CN112287506B - Simulation model of power metal oxide semiconductor transistor - Google Patents
Simulation model of power metal oxide semiconductor transistor Download PDFInfo
- Publication number
- CN112287506B CN112287506B CN201910620557.8A CN201910620557A CN112287506B CN 112287506 B CN112287506 B CN 112287506B CN 201910620557 A CN201910620557 A CN 201910620557A CN 112287506 B CN112287506 B CN 112287506B
- Authority
- CN
- China
- Prior art keywords
- node
- source
- voltage
- gate
- drain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004088 simulation Methods 0.000 title claims abstract description 85
- 229910044991 metal oxide Inorganic materials 0.000 title abstract description 40
- 150000004706 metal oxides Chemical class 0.000 title abstract description 40
- 239000004065 semiconductor Substances 0.000 title abstract description 40
- 230000015556 catabolic process Effects 0.000 claims abstract description 29
- 230000000694 effects Effects 0.000 claims abstract description 8
- 230000006903 response to temperature Effects 0.000 claims abstract description 4
- 239000003990 capacitor Substances 0.000 claims description 14
- 230000002277 temperature effect Effects 0.000 claims description 9
- 238000011084 recovery Methods 0.000 claims description 4
- 230000005669 field effect Effects 0.000 abstract description 28
- 238000000034 method Methods 0.000 description 8
- 238000012546 transfer Methods 0.000 description 7
- 238000013461 design Methods 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 235000013599 spices Nutrition 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
Landscapes
- Semiconductor Integrated Circuits (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
一种功率金属氧化物半导体场效晶体管的模拟模型,用以对功率金属氧化物半导体场效晶体管的多个参数进行测量,以分别产生对应的多个模拟结果,功率金属氧化物半导体场效晶体管的模拟模型包括第一压控电压源、第一查表电流源、晶体管子电路及崩溃电压模块。其中,第一压控电压源响应于温度变化,以第一子电路模拟栅极节点上的栅极电荷行为。第一查表电流源用以依据第二子电路的查表电流值,模拟栅极漏极间电容所产生的等效电流值。晶体管子电路用于模拟导电电压于小电流区间及大电流区间中的行为。崩溃电压模块依据第一子电路的电压值,模拟漏极节点及源极节点之间的崩溃电压效应。
A simulation model of a power metal oxide semiconductor field effect transistor is used to measure multiple parameters of the power metal oxide semiconductor field effect transistor to generate corresponding multiple simulation results respectively. The simulation model of the power metal oxide semiconductor field effect transistor includes a first voltage-controlled voltage source, a first table lookup current source, a transistor subcircuit and a breakdown voltage module. The first voltage-controlled voltage source simulates the gate charge behavior on the gate node with the first subcircuit in response to temperature changes. The first table lookup current source is used to simulate the equivalent current value generated by the gate-drain capacitance according to the table lookup current value of the second subcircuit. The transistor subcircuit is used to simulate the behavior of the conductive voltage in the small current interval and the large current interval. The breakdown voltage module simulates the breakdown voltage effect between the drain node and the source node according to the voltage value of the first subcircuit.
Description
技术领域Technical Field
本发明涉及一种功率金属氧化物半导体(MOS)晶体管的模拟模型,特别是涉及一种可在模拟时降低运算负荷的功率金属氧化物半导体(MOS)晶体管的模拟模型。The present invention relates to a simulation model of a power metal oxide semiconductor (MOS) transistor, and in particular to a simulation model of a power metal oxide semiconductor (MOS) transistor capable of reducing computational load during simulation.
背景技术Background technique
晶体管是计算机、电视、蜂巢式电话及诸多其他电子产品中的电组件。设计者通常使用模拟器程序来模拟晶体管的一示意性版本以观察其电路行为。Transistors are electrical components in computers, televisions, cellular phones, and many other electronic products. Designers often use simulator programs to simulate a schematic version of a transistor to observe its circuit behavior.
对于复杂的电子电路的设计,典型地执行模拟用于验证电子电路的功能性并且用于优化它的性能。通过对目标电子组件进行模拟,以期望能够准确建立在电路中使用的电子组件的模型。特别地,随着产品日新月异,若要针对电子组件的每项参数特性进行测量,将会耗费大量人力资源及时间。因此,期望能够以省时、省力的情况下直接使用功率晶体管的准确模型来进行模拟,以减少开发时间。For the design of complex electronic circuits, simulations are typically performed to verify the functionality of the electronic circuit and to optimize its performance. By simulating the target electronic component, it is expected that the model of the electronic component used in the circuit can be accurately established. In particular, as products change with each passing day, it will take a lot of human resources and time to measure each parameter characteristic of the electronic component. Therefore, it is expected to be able to directly use the accurate model of the power transistor for simulation in a time-saving and labor-saving manner to reduce development time.
在现有的电路模拟软件中,已经提供了可广泛对功率晶体管进行模拟的诸多现有的晶体管模拟模型。然而,在某些情况下,使用这些现有的晶体管模拟模型可能导致对某些晶体管电路行为的不准确预测。此外,现有的晶体管模拟模型经常使用了大量的组件,因此可能会对运算系统造成大量负担。In existing circuit simulation software, many existing transistor simulation models that can be widely used to simulate power transistors have been provided. However, in some cases, the use of these existing transistor simulation models may lead to inaccurate predictions of the behavior of certain transistor circuits. In addition, existing transistor simulation models often use a large number of components, which may cause a large burden on the computing system.
因此,急需一种能降低使用组件数量,并减少运算系统的模拟负荷,同时具有一定准确性的功率晶体管的模拟模型。Therefore, there is an urgent need for a simulation model of a power transistor that can reduce the number of components used and reduce the simulation load of the computing system while having a certain accuracy.
发明内容Summary of the invention
本发明所要解决的技术问题在于,针对现有技术的不足提供一种功率金属氧化物半导体(MOS)场效晶体管的模拟模型。The technical problem to be solved by the present invention is to provide a simulation model of a power metal oxide semiconductor (MOS) field effect transistor in view of the deficiencies in the prior art.
为了解决上述的技术问题,本发明所采用的其中一技术方案是,提供一种一种功率金属氧化物半导体场效晶体管的模拟模型,用以对一功率金属氧化物半导体场效晶体管的多个参数进行测量,以分别产生对应的多个模拟结果,所述功率金属氧化物半导体场效晶体管的模拟模型包括:一栅极节点、一源极节点及一漏极节点;一栅极电阻,连接于所述栅极节点及一第一节点之间;一第一压控电压源,连接于所述栅极电阻及一第一节点之间,经配置以响应于温度变化,以一第一子电路模拟所述栅极节点上的一栅极电荷行为;一源极电阻,连接于所述源极节点及一第二节点之间;一栅极源极间电容及一栅极源极间电阻,连接于所述第一节点及所述第二节点之间;一漏极电阻,连接于所述漏极节点及一第三节点之间;一第一查表电流源,连接于所述漏极节点及所述第一节点之间,所述第一查表电流源用以依据一第二子电路的一查表电流值,模拟一栅极漏极间电容所产生的一等效电流值;一晶体管子电路,包括:一第一晶体管,连接于所述第一节点、所述第二节点及所述第三节点;及一第二晶体管,连接于所述第一节点、所述第二节点及所述第三节点,其中所述第一晶体管及所述第二晶体管用于模拟一导电电压于一小电流区间及一大电流区间中的行为;以及一崩溃电压模块,连接于所述源极节点与所述源极电阻之间的一第四节点以及所述漏极节点与所述漏极电阻之间的一第五节点之间,所述崩溃电压模块经配置以依据所述第一子电路的一电压值,模拟所述漏极节点及所述源极节点之间的崩溃电压效应。In order to solve the above technical problems, one of the technical solutions adopted by the present invention is to provide a simulation model of a power metal oxide semiconductor field effect transistor, which is used to measure multiple parameters of a power metal oxide semiconductor field effect transistor to generate corresponding multiple simulation results respectively. The simulation model of the power metal oxide semiconductor field effect transistor includes: a gate node, a source node and a drain node; a gate resistor connected between the gate node and a first node; a first voltage-controlled voltage source connected between the gate resistor and a first node, configured to simulate a gate charge behavior on the gate node with a first subcircuit in response to temperature changes; a source resistor connected between the source node and a second node; a gate-source capacitor and a gate-source resistor connected between the first node and the second node; a drain resistor connected between the drain node and a third node. points; a first table lookup current source connected between the drain node and the first node, the first table lookup current source being used to simulate an equivalent current value generated by a gate-drain capacitance according to a table lookup current value of a second sub-circuit; a transistor sub-circuit comprising: a first transistor connected to the first node, the second node and the third node; and a second transistor connected to the first node, the second node and the third node, wherein the first transistor and the second transistor are used to simulate the behavior of a conductive voltage in a small current interval and a large current interval; and a breakdown voltage module connected between a fourth node between the source node and the source resistor and a fifth node between the drain node and the drain resistor, the breakdown voltage module being configured to simulate a breakdown voltage effect between the drain node and the source node according to a voltage value of the first sub-circuit.
优选地,所述第一子电路包括:一电流源,连接于一第六节点及一第七节点之间;一崩溃电阻,连接于所述第七节点及一第八节点之间;一温度效应电阻,连接于所述第六节点及所述第八节点之间;以及一第一直流电源,连接于所述第六节点及所述温度效应电阻之间。Preferably, the first subcircuit includes: a current source connected between a sixth node and a seventh node; a collapse resistor connected between the seventh node and an eighth node; a temperature effect resistor connected between the sixth node and the eighth node; and a first DC power supply connected between the sixth node and the temperature effect resistor.
优选地,所述第六节点连接于所述第二节点。Preferably, the sixth node is connected to the second node.
优选地,所述第一压控电压源的电压依据所述第六节点及所述第八节点的电压产生。Preferably, the voltage of the first voltage-controlled voltage source is generated according to the voltages of the sixth node and the eighth node.
优选地,所述崩溃电压模块包括:一崩溃二极管,连接于所述第五节点;以及一第二压控电压源,连接于所述崩溃二极管及所述第四节点之间。Preferably, the breakdown voltage module comprises: a breakdown diode connected to the fifth node; and a second voltage-controlled voltage source connected between the breakdown diode and the fourth node.
优选地,所述第二压控电压源的电压依据所述第七节点及所述第八节点的电压产生。Preferably, the voltage of the second voltage-controlled voltage source is generated according to the voltages of the seventh node and the eighth node.
优选地,所述第二子电路包括:一第二直流电源,连接于一接地端及一第九节点之间;一电容,连接于所述第九节点及一第十节点之间;一第三压控电压源,连接于所述第十节点及所述接地端之间,其中所述第三压控电压源的电压是依据所述第一节点及所述第五节点的电压产生;以及一查表器,经配置以依据所述第十节点的电压值查询一电压电流对照表,以产生所述查表电流值,其中所述第一查表电流源依据所述查表电流值,模拟所述等效电流值。Preferably, the second sub-circuit includes: a second DC power supply connected between a ground terminal and a ninth node; a capacitor connected between the ninth node and a tenth node; a third voltage-controlled voltage source connected between the tenth node and the ground terminal, wherein the voltage of the third voltage-controlled voltage source is generated based on the voltages of the first node and the fifth node; and a lookup table configured to query a voltage-current comparison table based on the voltage value of the tenth node to generate the lookup current value, wherein the first lookup current source simulates the equivalent current value based on the lookup current value.
优选地,所述功率金属氧化物半导体场效晶体管的模拟模型还包括一栅极电感电路,所述栅极电感电路连接于所述栅极节点及所述栅极电阻之间,所述栅极电感电路包括并联的一栅极电感及一栅极电感电阻。Preferably, the simulation model of the power metal oxide semiconductor field effect transistor further includes a gate inductance circuit, wherein the gate inductance circuit is connected between the gate node and the gate resistor, and the gate inductance circuit includes a gate inductor and a gate inductance resistor connected in parallel.
优选地,所述功率金属氧化物半导体场效晶体管的模拟模型还包括一源极电感电路,连接于所述源极节点及所述源极电阻之间,所述源极电感电路包括并联的一源极电感及一源极电感电阻。Preferably, the simulation model of the power metal oxide semiconductor field effect transistor further includes a source inductor circuit connected between the source node and the source resistor, and the source inductor circuit includes a source inductor and a source inductor resistor connected in parallel.
优选地,所述功率金属氧化物半导体场效晶体管的模拟模型还包括一漏极电感电路,连接于所述漏极节点及所述漏极电阻之间,所述漏极电感电路包括并联的一漏极电感及一漏极电感电阻。Preferably, the simulation model of the power metal oxide semiconductor field effect transistor further includes a drain inductance circuit connected between the drain node and the drain resistor, and the drain inductance circuit includes a drain inductor and a drain inductance resistor connected in parallel.
优选地,所述些参数包括导电电压、导通电阻、含逆向回复电荷的本体二极管、栅极电荷、输入电容、输出电容及反馈电容的至少其中之一。Preferably, the parameters include at least one of a conduction voltage, an on-resistance, a body diode including a reverse recovery charge, a gate charge, an input capacitance, an output capacitance and a feedback capacitance.
本发明的其中一有益效果在于,本发明所提供的功率金属氧化物半导体(MOS)晶体管的模拟模型,使用了较少的组件,因此可降低模拟时运算系统的负荷。One of the beneficial effects of the present invention is that the simulation model of the power metal oxide semiconductor (MOS) transistor provided by the present invention uses fewer components, thereby reducing the load of the computing system during simulation.
此外,使用本发明的功率金属氧化物半导体场效晶体管的模拟模型,具备一定程度的准确度,并且由于参数独立性高,因此能够依据使用者需求个别调整多项参数。此外,第一子电路的设计能够响应于温度变化,以提供具备高温、低温电性特性的变化功能,更无需使用高阶的金属氧化物半导体场效晶体管的参数模型。In addition, the simulation model of the power metal oxide semiconductor field effect transistor of the present invention has a certain degree of accuracy, and due to the high independence of parameters, multiple parameters can be individually adjusted according to user needs. In addition, the design of the first sub-circuit can respond to temperature changes to provide a function of changing high temperature and low temperature electrical characteristics, without the need to use a high-order metal oxide semiconductor field effect transistor parameter model.
为使能更进一步了解本发明的特征及技术内容,请参阅以下有关本发明的详细说明与附图,然而所提供的附图仅用于提供参考与说明,并非用来对本发明加以限制。To further understand the features and technical contents of the present invention, please refer to the following detailed description and drawings of the present invention. However, the drawings provided are only for reference and description and are not intended to limit the present invention.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为本发明实施例的功率金属氧化物半导体(MOS)晶体管的模拟方法的流程图。FIG. 1 is a flow chart of a method for simulating a power metal oxide semiconductor (MOS) transistor according to an embodiment of the present invention.
图2为本发明实施例的功率金属氧化物半导体场效晶体管模拟模型的架构图。FIG. 2 is a structural diagram of a power MOSFET simulation model according to an embodiment of the present invention.
图3A及图3B分别为使用本发明的功率金属氧化物半导体场效晶体管的模拟模型进行模拟时,产生的在不同温度下的转移特性曲线图以及实际测量的转移特性曲线图。3A and 3B are respectively transfer characteristic curves at different temperatures generated when the simulation model of the power MOSFET of the present invention is used for simulation and transfer characteristic curves actually measured.
图4A及图4B分别为使用本发明的功率金属氧化物半导体场效晶体管的模拟模型进行模拟时,产生的栅极电荷特性的曲线图以及实际测量的栅极电荷特性的曲线图。4A and 4B are respectively a graph of gate charge characteristics generated when a simulation is performed using the simulation model of the power MOSFET of the present invention and a graph of gate charge characteristics actually measured.
图5A及图5B,分别为使用本发明的功率金属氧化物半导体场效晶体管的模拟模型进行模拟时,产生的漏极源极导通电阻对接面温度作图的曲线图以及实际测量的漏极源极导通电阻对接面温度作图的曲线图。5A and 5B are respectively a graph of the drain-source on-resistance versus temperature plotted when the simulation model of the power MOSFET of the present invention is used for simulation and a graph of the drain-source on-resistance versus temperature plotted when actually measured.
图6A及图6B分别为使用本发明的功率金属氧化物半导体场效晶体管的模拟模型进行模拟时,产生的输出功率电容(Coss)及反馈电容(Crss)的电容值对漏极源极电压作图的曲线图,以及实际测量的输入功率电容(Ciss)、输出功率电容(Coss)及反馈电容(Crss)的电容值对漏极源极电压作图的曲线图。6A and 6B are respectively graphs of the capacitance values of the output power capacitance (Coss) and the feedback capacitance (Crss) plotted against the drain-source voltage when the simulation model of the power metal oxide semiconductor field effect transistor of the present invention is used for simulation, and graphs of the capacitance values of the input power capacitance (Ciss), the output power capacitance (Coss) and the feedback capacitance (Crss) plotted against the drain-source voltage when the actual measurement is performed.
具体实施方式Detailed ways
以下是通过特定的具体实施例来说明本发明所公开有关“功率金属氧化物半导体晶体管的模拟方法”的实施方式,本领域技术人员可由本说明书所公开的内容了解本发明的优点与效果。本发明可通过其他不同的具体实施例加以施行或应用,本说明书中的各项细节也可基于不同观点与应用,在不悖离本发明的构思下进行各种修改与变更。另外,本发明的附图仅为简单示意说明,并非依实际尺寸的描绘,事先声明。以下的实施方式将进一步详细说明本发明的相关技术内容,但所公开的内容并非用以限制本发明的保护范围。The following is an explanation of the implementation method of the "simulation method of power metal oxide semiconductor transistor" disclosed in the present invention through specific embodiments. Those skilled in the art can understand the advantages and effects of the present invention from the contents disclosed in this specification. The present invention can be implemented or applied through other different specific embodiments, and the details in this specification can also be modified and changed based on different viewpoints and applications without departing from the concept of the present invention. In addition, the drawings of the present invention are only simple schematic illustrations and are not depicted according to actual dimensions. It is stated in advance. The following embodiments will further explain the relevant technical contents of the present invention in detail, but the disclosed contents are not intended to limit the scope of protection of the present invention.
应当可以理解的是,虽然本文中可能会使用到“第一”、“第二”、“第三”等术语来描述各种组件或者信号,但这些组件或者信号不应受这些术语的限制。这些术语主要是用以区分一组件与另一组件,或者一信号与另一信号。另外,本文中所使用的术语“或”,应视实际情况可能包括相关联的列出项目中的任一个或者多个的组合。It should be understood that, although the terms "first", "second", "third", etc. may be used herein to describe various components or signals, these components or signals should not be limited by these terms. These terms are mainly used to distinguish one component from another component, or one signal from another signal. In addition, the term "or" used herein may include any one or more combinations of the associated listed items depending on the actual situation.
图1为使用本发明实施例的功率金属氧化物半导体(MOS)晶体管的模型进行模拟的流程图。FIG. 1 is a flow chart of a simulation using a model of a power metal oxide semiconductor (MOS) transistor according to an embodiment of the present invention.
参阅图1所示,使用本发明实施例的功率金属氧化物半导体(MOS)晶体管的模型进行模拟时,至少包括下列几个步骤:Referring to FIG. 1 , when a model of a power metal oxide semiconductor (MOS) transistor according to an embodiment of the present invention is used for simulation, at least the following steps are included:
步骤S1:使用功率金属氧化物半导体场效晶体管模拟模型来模拟功率金属氧化物半导体场效晶体管。Step S1: using a power MOSFET simulation model to simulate a power MOSFET.
步骤S2:分别将多个参数输入功率金属氧化物半导体场效晶体管模拟模型。Step S2: inputting a plurality of parameters into a power MOSFET simulation model respectively.
步骤S3:产生对应的多个模拟结果。Step S3: Generate a corresponding plurality of simulation results.
其中,在步骤S1中所创建的功率金属氧化物半导体场效晶体管模拟模型可包含图2的模拟模型1,且可用于诸如一SPICE模拟或其他模拟程序的一模拟中。The power MOSFET simulation model created in step S1 may include the simulation model 1 of FIG. 2 , and may be used in a simulation such as a SPICE simulation or other simulation programs.
在创建功率金属氧化物半导体场效晶体管的模拟模型时,可包含提供用以指示例如晶体管模拟模型的各个节点间的连接的信息。When creating a simulation model of a power MOSFET, it may include providing information indicating, for example, connections between various nodes of the transistor simulation model.
举例而言,可提供用以指示二极管模拟模型的阳极及阴极、晶体管模拟模型的基极、集极及射极与模拟模型的各个节点间的连接信息,还可提供用以指示模拟模型的节点对应于功率晶体管的基极、集极及射极的信息。For example, it can provide information indicating the connection between the anode and cathode of a diode simulation model, the base, collector and emitter of a transistor simulation model and each node of the simulation model, and it can also provide information indicating that the nodes of the simulation model correspond to the base, collector and emitter of a power transistor.
此外,本发明的功率金属氧化物半导体(MOS)晶体管的模拟模型的信息,可包含符合SPICE模拟格式的信息。例如可向计算机系统提供用以创建模拟模型的信息,计算机系统可接收功率金属氧化物半导体场效晶体管模拟模型的信息,并使用所述信息来模拟一功率晶体管。In addition, the information of the simulation model of the power metal oxide semiconductor (MOS) transistor of the present invention may include information conforming to the SPICE simulation format. For example, the information used to create the simulation model may be provided to a computer system, and the computer system may receive the information of the simulation model of the power metal oxide semiconductor field effect transistor and use the information to simulate a power transistor.
进一步参照图2,为本发明实施例功率金属氧化物半导体场效晶体管的模拟模型的架构图。Further referring to FIG. 2 , it is a structural diagram of a simulation model of a power metal oxide semiconductor field effect transistor according to an embodiment of the present invention.
参阅图2所示,本发明提供了功率金属氧化物半导体场效晶体管的模拟模型1,包括栅极节点G、源极节点S、漏极节点D、栅极电阻Rg、第一压控电压源Es1、源极电阻Rs、漏极电阻Rd、第一查表电流源G11、晶体管子电路10及崩溃电压模块12。2 , the present invention provides a simulation model 1 of a power metal oxide semiconductor field effect transistor, including a gate node G, a source node S, a drain node D, a gate resistor Rg, a first voltage-controlled voltage source Es1, a source resistor Rs, a drain resistor Rd, a first table lookup current source G11, a transistor sub-circuit 10 and a breakdown voltage module 12.
栅极电阻Rg连接于栅极节点G及第一节点N1之间,第一压控电压源Es1连接于栅极电阻Rg及第一节点N1之间。此处,第一压控电压源Es1用于响应于温度变化,以第一子网14模拟栅极节点G上的栅极电荷行为。The gate resistor Rg is connected between the gate node G and the first node N1, and the first voltage-controlled voltage source Es1 is connected between the gate resistor Rg and the first node N1. Here, the first voltage-controlled voltage source Es1 is used to simulate the gate charge behavior on the gate node G with the first subnet 14 in response to temperature changes.
详细而言,功率金属氧化物半导体场效晶体管的切换速率主要是靠栅极的充放电而动作的,栅极输入的电荷量(Qg)愈小,则切换速度愈快。所有的功率金属氧化物半导体场效晶体管在切换的过程中都会损失能量,这些损失的能量会转变成热能的形式并使得效能降低。切换时所损失的能量跟切换的时间有很直接的关系,而切换时间又跟结构中的电容值的大小有关,特别是会影响到存在于栅极与漏极之间电荷量(Qgd)的大小。也因此,栅极电荷是决定金属氧化物半导体场效晶体管的切换速率的一个重要特性。In detail, the switching rate of power MOSFETs is mainly driven by the charging and discharging of the gate. The smaller the charge (Qg) input to the gate, the faster the switching speed. All power MOSFETs lose energy during the switching process, and this lost energy is converted into heat energy and reduces efficiency. The energy lost during switching is directly related to the switching time, and the switching time is related to the size of the capacitance in the structure, especially the size of the charge (Qgd) between the gate and the drain. Therefore, the gate charge is an important characteristic that determines the switching rate of MOSFETs.
源极电阻Rs连接于源极节点S及第二节点N2之间。另一方面,崩溃电压模块12连接于源极节点S与源极电阻Rs之间的第四节点N4以及漏极节点D与漏极电阻Rd之间的第五节点N5之间,经配置以依据第一子电路14的一电压值,模拟漏极节点D及源极节点S之间的崩溃电压效应。崩溃电压模块12可包括崩溃二极管Dbr及第二压控电压源Esb。崩溃二极管Dbr连接于第五节点N5,而第二压控电压源Esb,连接于崩溃二极管Dbr及第四节点N4之间。体二极管Dbo则连接于第四节点N4及第五节点N5之间。The source resistor Rs is connected between the source node S and the second node N2. On the other hand, the breakdown voltage module 12 is connected between the fourth node N4 between the source node S and the source resistor Rs and between the fifth node N5 between the drain node D and the drain resistor Rd, and is configured to simulate the breakdown voltage effect between the drain node D and the source node S according to a voltage value of the first sub-circuit 14. The breakdown voltage module 12 may include a breakdown diode Dbr and a second voltage-controlled voltage source Esb. The breakdown diode Dbr is connected to the fifth node N5, and the second voltage-controlled voltage source Esb is connected between the breakdown diode Dbr and the fourth node N4. The body diode Dbo is connected between the fourth node N4 and the fifth node N5.
此处,漏极节点D及源极节点S之间的崩溃电压为功率金属氧化物半导体场效晶体管的漏极及源极之间所能承受的最大电压值,并且主要受制于内含的逆向二级体,例如崩溃二极管Dbr的耐压。Here, the breakdown voltage between the drain node D and the source node S is the maximum voltage that the drain and source of the power MOSFET can withstand, and is mainly limited by the withstand voltage of the included reverse diode, such as the breakdown diode Dbr.
具体而言,第一子网14包括电流源It、崩溃电阻Rbr、温度效应电阻Rvt及第一直流电源Vt,电流源It连接于第六节点N6及第七节点N7之间,崩溃电阻Rbr连接于第七节点N7及第八节点N8之间,温度效应电阻Rvt连接于第六节点N6及第八节点N8之间,而第一直流电源Vt,连接于第六节点及温度效应电阻Rvt之间。Specifically, the first subnet 14 includes a current source It, a breakdown resistor Rbr, a temperature effect resistor Rvt and a first DC power supply Vt, the current source It is connected between the sixth node N6 and the seventh node N7, the breakdown resistor Rbr is connected between the seventh node N7 and the eighth node N8, the temperature effect resistor Rvt is connected between the sixth node N6 and the eighth node N8, and the first DC power supply Vt is connected between the sixth node and the temperature effect resistor Rvt.
在本实施例中,第六节点N6连接于第二节点N2,第二压控电压源Esb的电压是依据第七节点N7及第八节点N8的电压产生。此处,需要说明的是,第七节点N7及第八节点N8的电压将会受到电流源It、崩溃电阻Rbr、温度效应电阻Rvt及第一直流电源Vt的影响,其中,温度效应电阻Rvt及第一直流电源Vt是用于等效崩溃二极管Dbr随温度变化的效应,而存在于栅极与漏极之间电荷量(Qgd)的大小亦会受到温度变化的影响,因此第一压控电压源Es1的电压可依据第六节点N6及第八节点N8的电压产生。In this embodiment, the sixth node N6 is connected to the second node N2, and the voltage of the second voltage-controlled voltage source Esb is generated according to the voltages of the seventh node N7 and the eighth node N8. Here, it should be noted that the voltages of the seventh node N7 and the eighth node N8 will be affected by the current source It, the breakdown resistor Rbr, the temperature effect resistor Rvt and the first DC power source Vt, wherein the temperature effect resistor Rvt and the first DC power source Vt are used to achieve the effect of the equivalent breakdown diode Dbr changing with temperature, and the amount of charge (Qgd) between the gate and the drain will also be affected by the temperature change, so the voltage of the first voltage-controlled voltage source Es1 can be generated according to the voltages of the sixth node N6 and the eighth node N8.
另一方面,第一查表电流源G11连接于漏极节点D及第一节点N1之间,经配置以依据第二子网16的查表电流值,以模拟栅极漏极间电容产生的等效电流值。On the other hand, the first table lookup current source G11 is connected between the drain node D and the first node N1 and is configured to simulate the equivalent current value generated by the gate-drain capacitance according to the table lookup current value of the second subnet 16 .
当组件密度提高时,因为栅极-漏极间电荷,或反馈电容(Reverse Transfercapacitance,简称Crss,此亦为栅极-漏极间电容Cgd)也会变大,使栅极节点G的充放电速度变慢而影响组件的效能。要增加组件的电流密度且维持组件高频率的特性,此Cgd值将会是一个重要参数。When the device density increases, the gate-drain charge, or the feedback capacitance (Reverse Transfer capacitance, Crss for short, also known as the gate-drain capacitance Cgd) will also increase, slowing down the charging and discharging speed of the gate node G and affecting the performance of the device. To increase the current density of the device and maintain the high-frequency characteristics of the device, this Cgd value will be an important parameter.
为了模拟此参数,第二子网16包括第二直流电源V11、电容C11、第三压控电压源E11及查表器Table。第二直流电源V11,连接于接地端及第九节点N9之间,电容C11连接于第九节点N9及第十节点N10之间,第三压控电压源E11连接于第十节点N10及接地端之间。其中,第三压控电压源E11的电压依据第一节点N1及第五节点N5的电压产生。In order to simulate this parameter, the second subnet 16 includes a second DC power source V11, a capacitor C11, a third voltage-controlled voltage source E11 and a lookup table Table. The second DC power source V11 is connected between the ground terminal and the ninth node N9, the capacitor C11 is connected between the ninth node N9 and the tenth node N10, and the third voltage-controlled voltage source E11 is connected between the tenth node N10 and the ground terminal. The voltage of the third voltage-controlled voltage source E11 is generated according to the voltages of the first node N1 and the fifth node N5.
查表器Table,经配置以依据第十节点N10的电压值查询电压电流对照表,以产生查表电流值,作为第一查表电流源G11产生的等效电流值。The table lookup device Table is configured to look up a voltage-current comparison table according to the voltage value of the tenth node N10 to generate a table lookup current value as an equivalent current value generated by the first table lookup current source G11.
此外,对于功率金属氧化物半导体场效晶体管而言,在晶体管的导电电压部分,会因为晶体管产生的电流大小而有所不同。为了模拟导电电压于小电流区间及大电流区间中的行为,设置了晶体管子电路10,连接于第一节点N1、第二节点N2及第三节点N3,晶体管子电路10包括第一晶体管Ms及第二晶体管Mw。第一晶体管Ms的栅极连接于第一节点,源极连接于第二节点N2,漏极连接于第三节点N3,适用于模拟导电电压于大电流区间中的行为。另一方面,第二晶体管Mw的栅极连接于第一节点N1,源极连接于第二节点N2,漏极连接于第三节点N3,适用于模拟导电电压于小电流区间中的行为。In addition, for a power metal oxide semiconductor field effect transistor, the conduction voltage portion of the transistor will be different due to the magnitude of the current generated by the transistor. In order to simulate the behavior of the conduction voltage in the small current interval and the large current interval, a transistor subcircuit 10 is provided, connected to the first node N1, the second node N2 and the third node N3, and the transistor subcircuit 10 includes a first transistor Ms and a second transistor Mw. The gate of the first transistor Ms is connected to the first node, the source is connected to the second node N2, and the drain is connected to the third node N3, which is suitable for simulating the behavior of the conduction voltage in the large current interval. On the other hand, the gate of the second transistor Mw is connected to the first node N1, the source is connected to the second node N2, and the drain is connected to the third node N3, which is suitable for simulating the behavior of the conduction voltage in the small current interval.
此外,功率金属氧化物半导体场效晶体管模拟模型1还包括栅极电感电路100,连接于栅极节点G与栅极电阻Rg之间,栅极电感电路100包括并联的栅极电感Lg与栅极电感电阻RLg。类似的,功率金属氧化物半导体场效晶体管模拟模型1还包括源极电感电路102,连接于源极节点S及所述源极电阻Rs之间,源极电感电路102包括并联的源极电感Ls及源极电感电阻RLs。类似的,功率金属氧化物半导体场效晶体管模拟模型1还包括漏极电感电路104,连接于漏极节点D及漏极电阻Rd之间,漏极电感电路104包括并联的漏极电感Ld及漏极电感电阻RLd。In addition, the power metal oxide semiconductor field effect transistor simulation model 1 also includes a gate inductance circuit 100, connected between the gate node G and the gate resistor Rg, and the gate inductance circuit 100 includes a gate inductance Lg and a gate inductance resistor RLg connected in parallel. Similarly, the power metal oxide semiconductor field effect transistor simulation model 1 also includes a source inductance circuit 102, connected between the source node S and the source resistor Rs, and the source inductance circuit 102 includes a source inductance Ls and a source inductance resistor RLs connected in parallel. Similarly, the power metal oxide semiconductor field effect transistor simulation model 1 also includes a drain inductance circuit 104, connected between the drain node D and the drain resistor Rd, and the drain inductance circuit 104 includes a drain inductance Ld and a drain inductance resistor RLd connected in parallel.
此外,功率金属氧化物半导体场效晶体管模拟模型1还包括栅极源极间电容Cgs与栅极源极间电阻Rgs。栅极源极间电容Cgs与栅极源极间电阻Rgs连接于第一节点N1及第二节点N2之间。漏极电阻Rd连接于漏极节点D及第三节点N3之间。In addition, the power MOSFET simulation model 1 further includes a gate-source capacitor Cgs and a gate-source resistor Rgs. The gate-source capacitor Cgs and the gate-source resistor Rgs are connected between the first node N1 and the second node N2. The drain resistor Rd is connected between the drain node D and the third node N3.
于此,功率金属氧化物半导体场效晶体管模拟模型1已创建完毕,可用于产生多个模拟结果,诸如导电电压、导通电阻、含逆向回复电荷的本体二极管、栅极电荷、输入电容、输出电容及反馈电容等电性特性参数。Here, the power MOSFET simulation model 1 has been created and can be used to generate multiple simulation results, such as conduction voltage, on-resistance, body diode including reverse recovery charge, gate charge, input capacitance, output capacitance, feedback capacitance and other electrical characteristic parameters.
在上述实施例中所提供的功率金属氧化物半导体(MOS)晶体管的模拟方法,由于在功率金属氧化物半导体晶体管的模型中使用了较少的组件,因此可降低模拟时运算系统的负荷。The simulation method of the power metal oxide semiconductor (MOS) transistor provided in the above embodiment can reduce the load of the computing system during simulation because fewer components are used in the model of the power metal oxide semiconductor transistor.
此外,使用本发明的功率金属氧化物半导体场效晶体管的模拟模型,具备一定程度的准确度,并且由于参数独立性高,因此能够依据使用者需求个别调整多项参数。此外,第一子电路的设计能够响应于温度变化,以提供具备高温、低温电性特性的变化功能,以及第二子电路能够用于模拟反馈电容的效应,无需使用高阶的金属氧化物半导体场效晶体管的参数模型即可获得诸如导电电压、导通电阻、含逆向回复电荷的本体二极管、栅极电荷、输入电容、输出电容及反馈电容等电性特性参数。In addition, the simulation model of the power metal oxide semiconductor field effect transistor of the present invention has a certain degree of accuracy, and due to the high independence of parameters, multiple parameters can be individually adjusted according to user needs. In addition, the design of the first sub-circuit can respond to temperature changes to provide a function of changing high temperature and low temperature electrical characteristics, and the second sub-circuit can be used to simulate the effect of feedback capacitance, and electrical characteristic parameters such as conduction voltage, on-resistance, body diode with reverse recovery charge, gate charge, input capacitance, output capacitance and feedback capacitance can be obtained without using a high-order parameter model of the metal oxide semiconductor field effect transistor.
以下将进一步呈现本发明的功率金属氧化物半导体场效晶体管的模拟方法所产生的各种特性曲线,并与实际测量曲线进行对照,以显示本发明具有一定的准确度。Various characteristic curves generated by the simulation method of the power MOSFET of the present invention will be further presented below, and compared with actual measured curves to show that the present invention has a certain degree of accuracy.
请参考图3A及图3B,分别为使用本发明的功率金属氧化物半导体场效晶体管的模拟模型进行模拟时,产生的在不同温度下的转移特性曲线图以及实际测量的转移特性曲线图。如图所示,可知本发明在温度分别为125℃、25℃及-20℃下,模拟产生的漏极源极间电流Ids对栅极源极间电压Vgs,亦即,转移特性曲线,与实际测量的转移特性曲线图相比,工作于线性区的趋势为相同的。Please refer to Figures 3A and 3B, which are respectively transfer characteristic curves at different temperatures generated when the simulation model of the power metal oxide semiconductor field effect transistor of the present invention is used for simulation and transfer characteristic curves actually measured. As shown in the figure, it can be seen that the simulated drain-source current Ids versus gate-source voltage Vgs, i.e., transfer characteristic curves, generated at temperatures of 125°C, 25°C and -20°C, respectively, have the same tendency in the linear region as compared with the transfer characteristic curves actually measured.
请参考图4A及图4B,分别为使用本发明的功率金属氧化物半导体场效晶体管的模拟模型进行模拟时,产生的栅极电荷特性的曲线图以及实际测量的栅极电荷特性的曲线图。如图所示,模拟获得的栅极电荷特性,栅极源极间电压Vgs在栅极源极间电荷量Qgs为1.8nC区间的趋势,以及在栅极漏极间电荷量Qgd为5.7nC区间的趋势,与实际测量的栅极电荷特性在栅极源极间电荷量Qgs为2nC区间的趋势,以及在栅极漏极间电荷量Qgd为5.5nC区间的趋势接近。Please refer to Figures 4A and 4B, which are respectively a graph of the gate charge characteristic generated when the simulation model of the power metal oxide semiconductor field effect transistor of the present invention is used for simulation and a graph of the gate charge characteristic actually measured. As shown in the figure, the gate charge characteristic obtained by simulation, the trend of the gate-source voltage Vgs in the interval of 1.8nC of the gate-source charge amount Qgs, and the trend of the gate-drain charge amount Qgd in the interval of 5.7nC, are close to the trend of the gate charge characteristic actually measured in the interval of 2nC of the gate-source charge amount Qgs, and the trend of the gate-drain charge amount Qgd in the interval of 5.5nC.
请参考图5A及图5B,分别为使用本发明的功率金属氧化物半导体场效晶体管的模拟模型进行模拟时,产生的漏极源极导通电阻对接面温度作图的曲线图以及实际测量的漏极源极导通电阻对接面温度作图的曲线图。如图所示,在接面温度-50℃至150℃的区间中,归一化的漏极-源极导通电阻对接面温度作图的曲线趋势亦是相同的,且分别在接面温度-50℃及150℃时,产生的归一化的漏极-源极导通电阻亦是相同的。Please refer to FIG5A and FIG5B, which are respectively a graph of the drain-source on-resistance versus interface temperature plotted when the simulation model of the power metal oxide semiconductor field effect transistor of the present invention is used for simulation, and a graph of the drain-source on-resistance versus interface temperature plotted when actually measured. As shown in the figure, in the range of the junction temperature of -50°C to 150°C, the curve trend of the normalized drain-source on-resistance versus interface temperature plot is also the same, and the normalized drain-source on-resistance generated at the junction temperature of -50°C and 150°C is also the same.
请参考图6A及图6B,分别为使用本发明的功率金属氧化物半导体场效晶体管的模拟模型进行模拟时,产生的输出功率电容(Coss)及反馈电容(Crss)的电容值对漏极源极电压作图的曲线图,以及实际测量的输入功率电容(Ciss)、输出功率电容(Coss)及反馈电容(Crss)的电容值对漏极源极电压(Vds)作图的曲线图。其中,输入功率电容(Ciss)代表栅极源极间电容加上栅极漏极间电容(Cgs+Cgd),输出功率电容(Coss)代表漏极源极间电容加上栅极漏极间电容(Cds+Cgd),而反馈电容(Crss)代表栅极漏极间电容(Cgd)。如图所示,在本发明的功率金属氧化物半导体场效晶体管模拟模型中,输入功率电容(Ciss)是通过查询对应组件的特性表所设定,为定值,而对于输出功率电容(Coss)及反馈电容(Crss)的电容值而言,对漏极源极电压的变化趋势与实际测量的输出功率电容(Coss)及反馈电容(Crss)的电容值对漏极源极电压的变化趋势是相同的,且于漏极源极电压为0时,对应的输出功率电容(Coss)及反馈电容(Crss)的电容值分别为630pF及378pF,此亦与实际测量值相符。Please refer to FIG6A and FIG6B, which are respectively graphs of the output power capacitance (Coss) and the feedback capacitance (Crss) plotted against the drain-source voltage when the simulation model of the power MOSFET of the present invention is used for simulation, and graphs of the actual measured input power capacitance (Ciss), output power capacitance (Coss) and feedback capacitance (Crss) plotted against the drain-source voltage (Vds). Wherein, the input power capacitance (Ciss) represents the gate-source capacitance plus the gate-drain capacitance (Cgs+Cgd), the output power capacitance (Coss) represents the drain-source capacitance plus the gate-drain capacitance (Cds+Cgd), and the feedback capacitance (Crss) represents the gate-drain capacitance (Cgd). As shown in the figure, in the power metal oxide semiconductor field effect transistor simulation model of the present invention, the input power capacitor (Ciss) is set by querying the characteristic table of the corresponding component and is a fixed value. As for the capacitance values of the output power capacitor (Coss) and the feedback capacitor (Crss), the variation trend of the drain-source voltage is the same as the variation trend of the capacitance values of the output power capacitor (Coss) and the feedback capacitor (Crss) with respect to the drain-source voltage in actual measurement. When the drain-source voltage is 0, the corresponding capacitance values of the output power capacitor (Coss) and the feedback capacitor (Crss) are 630pF and 378pF, respectively, which is also consistent with the actual measured values.
基于上述结果,可见本发明的功率金属氧化物半导体场效晶体管的模拟模型参数独立性高,因此能够依据使用者需求个别调整多项参数,并且模拟结果亦具备一定程度的准确度。Based on the above results, it can be seen that the simulation model parameters of the power MOSFET of the present invention are highly independent, so multiple parameters can be individually adjusted according to user requirements, and the simulation results also have a certain degree of accuracy.
实施例的有益效果Advantageous Effects of Embodiments
本发明的其中一有益效果在于,本发明所提供的功率金属氧化物半导体(MOS)晶体管的模拟方法,使用了较少的组件,因此可降低模拟时运算系统的负荷。One of the beneficial effects of the present invention is that the simulation method of a power metal oxide semiconductor (MOS) transistor provided by the present invention uses fewer components, thereby reducing the load of the computing system during simulation.
此外,使用本发明的功率金属氧化物半导体场效晶体管的模拟模型,具备一定程度的准确度,并且由于参数独立性高,因此能够依据使用者需求个别调整多项参数。此外,第一子电路的设计能够响应于温度变化,以提供具备高温、低温电性特性的变化功能,更无需使用高阶的金属氧化物半导体场效晶体管的参数模型。In addition, the simulation model of the power metal oxide semiconductor field effect transistor of the present invention has a certain degree of accuracy, and due to the high independence of parameters, multiple parameters can be individually adjusted according to user needs. In addition, the design of the first sub-circuit can respond to temperature changes to provide a function of changing high temperature and low temperature electrical characteristics, without using a high-order metal oxide semiconductor field effect transistor parameter model.
以上所公开的内容仅为本发明的优选可行实施例,并非因此局限本发明的权利要求书的保护范围,所以凡是运用本发明说明书及附图内容所做的等效技术变化,均包含于本发明的权利要求书的保护范围内。The contents disclosed above are only preferred feasible embodiments of the present invention, and are not intended to limit the protection scope of the claims of the present invention. Therefore, all equivalent technical changes made using the contents of the present invention description and drawings are included in the protection scope of the claims of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910620557.8A CN112287506B (en) | 2019-07-10 | 2019-07-10 | Simulation model of power metal oxide semiconductor transistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910620557.8A CN112287506B (en) | 2019-07-10 | 2019-07-10 | Simulation model of power metal oxide semiconductor transistor |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112287506A CN112287506A (en) | 2021-01-29 |
CN112287506B true CN112287506B (en) | 2024-06-04 |
Family
ID=74418982
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910620557.8A Active CN112287506B (en) | 2019-07-10 | 2019-07-10 | Simulation model of power metal oxide semiconductor transistor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112287506B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114935693B (en) * | 2022-04-24 | 2025-06-03 | 湖南炬神电子有限公司 | A method and system for testing dynamic on-resistance of a power device |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH461646A (en) * | 1967-04-18 | 1968-08-31 | Ibm | Field-effect transistor and process for its manufacture |
CN1282142A (en) * | 1999-07-26 | 2001-01-31 | 恩尼技术公司 | Parallel high voltage metal-oxide semiconductor field effect transistor high power steady-state amplifier |
CN101764061A (en) * | 2008-12-26 | 2010-06-30 | 马克斯半导体股份有限公司 | Power metal-oxide-semiconductor field effect transistor structure and processing method thereof |
CN101770956A (en) * | 2009-01-07 | 2010-07-07 | 尼克森微电子股份有限公司 | Power metal oxide semiconductor field effect transistor and manufacturing method thereof |
JP2012069662A (en) * | 2010-09-22 | 2012-04-05 | National Institute Of Advanced Industrial & Technology | Field effect transistor |
CN204966498U (en) * | 2014-07-29 | 2016-01-13 | 半导体元件工业有限责任公司 | Electronic device |
CN105528471A (en) * | 2014-10-15 | 2016-04-27 | 英飞凌科技奥地利有限公司 | Power transistor model |
FR3058850A1 (en) * | 2016-11-15 | 2018-05-18 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | POWER SWITCH COMPRISING A PLURALITY OF FIELD EFFECT TRANSISTORS MOUNTED IN PARALLEL |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8963643B2 (en) * | 2010-03-25 | 2015-02-24 | Emhiser Research Limited | Method and system for providing automatic gate bias and bias sequencing for field effect transistors |
-
2019
- 2019-07-10 CN CN201910620557.8A patent/CN112287506B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH461646A (en) * | 1967-04-18 | 1968-08-31 | Ibm | Field-effect transistor and process for its manufacture |
CN1282142A (en) * | 1999-07-26 | 2001-01-31 | 恩尼技术公司 | Parallel high voltage metal-oxide semiconductor field effect transistor high power steady-state amplifier |
CN101764061A (en) * | 2008-12-26 | 2010-06-30 | 马克斯半导体股份有限公司 | Power metal-oxide-semiconductor field effect transistor structure and processing method thereof |
CN101770956A (en) * | 2009-01-07 | 2010-07-07 | 尼克森微电子股份有限公司 | Power metal oxide semiconductor field effect transistor and manufacturing method thereof |
JP2012069662A (en) * | 2010-09-22 | 2012-04-05 | National Institute Of Advanced Industrial & Technology | Field effect transistor |
CN204966498U (en) * | 2014-07-29 | 2016-01-13 | 半导体元件工业有限责任公司 | Electronic device |
CN105528471A (en) * | 2014-10-15 | 2016-04-27 | 英飞凌科技奥地利有限公司 | Power transistor model |
FR3058850A1 (en) * | 2016-11-15 | 2018-05-18 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | POWER SWITCH COMPRISING A PLURALITY OF FIELD EFFECT TRANSISTORS MOUNTED IN PARALLEL |
Non-Patent Citations (3)
Title |
---|
500 V高压平面功率VDMOS场效应晶体管结构参数优化;李媛等;《渤海大学学报( 自然科学版)》;第39卷(第3期);第265-267页 * |
Advanced Low-Voltage Power MOSFET Technology for Power Supply in Package Applications;Boyi Yang et al.;《IEEE Transactions on Power Electronics》;第28卷(第9期);第4203-4211页 * |
肖特基接触有机场效应晶体管器件模型研究;范国莹;《中国优秀硕士学位论文全文数据库 信息科技辑》(第11期);第I135-71页 * |
Also Published As
Publication number | Publication date |
---|---|
CN112287506A (en) | 2021-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hefner | A dynamic electro-thermal model for the IGBT | |
CN106484928A (en) | Based on many softwares united Switching Power Supply electro thermal coupling emulation mode | |
CN104899350A (en) | Method for modeling SiC MOSFET simulation model | |
JP2010211387A (en) | Mosfet model and parameter extraction method thereof | |
CN113536723A (en) | Power device drain-source parasitic capacitance sub-circuit model and modeling method thereof | |
CN112287506B (en) | Simulation model of power metal oxide semiconductor transistor | |
CN105528471A (en) | Power transistor model | |
TWI702534B (en) | Simulation method of power metal oxide semiconductor transistor | |
CN104331580A (en) | Method for utilizing high-pressure field effect transistor sub circuit model to describe self-heating effect | |
Lirio et al. | Switching losses analysis in sic power mosfet | |
Bottaro et al. | Development of a SPICE modelling strategy for power devices in GaN technology | |
Pan et al. | A MOSFET EMC modeling method based on electrical characteristic measurement and simplex optimization and particle swarm optimization | |
CN112906226B (en) | A modeling method for a large signal model of a GaN-HEMT device | |
Kachi et al. | Full-chip simulation analysis of power MOSFET's during unclamped inductive switching with physics-base device models | |
van der Broeck et al. | Simulating switching of power electronic devices via generic state-space models | |
Liu et al. | Transistor transient studies including transcapacitive current and distributive gate resistance for inverter circuits | |
Hammer et al. | Modeling the effects of printed-circuit-board parasitics on the switching performance of wide-bandgap applications | |
Ghulam et al. | Accurate & Complete behaviourial SPICE modelling of commercial SiC Power MOSFET OF 1200V, 75A. | |
CN206850491U (en) | Super capacitor charge and discharge power detection circuit | |
CN112417804A (en) | A GaN HEMT Scaling Model Circuit Topology | |
Li et al. | Analytical model of fast-switching GaN HEMTs in bridge-leg considering nonlinear characteristics | |
Zhang et al. | A New SPICE Model for the Electro-Thermal Behavior of GaN HEMT | |
US7409649B2 (en) | System and method for automatically calculating parameters of an MOSFET | |
Linares et al. | Optimal Driving Strategies for GaN HEMT: A Numerical Non-Linear Datasheet-Based Model | |
Wang et al. | Research on a Simplified Behavioral Model of IGBTs Based on Particle Swarm Optimization Algorithm |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |