的第i个时间段,所述基于所述第一时间段确定所述第一数据信道的起始时刻所处的第二TTI,包括:
确定所述第一控制信道对应的所述下行数据信道的起始时刻所处的所述第二TTI为所述第一TTI之后的第ki+Δk个TTI,或所述第一控制信道对应的所述上行数据信道的起始时刻所处的所述第二TTI为所述第一TTI之后的第mi+Δm个TTI,所述ki和所述mi为非负整数,所述i为正整数,且不同的i对应的ki或mi不相同,所述Δk和所述Δm为非负整数。
18.如权利要求12所述的方法,其特征在于,所述第一控制信道上承载的所述控制信息包括以下中的至少一种:资源指示信息、调制编码信息、功率控制指示信息、进程号指示信息和冗余版本信息。
19.如权利要求12所述的方法,其特征在于,所述方法还包括:
接收来自所述基站的控制信道指示信息;
根据所述控制信道指示信息,在所述控制信道指示信息指示的包括所述第一时间段在内的至少一个时间段上结束的至少一个控制信道上检测所述控制信息。
20.如权利要求12所述的方法,其特征在于,所述第一控制信道位于一个或多个连续时间段上。
21.如权利要求12所述的方法,其特征在于,所述第一数据信道位于一个或多个连续TTI上。
22.如权利要求12所述的方法,其特征在于,所述TTI包括传输时间间隔TTI。
23.一种通信装置,其特征在于,所述通信装置包括:
用于向终端发送第一控制信道承载的控制信息的模块,所述控制信息用于调度所述第一控制信道对应的第一数据信道,所述第一控制信道的结束时刻位于第一传输时间间隔TTI中的第一时间段,其中,所述第一时间段是所述第一TTI中的不同时间段时,所述第一控制信道对应不同的第一数据信道;
用于基于所述第一时间段确定所述第一数据信道的起始时刻所处的第二TTI的模块;
用于在所述第二TTI上与所述终端进行所述第一数据信道的数据交互的模块。
24.如权利要求23所述的通信装置,其特征在于,所述第一时间段是所述第一TTI中的不同时间段时,所述第一控制信道对应不同的第一数据信道,包括:
所述第一时间段是所述第一TTI中的不同时间段时,所述第一数据信道是位于不同TTI的第一数据信道。
25.如权利要求23或24所述的通信装置,其特征在于,所述第一控制信道在时域上的长度是灵活可变的。
26.如权利要求23或24所述的通信装置,其特征在于,所述第一数据信道包括上行数据信道或下行数据信道。
27.如权利要求26所述的通信装置,其特征在于,如果所述第一控制信道的结束时刻位于所述第一TTI中的第i个时间段,所述基于所述第一时间段确定所述第一数据信道的起始时刻所处的第二TTI,包括:
确定所述第一控制信道对应的所述下行数据信道的起始时刻所处的所述第二TTI为所述第一TTI之后的第ki个TTI,或所述第一控制信道对应的所述上行数据信道的起始时刻所处的所述第二TTI为所述第一TTI之后的第mi个TTI,所述ki和所述mi为非负整数,所述i为正整数,且不同的i对应的ki或mi不相同。
28.如权利要求26所述的通信装置,其特征在于,所述第一控制信道承载的所述控制信息中包括定时偏移指示信息,所述定时偏移指示信息指示所述下行数据信道的起始时刻所处的所述第二TTI的偏移量为Δk,或所述上行数据信道的起始时刻所处的所述第二TTI的偏移量为Δm,
如果所述第一控制信道的结束时刻位于所述第一TTI中的第i个时间段,所述基于所述第一时间段确定所述第一数据信道的起始时刻所处的第二TTI,包括:
确定所述第一控制信道对应的所述下行数据信道的起始时刻所处的所述第二TTI为所述第一TTI之后的第ki+Δk个TTI,或所述第一控制信道对应的所述上行数据信道的起始时刻所处的所述第二TTI为所述第一TTI之后的第mi+Δm个TTI,所述ki和所述mi为非负整数,所述i为正整数,且不同的i对应的ki或mi不相同,所述Δk和所述Δm为非负整数。
29.如权利要求23所述的通信装置,其特征在于,所述第一控制信道上承载的所述控制信息包括以下中的至少一种:资源指示信息、调制编码信息、功率控制指示信息、进程号指示信息和冗余版本信息。
30.如权利要求23所述的通信装置,其特征在于,所述通信装置包括:
用于向所述终端发送控制信道指示信息的模块,所述控制信道指示信息用于指示所述终端在包括所述第一时间段在内的至少一个时间段上结束的至少一个控制信道上检测所述控制信息。
31.如权利要求23所述的通信装置,其特征在于,所述第一控制信道位于一个或多个连续时间段上。
32.如权利要求23所述的通信装置,其特征在于,所述第一数据信道位于一个或多个连续TTI上。
33.如权利要求23所述的通信装置,其特征在于,所述通信装置包括基站。
34.一种传输数据的通信装置,其特征在于,所述通信装置包括:
用于接收来自基站的第一控制信道上承载的控制信息的模块,所述控制信息用于调度所述第一控制信道对应的第一数据信道,所述第一控制信道的结束时刻位于第一传输时间间隔TTI中的第一时间段,其中,所述第一时间段是所述第一TTI中的不同时间段时,所述第一控制信道对应不同的第一数据信道;
用于基于所述第一时间段确定所述第一数据信道的起始时刻所处的第二TTI的模块;
用于根据所述控制信息,在所述第二TTI上与所述基站进行所述第一数据信道的数据交互的模块。
35.如权利要求34所述的通信装置,其特征在于,所述第一时间段是所述第一TTI中的不同时间段时,所述第一控制信道对应不同的第一数据信道,包括:
所述第一时间段是所述第一TTI中的不同时间段时,所述第一数据信道是位于不同TTI的第一数据信道。
36.如权利要求34或35所述的通信装置,其特征在于,所述第一控制信道在时域上的长度是灵活可变的。
37.如权利要求34或35所述的通信装置,其特征在于,所述第一数据信道包括上行数据信道或下行数据信道。
38.如权利要求37所述的通信装置,其特征在于,如果所述第一控制信道的结束时刻位于所述第一TTI中的第i个时间段,所述基于所述第一时间段确定所述第一数据信道的起始时刻所处的第二TTI,包括:
确定所述第一控制信道对应的所述下行数据信道的起始时刻所处的所述第二TTI为所述第一TTI之后的第ki个TTI,或所述第一控制信道对应的所述上行数据信道的起始时刻所处的所述第二TTI为所述第一TTI之后的第mi个TTI,所述ki和所述mi为非负整数,所述i为正整数,且不同的i对应的ki或mi不相同。
39.如权利要求37所述的通信装置,其特征在于,所述第一控制信道承载的所述控制信息中包括定时偏移指示信息,所述定时偏移指示信息指示所述下行数据信道的起始时刻所处的所述第二TTI的偏移量为Δk,或所述上行数据信道的起始时刻所处的所述第二TTI的偏移量为Δm,
如果所述第一控制信道的结束时刻位于所述第一TTI中的第i个时间段,所述基于所述第一时间段确定所述第一数据信道的起始时刻所处的第二TTI,包括:
确定所述第一控制信道对应的所述下行数据信道的起始时刻所处的所述第二TTI为所述第一TTI之后的第ki+Δk个TTI,或所述第一控制信道对应的所述上行数据信道的起始时刻所处的所述第二TTI为所述第一TTI之后的第mi+Δm个TTI,所述ki和所述mi为非负整数,所述i为正整数,且不同的i对应的ki或mi不相同,所述Δk和所述Δm为非负整数。
40.如权利要求34所述的通信装置,其特征在于,所述第一控制信道上承载的所述控制信息包括以下中的至少一种:资源指示信息、调制编码信息、功率控制指示信息、进程号指示信息和冗余版本信息。
41.如权利要求34所述的通信装置,其特征在于,所述通信装置包括:
用于接收来自所述基站的控制信道指示信息的模块;
用于根据所述控制信道指示信息,在所述控制信道指示信息指示的包括所述第一时间段在内的至少一个时间段上结束的至少一个控制信道上检测所述控制信息的模块。
42.如权利要求34所述的通信装置,其特征在于,所述第一控制信道位于一个或多个连续时间段上。
43.如权利要求34所述的通信装置,其特征在于,所述第一数据信道位于一个或多个连续TTI上。
44.如权利要求34所述的通信装置,其特征在于,所述通信装置包括终端。
45.一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当所述指令在计算机上运行时,使得计算机执行权利要求1至22任一项所述的方法。
46.一种通信系统,其特征在于,包括权利要求23至33任一项所述的通信装置,以及权利要求34至44任一项所述的通信装置。
CN202011021561.1A 2016-03-31 2016-03-31 传输数据的方法、基站和用户设备 Active CN112291853B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011021561.1A CN112291853B (zh) 2016-03-31 2016-03-31 传输数据的方法、基站和用户设备

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202011021561.1A CN112291853B (zh) 2016-03-31 2016-03-31 传输数据的方法、基站和用户设备
CN201680083996.4A CN108886768B (zh) 2016-03-31 2016-03-31 传输数据的方法、基站和用户设备
PCT/CN2016/078185 WO2017166225A1 (zh) 2016-03-31 2016-03-31 传输数据的方法、基站和用户设备

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201680083996.4A Division CN108886768B (zh) 2016-03-31 2016-03-31 传输数据的方法、基站和用户设备

Publications (2)

Publication Number Publication Date
CN112291853A CN112291853A (zh) 2021-01-29
CN112291853B true CN112291853B (zh) 2024-04-16

Family

ID=59963198

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201680083996.4A Active CN108886768B (zh) 2016-03-31 2016-03-31 传输数据的方法、基站和用户设备
CN202011021561.1A Active CN112291853B (zh) 2016-03-31 2016-03-31 传输数据的方法、基站和用户设备

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201680083996.4A Active CN108886768B (zh) 2016-03-31 2016-03-31 传输数据的方法、基站和用户设备

Country Status (4)

Country Link
US (2) US10834707B2 (zh)
EP (1) EP3429288B1 (zh)
CN (2) CN108886768B (zh)
WO (1) WO2017166225A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014119888A1 (en) * 2013-01-31 2014-08-07 Lg Electronics Inc. Method and apparatus for performing synchronization in wireless communication system
CN105101473A (zh) * 2014-05-08 2015-11-25 华为技术有限公司 一种发送前导信号的方法及用户设备

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8638771B2 (en) * 2005-08-12 2014-01-28 Qualcomm Incorporated Transmission structure supporting multi-user scheduling and MIMO transmission
EP1855424B1 (en) * 2006-05-12 2013-07-10 Panasonic Corporation Reservation of radio resources for users in a mobile communications system
JP4795190B2 (ja) * 2006-10-03 2011-10-19 株式会社エヌ・ティ・ティ・ドコモ 移動局装置及び基地局装置
EP2670065A4 (en) * 2011-01-26 2015-10-14 Lg Electronics Inc METHOD FOR TRANSMITTING AND RECEIVING CONTROL DATA ON THE DOWNLINK IN A WIRELESS COMMUNICATION SYSTEM, AND CORRESPONDING DEVICE
US9198101B2 (en) * 2011-04-19 2015-11-24 Lg Electronics Inc. Method for transmitting control information in wireless communication system and device therefor
WO2012150822A2 (ko) * 2011-05-03 2012-11-08 엘지전자 주식회사 하향링크 신호 수신방법 및 사용자기기와, 하향링크 신호 전송방법 및 기지국
KR101915528B1 (ko) * 2011-08-12 2018-11-06 삼성전자 주식회사 시분할 무선 통신 시스템에서 단말의 신호 송수신 방법 및 장치
CN103096480B (zh) * 2011-11-04 2016-12-21 华为技术有限公司 传输时间间隔的确定方法、基站和无线网络控制器
US20130142138A1 (en) * 2011-12-05 2013-06-06 Esmael Hejazi Dinan Coordination of Control Channel Transmissions
CN103220028B (zh) * 2012-01-21 2016-03-30 华为技术有限公司 导频信号发射方法、信道估计方法、装置及系统
US9198181B2 (en) 2012-03-19 2015-11-24 Blackberry Limited Enhanced common downlink control channels
CN103378932B (zh) * 2012-04-26 2016-08-10 华为技术有限公司 数据传输方法、用户设备及基站
US9692573B2 (en) * 2012-05-17 2017-06-27 Lg Electronics Inc. Method and device for reporting channel state information
US9131498B2 (en) * 2012-09-12 2015-09-08 Futurewei Technologies, Inc. System and method for adaptive transmission time interval (TTI) structure
CN104038320B (zh) * 2013-03-04 2019-03-01 中兴通讯股份有限公司 资源映射、接收方法及装置、信令通知、获取方法及装置
WO2015157565A1 (en) * 2014-04-09 2015-10-15 Interdigital Patent Holdings, Inc. Mmw physical layer downlink channel scheduling and control signaling
US9883415B2 (en) * 2014-05-28 2018-01-30 Lg Electronics Inc. Method for performing discovery signal measurements in wireless communication system and user equipment thereof
US20160050667A1 (en) * 2014-08-18 2016-02-18 Samsung Electronics Co., Ltd. Communication on licensed and unlicensed bands
US10433326B2 (en) * 2016-06-13 2019-10-01 Qualcomm Incorporated Techniques for communicating in a discontinuous receive mode
KR102364200B1 (ko) * 2016-08-11 2022-02-17 삼성전자 주식회사 무선 통신 시스템에서 하향링크 제어 정보를 송수신하기 위한 방법 및 장치
US11412503B2 (en) * 2016-08-12 2022-08-09 Qualcomm Incorporated Data channel-referenced resource allocation for a control channel
CN108633014B (zh) * 2017-03-22 2021-02-23 华为技术有限公司 数据发送的方法、终端设备和网络设备
US10536962B2 (en) * 2017-03-24 2020-01-14 Motorola Mobility Llc Method and apparatus for receiving downlink data transmissions
KR102522568B1 (ko) * 2018-08-03 2023-04-17 삼성전자주식회사 무선 통신 시스템에서 채널 점유 시간 지시 방법 및 장치
US12004143B2 (en) * 2019-01-11 2024-06-04 Qualcomm Incorporated Resource reservation techniques for wireless communications
US11212852B2 (en) * 2019-05-02 2021-12-28 Lg Electronics Inc. Identification of control information for sidelink management
US11677519B2 (en) * 2019-09-20 2023-06-13 Qualcomm Incorporated Waveform design for sidelink in new radio-unlicensed (NR-U)
US11483803B2 (en) * 2020-01-15 2022-10-25 Qualcomm Incorporated Autonomous sidelink over unlicensed band

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014119888A1 (en) * 2013-01-31 2014-08-07 Lg Electronics Inc. Method and apparatus for performing synchronization in wireless communication system
CN104956743A (zh) * 2013-01-31 2015-09-30 Lg电子株式会社 在无线通信系统中执行同步的方法和设备
CN105101473A (zh) * 2014-05-08 2015-11-25 华为技术有限公司 一种发送前导信号的方法及用户设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Huawei, HiSilicon.R1-160294 "Short TTI for UL transmissions".3GPP tsg_ran\WG1_RL1.2016,(TSGR1_84),全文. *
Huawei.R3-141590 "Introduction of improved DL control channels".3GPP tsg_ran\WG3_Iu.2014,(TSGR3_85),全文. *

Also Published As

Publication number Publication date
US10834707B2 (en) 2020-11-10
CN112291853A (zh) 2021-01-29
EP3429288A4 (en) 2019-02-27
CN108886768B (zh) 2020-11-10
EP3429288B1 (en) 2021-05-05
WO2017166225A1 (zh) 2017-10-05
US20210045104A1 (en) 2021-02-11
CN108886768A (zh) 2018-11-23
US20190037552A1 (en) 2019-01-31
EP3429288A1 (en) 2019-01-16
US11510183B2 (en) 2022-11-22

Similar Documents

Publication Publication Date Title
US11895059B2 (en) Downlink subframe shortening in time-division duplex (TDD) systems
US10219275B2 (en) Method and apparatus for uplink transmission
KR101750843B1 (ko) 정보 송신 방법, 사용자 장비, 및 기지국
US10728924B2 (en) Uplink subframe shortening in time-division duplex (TDD) systems
CN112135351B (zh) 传输数据的方法和终端
CN106716898B (zh) 在无线通信系统中分离具有大量聚合载波的pusch/pucch的方法和装置
CN107079428B (zh) 无线通信的方法、网络设备、用户设备和系统
CA3030456C (en) Method and terminal device for transmitting data
KR102611078B1 (ko) 슬롯 및 미니 슬롯에서의 기준 신호 위치 시그널링
CN114760020A (zh) 无线通信系统中基于短传输时间间隔的通信方法和装置
CN110062461B (zh) 信号传输的方法和装置
RU2682916C1 (ru) Способ и устройство передачи данных
EP3592065A1 (en) Method for transmitting data, terminal device and network device
CN109792351B (zh) 参考信号设计的方法、装置和计算机可读介质
CN108293245B (zh) 一种数据通信的方法、终端设备及网络设备
CN111130721B (zh) 数据传输方法和装置
CN112291853B (zh) 传输数据的方法、基站和用户设备
CN114374485A (zh) 半静态调度配置方法、装置及电子设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant