CN112285611A - Device Failure Location Analysis Method - Google Patents

Device Failure Location Analysis Method Download PDF

Info

Publication number
CN112285611A
CN112285611A CN202010983672.4A CN202010983672A CN112285611A CN 112285611 A CN112285611 A CN 112285611A CN 202010983672 A CN202010983672 A CN 202010983672A CN 112285611 A CN112285611 A CN 112285611A
Authority
CN
China
Prior art keywords
under test
device under
information
electromagnetic field
target height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010983672.4A
Other languages
Chinese (zh)
Other versions
CN112285611B (en
Inventor
邵伟恒
黄权
方文啸
王磊
黄云
路国光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Electronic Product Reliability and Environmental Testing Research Institute
Original Assignee
China Electronic Product Reliability and Environmental Testing Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Electronic Product Reliability and Environmental Testing Research Institute filed Critical China Electronic Product Reliability and Environmental Testing Research Institute
Priority to CN202010983672.4A priority Critical patent/CN112285611B/en
Publication of CN112285611A publication Critical patent/CN112285611A/en
Application granted granted Critical
Publication of CN112285611B publication Critical patent/CN112285611B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/56Testing of electric apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Tests Of Electronic Circuits (AREA)

Abstract

本申请涉及失效分析技术领域,具体公开一种器件失效分析定位方法,包括:对扫描探头进行校准,获取校准数据;控制扫描探头对待测器件进行扫描,并获得第一参数信息,第一参数信息用于表征待测器件扫描高度平面的电磁场信息;根据第一参数信息和校准数据,确定待测器件目标高度平面的电磁场信息;根据待测器件目标高度平面的电磁场信息,确定待测器件表面的电学分布;根据待测器件表面的电学分布,确定待测器件的失效位置。基于电磁注入和探测的原理,结合待测器件表面的电磁场信息实现对待测器件的失效位置的分析,相对于传统的失效分析方法而言,成本较低,且无需对待测器件进行破坏,整体失效定位方法可靠性较高。

Figure 202010983672

The present application relates to the technical field of failure analysis, and specifically discloses a device failure analysis and positioning method, including: calibrating a scanning probe to obtain calibration data; controlling the scanning probe to scan the device under test, and obtaining first parameter information, first parameter information Used to characterize the electromagnetic field information of the device under test scanning height plane; according to the first parameter information and calibration data, determine the electromagnetic field information of the device under test target height plane; according to the electromagnetic field information of the device under test target height plane, determine the surface of the device under test Electrical distribution: According to the electrical distribution on the surface of the device to be tested, determine the failure position of the device to be tested. Based on the principle of electromagnetic injection and detection, combined with the electromagnetic field information on the surface of the device under test, the failure position of the device under test can be analyzed. Compared with the traditional failure analysis method, the cost is lower, and the device under test does not need to be damaged. The overall failure The positioning method is highly reliable.

Figure 202010983672

Description

器件失效定位分析方法Device Failure Location Analysis Method

技术领域technical field

本发明涉及失效分析技术领域,特别是涉及一种器件失效定位分析方法。The invention relates to the technical field of failure analysis, in particular to a device failure location analysis method.

背景技术Background technique

随着科技的发展,电子器件逐渐呈现小型化发展趋势,相应地,针对电子器件的失效定位方法也是越来越复杂,传统技术中的失效定位方法主要包括X-ray技术、同步热发射技术、磁显微技术以及FIB分析技术等。With the development of science and technology, electronic devices are gradually showing a trend of miniaturization. Correspondingly, the failure localization methods for electronic devices are becoming more and more complex. The traditional methods of failure localization mainly include X-ray technology, synchronous thermal emission technology, Magnetic microscopy and FIB analysis.

其中,X-ray技术是通过X射线的透视技术,利用样品不同材料的衰减系数不同来检测样品内部缺陷的一种方法;同步热发射技术是通过检测热点来定位分析如金属线短路、氧化层击穿以及损伤等失效;磁显微缺陷定位技术是采用磁显微镜来定位缺陷,通过对器件表面的磁场进行分析,从而判断器件失效位置的技术;FIB(聚焦离子束)分析技术是利用电透射将离子束聚焦成非常小尺寸的离子束轰击材料表面,实现材料的剥离、沉积、注入、切割以及改性,制备缺陷金相截面来分析失效机理,找出器件失效的原因和位置。Among them, X-ray technology is a method of detecting internal defects of samples by using different attenuation coefficients of different materials of samples through X-ray perspective technology; synchronous thermal emission technology is to locate and analyze by detecting hot spots, such as metal wire short circuit, oxide layer Breakdown and damage and other failures; the magnetic microscopic defect localization technology uses a magnetic microscope to locate defects, and analyzes the magnetic field on the surface of the device to determine the failure location of the device; FIB (focused ion beam) analysis technology uses electrical transmission. Focus the ion beam into a very small ion beam to bombard the surface of the material, realize the stripping, deposition, implantation, cutting and modification of the material, prepare the defect metallographic cross section to analyze the failure mechanism, and find out the cause and location of the device failure.

以上各种失效定位分析方法,虽然能够实现对电子器件的失效分析,但是均存在一定的缺陷,例如磁显微缺陷定位技术中需采用低温超导测量,价格昂贵;FIB分析技术是一种破坏性的分析技术,需要对电子器件进行破坏等。Although the above failure location analysis methods can realize the failure analysis of electronic devices, they all have certain defects. For example, the magnetic microscopic defect location technology needs to use low temperature superconductivity measurement, which is expensive; It is necessary to destroy the electronic devices and so on.

基于此,如何实现低成本且可靠性高的器件失效定位分析是本领域急需解决的技术问题之一。Based on this, how to realize low-cost and high-reliability device failure location analysis is one of the technical problems that needs to be solved urgently in the art.

发明内容SUMMARY OF THE INVENTION

基于此,有必要针对如何实现低成本且可靠性高的器件失效定位分析的问题,提供一种器件失效定位分析方法。Based on this, it is necessary to provide a device failure location analysis method for the problem of how to achieve low-cost and high-reliability device failure location analysis.

一种器件失效定位分析方法,所述器件失效定位分析方法基于近场探测系统,所述近场探测系统包括扫描探头和信号分析设备,所述扫描探头用于对所述待测器件进行近场扫描,所述信号分析设备用于注入信号至所述待测器件,以及分析所述扫描探头扫描产生的信号;所述器件失效定位方法包括:A device failure location analysis method, the device failure location analysis method is based on a near-field detection system, the near-field detection system includes a scanning probe and a signal analysis device, and the scanning probe is used to perform a near-field on the device under test. scanning, the signal analysis device is used for injecting a signal into the device under test, and analyzing the signal generated by the scanning of the scanning probe; the device failure locating method includes:

对所述扫描探头进行校准,获取校准数据;Calibrating the scanning probe to obtain calibration data;

控制所述扫描探头对所述待测器件进行扫描,并获得第一参数信息,所述第一参数信息用于表征所述待测器件扫描高度平面的电磁场信息;Controlling the scanning probe to scan the device under test, and obtaining first parameter information, where the first parameter information is used to characterize the electromagnetic field information of the device under test scanning height plane;

根据所述第一参数信息和所述校准数据,确定所述待测器件目标高度平面的电磁场信息;According to the first parameter information and the calibration data, determine the electromagnetic field information of the target height plane of the device under test;

根据所述待测器件目标高度平面的电磁场信息,确定所述待测器件表面的电学分布;According to the electromagnetic field information of the target height plane of the device under test, determine the electrical distribution on the surface of the device under test;

根据所述待测器件表面的电学分布,确定所述待测器件的失效位置。The failure position of the device under test is determined according to the electrical distribution on the surface of the device under test.

在其中一个实施例中,所述对所述扫描探头进行校准,获取校准数据的步骤包括:In one embodiment, the step of calibrating the scanning probe and acquiring calibration data includes:

仿真获得校准器件在目标高度平面的电磁场信息;The electromagnetic field information of the calibration device at the target height plane is obtained by simulation;

控制所述扫描探头对所述校准器件进行扫描,获得第二参数信息,所述第二参数信息用于表征所述校准器件在扫描高度平面的电磁场信息;controlling the scanning probe to scan the calibration device to obtain second parameter information, where the second parameter information is used to characterize the electromagnetic field information of the calibration device in the scanning height plane;

所述根据所述第一参数信息和所述校准数据,确定所述待测器件目标高度平面的电磁场信息的步骤包括:The step of determining the electromagnetic field information of the target height plane of the device under test according to the first parameter information and the calibration data includes:

根据所述第一参数信息、所述第二参数信息以及所述校准器件在目标高度平面的电磁场信息,获得所述待测器件目标高度平面的电磁场信息。According to the first parameter information, the second parameter information and the electromagnetic field information of the calibration device at the target height plane, the electromagnetic field information of the device under test at the target height plane is obtained.

在其中一个实施例中,所述根据所述第一参数信息、所述第二参数信息以及所述校准器件在目标高度平面的电磁场信息,获得所述待测器件目标高度平面的电磁场信息的步骤包括:In one of the embodiments, the step of obtaining the electromagnetic field information of the device under test at the target height plane according to the first parameter information, the second parameter information and the electromagnetic field information of the calibration device at the target height plane include:

对所述第一参数信息进行PWS域变换,得到第一频域信息,对所述第二参数信息进行PWS域变换,得到第二频域信息,对仿真获得的校准器件在目标高度平面的电磁场信息进行PWS域变换,得到第三频域信息;Perform PWS domain transformation on the first parameter information to obtain first frequency domain information, perform PWS domain transformation on the second parameter information to obtain second frequency domain information, and perform simulation on the electromagnetic field of the calibration device at the target height plane. The information is transformed in the PWS domain to obtain the third frequency domain information;

根据所述第一频域信息、所述第二频域信息以及所述第三频域信息,获得所述待测器件目标高度平面的电磁场信息所对应的第四频域信息;According to the first frequency domain information, the second frequency domain information and the third frequency domain information, obtain fourth frequency domain information corresponding to the electromagnetic field information of the target height plane of the device under test;

对所述第四频域信息进行PWS域逆变换,得到待测器件目标高度平面的电磁场信息。Perform inverse PWS domain transformation on the fourth frequency domain information to obtain electromagnetic field information on the target height plane of the device under test.

在其中一个实施例中,所述根据所述第一频域信息、所述第二频域信息以及所述第三频域信息,获得所述待测器件目标高度平面的电磁场信息所对应的第四频域信息的步骤包括:In one embodiment, the first frequency domain information corresponding to the electromagnetic field information of the target height plane of the device under test is obtained according to the first frequency domain information, the second frequency domain information and the third frequency domain information The steps of four frequency domain information include:

通过以下公式获得所述待测器件目标高度平面的电磁场信息所对应的第四频域信息:The fourth frequency domain information corresponding to the electromagnetic field information of the target height plane of the device under test is obtained by the following formula:

Figure BDA0002688375220000031
Figure BDA0002688375220000031

其中,

Figure BDA0002688375220000032
为所述待测器件目标高度zj平面的电磁场信息所对应的第四频域信息,
Figure BDA0002688375220000033
为仿真获得的校准器件在目标高度zj平面的电磁场信息所对应的第三频域信息,
Figure BDA0002688375220000034
为所述校准器件扫描高度zi平面的电磁场信息所对应的第二频域信息,
Figure BDA0002688375220000035
为所述待测器件扫描高度zi平面的电磁场信息所对应的第一频域信息。in,
Figure BDA0002688375220000032
is the fourth frequency domain information corresponding to the electromagnetic field information of the target height z j plane of the device under test,
Figure BDA0002688375220000033
is the third frequency domain information corresponding to the electromagnetic field information of the calibration device at the target height z j plane obtained by simulation,
Figure BDA0002688375220000034
the second frequency domain information corresponding to the electromagnetic field information of the scanning height zi plane for the calibration device,
Figure BDA0002688375220000035
First frequency domain information corresponding to the electromagnetic field information of the scanning height zi plane for the device under test.

在其中一个实施例中,所述电磁场信息包括磁场强度信息;In one of the embodiments, the electromagnetic field information includes magnetic field strength information;

所述根据所述待测器件目标高度平面的电磁场信息,确定所述待测器件表面的电学分布的步骤包括:The step of determining the electrical distribution on the surface of the device under test according to the electromagnetic field information of the target height plane of the device under test includes:

根据所述待测器件目标高度平面的磁场强度信息,获得所述待测器件表面X轴方向和Y轴方向的电流分量;According to the magnetic field intensity information of the target height plane of the device under test, the current components in the X-axis direction and the Y-axis direction of the surface of the device under test are obtained;

根据所述待测器件表面X轴方向和Y轴方向的电流分量,确定所述待测器件表面的面电流密度的位置分布。The positional distribution of the surface current density on the surface of the device to be tested is determined according to the current components in the X-axis direction and the Y-axis direction of the surface of the device to be tested.

在其中一个实施例中,所述电磁场信息包括电场强度信息;In one of the embodiments, the electromagnetic field information includes electric field strength information;

所述根据所述待测器件目标高度平面的电磁场信息,确定所述待测器件表面的电学分布的步骤包括:The step of determining the electrical distribution on the surface of the device under test according to the electromagnetic field information of the target height plane of the device under test includes:

根据所述待测器件目标高度平面的电场强度信息,确定所述待测器件表面的面电荷分布。According to the electric field intensity information of the target height plane of the device under test, the surface charge distribution on the surface of the device under test is determined.

在其中一个实施例中,所述根据所述待测器件表面的电学分布,确定所述待测器件的失效位置的步骤包括:In one embodiment, the step of determining the failure position of the device under test according to the electrical distribution on the surface of the device under test includes:

根据所述待测器件表面的面电流密度的位置分布,确定注入至所述待测器件的电流信号的轨迹;Determine the trajectory of the current signal injected into the device under test according to the positional distribution of the surface current density on the surface of the device under test;

根据所述电流信号的轨迹,确定驻波电流分布曲线;According to the trajectory of the current signal, determine the standing wave current distribution curve;

对所述驻波电流分布曲线进行拟合,确定所述待测器件开路失效的位置。The standing wave current distribution curve is fitted to determine the position of the open-circuit failure of the device under test.

在其中一个实施例中,所述根据所述待测器件表面的电学分布,确定所述待测器件的失效位置的步骤还包括:In one embodiment, the step of determining the failure position of the device under test according to the electrical distribution on the surface of the device under test further includes:

根据所述待测器件表面的面电荷分布,确定注入至所述待测器件的电流信号的轨迹;According to the surface charge distribution on the surface of the device under test, determine the trajectory of the current signal injected into the device under test;

根据所述电流信号的轨迹,确定驻波电流分布曲线;According to the trajectory of the current signal, determine the standing wave current distribution curve;

对所述驻波电流分布曲线进行拟合,确定所述待测器件短路失效的位置。The standing wave current distribution curve is fitted to determine the short-circuit failure position of the device under test.

在其中一个实施例中,所述对所述驻波电流分布曲线进行拟合的步骤包括:In one of the embodiments, the step of fitting the standing wave current distribution curve includes:

通过以下拟合公式对所述驻波电流分布曲线进行拟合:The standing wave current distribution curve is fitted by the following fitting formula:

Figure BDA0002688375220000051
Figure BDA0002688375220000051

其中,I为电流信号,z为电流信号距离失效位置的距离,β为相位常数,Z0是特性阻抗,PRF为入射功率。Among them, I is the current signal, z is the distance of the current signal from the failure position, β is the phase constant, Z 0 is the characteristic impedance, and P RF is the incident power.

在其中一个实施例中,在所述根据所述第一参数信息和所述校准数据,确定所述待测器件目标高度平面的电磁场信息的步骤之后,所述器件失效定位分析方法还包括:In one embodiment, after the step of determining the electromagnetic field information of the target height plane of the device under test according to the first parameter information and the calibration data, the device failure location analysis method further includes:

对比所述待测器件目标高度平面的电磁场分布图以及良品器件目标高度平面的电磁场分布图,确定所述待测器件的失效位置。The failure position of the device under test is determined by comparing the electromagnetic field distribution diagram of the target height plane of the device under test with the electromagnetic field distribution diagram of the target height plane of the good device.

上述器件失效定位分析方法,基于近场探测系统,首先对近场探测系统的扫描探头进行校准,获取校准数据;然后控制扫描探头扫描待测器件,并获得表征待测器件在扫描高度平面的电磁场信息的第一参数信息;再根据第一参数信息和校准数据,确定待测器件目标高度平面的电磁场信息,进而确定待测器件表面的电学分布;最后根据待测器件表面的电学分布,确定待测器件的失效位置。即,基于电磁注入和探测的原理,结合待测器件表面的电磁场信息实现对待测器件的失效位置的分析,相对于传统的失效分析方法而言,成本较低,且无需对待测器件进行破坏,整体失效定位方法可靠性较高。The above-mentioned device failure location analysis method is based on the near-field detection system. First, the scanning probe of the near-field detection system is calibrated to obtain calibration data; then the scanning probe is controlled to scan the device under test, and the electromagnetic field characterizing the device under test in the scanning height plane is obtained. Then, according to the first parameter information and calibration data, determine the electromagnetic field information of the target height plane of the device under test, and then determine the electrical distribution on the surface of the device under test; finally, according to the electrical distribution on the surface of the device under test, determine the failure location of the test device. That is, based on the principle of electromagnetic injection and detection, combined with the electromagnetic field information on the surface of the device under test, the failure position analysis of the device under test is realized. Compared with the traditional failure analysis method, the cost is lower, and the device under test does not need to be damaged. The overall failure localization method has high reliability.

附图说明Description of drawings

图1为本申请实施例提供的近场探测系统的结构示意图;FIG. 1 is a schematic structural diagram of a near-field detection system provided by an embodiment of the present application;

图2为本申请实施例提供的器件失效定位分析方法的流程框图;2 is a flowchart of a method for locating a device failure provided by an embodiment of the present application;

图3为本申请实施例提供的器件失效定位分析方法中涉及到的不同高度平面的示意图;3 is a schematic diagram of different height planes involved in the device failure location analysis method provided by the embodiment of the present application;

图4为本申请实施例提供的器件失效定位分析方法中步骤S100的流程框图;FIG. 4 is a flowchart of step S100 in the device failure location analysis method provided by the embodiment of the present application;

图5为本申请实施例提供的器件失效定位分析方法中步骤S301的流程框图;FIG. 5 is a flowchart of step S301 in the device failure location analysis method provided by the embodiment of the present application;

图6为本申请实施例提供的器件失效定位分析方法中步骤S400的流程框图;6 is a flowchart of step S400 in the device failure location analysis method provided by the embodiment of the present application;

图7为本申请实施例提供的器件失效定位分析方法中步骤S500的流程框图;7 is a flowchart of step S500 in the device failure location analysis method provided by the embodiment of the present application;

图8为本申请实施例提供的器件失效定位分析方法中驻波电流分布曲线的示意图;8 is a schematic diagram of a standing wave current distribution curve in a device failure location analysis method provided by an embodiment of the present application;

图9和图10为本申请实施例提供的器件失效定位分析方法中良品器件和待测器件的电磁场分布图。FIG. 9 and FIG. 10 are electromagnetic field distribution diagrams of a good device and a device under test in the device failure location analysis method provided by the embodiment of the present application.

具体实施方式Detailed ways

为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的优选实施方式。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反的,提供这些实施方式的目的是为了对本发明的公开内容理解得更加透彻全面。In order to facilitate understanding of the present invention, the present invention will be described more fully hereinafter with reference to the related drawings. Preferred embodiments of the invention are shown in the accompanying drawings. However, the present invention may be embodied in many different forms and is not limited to the embodiments described herein. Rather, these embodiments are provided so that the present disclosure will be more thorough and complete.

在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。In the present invention, unless otherwise expressly specified and limited, the terms "installed", "connected", "connected", "fixed" and other terms should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between the two elements, unless otherwise specified limit. For those of ordinary skill in the art, the specific meanings of the above terms in the present invention can be understood according to specific situations.

术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。The terms "first" and "second" are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Thus, a feature delimited with "first", "second" may expressly or implicitly include at least one of that feature. In the description of the present invention, "plurality" means at least two, such as two, three, etc., unless otherwise expressly and specifically defined.

除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The terms used herein in the description of the present invention are for the purpose of describing specific embodiments only, and are not intended to limit the present invention. As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items.

目前常见的器件失效分析方法主要是采用X-ray分析技术、同步热发射技术、磁显微技术以及FIB分析技术。其中,X-ray分析技术是一种利用X射线的透视技术,利用样品不同材料的衰减系数不同来检测样品内部缺陷的一种方法,衰减程度与样品的材料、厚度和密度等有关,透过样品的强度随着材料的吸收系数和厚度呈指数衰减,形成材料的内部结构和缺陷对应于灰度不同的图像。同步热发射技术是通过检测热点来定位分析如金属线短路、氧化层击穿、损伤等失效。磁显微技术是采用磁显微镜来定位缺陷,通过对器件表面的磁场进行分析,从而判断器件失效位置。FIB(聚焦离子束,Focused Ion beam)缺陷分析技术是利用电透射将离子束聚焦成非常小尺寸的离子束轰击材料表面,实现材料的剥离、沉积、注入、切割和改性,在很多失效分析案例中,需要制备缺陷金相截面来分析失效机理,找出器件失效的原因和所在位置点。At present, the common device failure analysis methods mainly use X-ray analysis technology, synchronous thermal emission technology, magnetic microscopy technology and FIB analysis technology. Among them, X-ray analysis technology is a fluoroscopy technology using X-rays, and a method of detecting the internal defects of the sample by using the different attenuation coefficients of different materials of the sample. The attenuation degree is related to the material, thickness and density of the sample. The intensity of the sample decays exponentially with the absorption coefficient and thickness of the material, forming images of the internal structure and defects of the material corresponding to different grayscales. Synchronous thermal emission technology locates and analyzes failures such as metal wire short circuit, oxide layer breakdown, damage, etc. by detecting hot spots. Magnetic microscopy uses a magnetic microscope to locate defects, and analyzes the magnetic field on the surface of the device to determine the failure location of the device. FIB (Focused Ion Beam) defect analysis technology is to use electric transmission to focus the ion beam into a very small ion beam to bombard the surface of the material, to achieve material stripping, deposition, implantation, cutting and modification, in many failure analysis In the case, it is necessary to prepare the defect metallographic cross section to analyze the failure mechanism and find out the cause and location of the device failure.

上述失效分析方法虽然均能够实现器件失效分析,但是要么成本较高,要么需要对器件本身进行破坏,要么不适用于大规模器件的失效分析。Although all of the above failure analysis methods can achieve device failure analysis, they are either costly, require damage to the device itself, or are not suitable for failure analysis of large-scale devices.

针对上述问题,本申请区别于传统的失效分析方法,基于电磁近场探测原理提供了一种成本较低的、适用于大规模器件的且可靠性高的器件失效定位分析方法。In view of the above problems, the present application is different from traditional failure analysis methods, and provides a device failure location analysis method with low cost, suitable for large-scale devices and high reliability based on the principle of electromagnetic near-field detection.

本申请提供的一种器件失效定位分析方法基于近场探测系统,首先对近场探测系统进行介绍。A device failure location analysis method provided in this application is based on a near-field detection system, and the near-field detection system is first introduced.

如图1所示,本申请中的近场探测系统包括扫描探头和信号分析设备,扫描探头用于对待测器件进行近场扫描,信号分析设备用于注入信号至待测器件,以及分析扫描探头扫描产生的信号。As shown in FIG. 1 , the near-field detection system in this application includes a scanning probe and a signal analysis device. The scanning probe is used for near-field scanning of the device under test, the signal analysis device is used for injecting signals into the device under test, and the scanning probe is used to analyze Scan the resulting signal.

其中,扫描探头为近场探头,可以包括复合探头以及单探头等。信号分析设备可以包括网络分析仪,可通过扎针或焊接的方式将网络分析仪的端口与待测器件的失效引脚连接,通过网络分析仪的端口向待测器件的失效引脚注入电流信号。近场探头与网络分析仪相连接,用于对待测器件进行近场扫描,并产生电信号,网络分析仪接收到电信号后对其进行分析,进而可得到相应的电磁场信息。扫描过程中,近场探头不接触待测器件表面,与待测器件表面保持较小的间距,如100μm。The scanning probe is a near-field probe, which may include a composite probe and a single probe. The signal analysis equipment may include a network analyzer, the port of the network analyzer can be connected to the failed pin of the device under test by pinning or welding, and a current signal can be injected into the failed pin of the device under test through the port of the network analyzer. The near-field probe is connected to the network analyzer, and is used to scan the device under test in the near field and generate an electrical signal. After the network analyzer receives the electrical signal, it analyzes it, and then the corresponding electromagnetic field information can be obtained. During the scanning process, the near-field probe does not touch the surface of the device to be tested, and maintains a small distance, such as 100 μm, from the surface of the device to be tested.

此外,也可以单独设置用于给待测器件的失效引脚注入电流信号的信号源,即对扫描探头产生的信号进行分析的信号分析设备和信号源分开设置。In addition, a signal source for injecting a current signal into the failed pin of the device under test can also be set separately, that is, the signal analysis device and the signal source for analyzing the signal generated by the scanning probe are set separately.

如图2所示,本申请提供的器件失效定位方法包括以下步骤:As shown in FIG. 2 , the device failure location method provided by the present application includes the following steps:

步骤S100、对扫描探头进行校准,获取校准数据。Step S100, calibrating the scanning probe to obtain calibration data.

在对待测器件进行扫描探测前,首先对扫描探头进行校准,得到校准数据,以便后续结合校准数据对待测器件表面的电磁场信息进行分析。Before scanning and detecting the device under test, the scanning probe is first calibrated to obtain calibration data, so as to analyze the electromagnetic field information on the surface of the device under test in combination with the calibration data later.

步骤S200、控制扫描探头对待测器件进行扫描,并获得第一参数信息,第一参数信息用于表征待测器件扫描高度平面的电磁场信息。Step S200 , controlling the scanning probe to scan the device under test, and obtaining first parameter information, where the first parameter information is used to represent the electromagnetic field information of the scanning height plane of the device under test.

当对扫描探头校准完毕后,即可通过扫描探头对待测器件进行扫描,即,控制扫描探头在待测器件表面上方预设高度的平面进行扫描,本申请中将该平面定义为扫描高度平面。当信号分析设备获取到扫描探头产生的电信号,即可分析获得第一参数信息,其中,第一参数信息用于表征待测器件扫描高度平面的电磁场信息。After the scanning probe is calibrated, the device under test can be scanned by the scanning probe, that is, the scanning probe is controlled to scan a plane with a preset height above the surface of the device under test, which is defined as the scanning height plane in this application. When the signal analysis device obtains the electrical signal generated by the scanning probe, the first parameter information can be obtained by analysis, wherein the first parameter information is used to characterize the electromagnetic field information of the scanning height plane of the device under test.

步骤S300、根据第一参数信息和校准数据,确定待测器件目标高度平面的电磁场信息。Step S300: Determine the electromagnetic field information of the target height plane of the device under test according to the first parameter information and the calibration data.

其中,目标高度平面指的是距离待测器件表面一定高度的平面,当获取到第一参数信息和校准数据后,即可根据第一参数信息和校准数据,获取待测器件目标高度平面的电磁场信息。The target height plane refers to a plane with a certain height from the surface of the device under test. After the first parameter information and calibration data are obtained, the electromagnetic field of the target height plane of the device under test can be obtained according to the first parameter information and calibration data. information.

步骤S400、根据待测器件目标高度平面的电磁场信息,确定待测器件表面的电学分布。Step S400: Determine the electrical distribution on the surface of the device to be tested according to the electromagnetic field information of the target height plane of the device to be tested.

当获取到待测器件目标高度平面的电磁场信息后,可以据此确定待测器件表面的电学分布,其中,电学分布可以包括面电流密度的位置分布和/或面电荷分布等。After acquiring the electromagnetic field information of the target height plane of the device under test, the electrical distribution on the surface of the device under test can be determined accordingly, wherein the electrical distribution can include the position distribution of the surface current density and/or the surface charge distribution, etc.

步骤S500、根据待测器件表面的电学分布,确定待测器件的失效位置。Step S500 , determining the failure position of the device under test according to the electrical distribution on the surface of the device under test.

上述器件失效定位分析方法,基于近场探测系统,首先对近场探测系统的扫描探头进行校准,获取校准数据;然后控制扫描探头扫描待测器件,并获得表征待测器件在扫描高度平面的电磁场信息的第一参数信息;再根据第一参数信息和校准数据,确定待测器件目标高度平面的电磁场信息,进而确定待测器件表面的电学分布;最后根据待测器件表面的电学分布,确定待测器件的失效位置。即,基于电磁注入和探测的原理,结合待测器件表面的电磁场信息实现对待测器件的失效位置的分析,相对于传统的失效分析方法而言,成本较低,且无需对待测器件进行破坏,整体失效定位方法可靠性较高。另外,本申请提供的器件失效定位分析方法可应用于大规模器件的失效定位分析。The above-mentioned device failure location analysis method is based on the near-field detection system. First, the scanning probe of the near-field detection system is calibrated to obtain calibration data; then the scanning probe is controlled to scan the device under test, and the electromagnetic field characterizing the device under test in the scanning height plane is obtained. Then, according to the first parameter information and calibration data, determine the electromagnetic field information of the target height plane of the device under test, and then determine the electrical distribution on the surface of the device under test; finally, according to the electrical distribution on the surface of the device under test, determine the failure location of the test device. That is, based on the principle of electromagnetic injection and detection, combined with the electromagnetic field information on the surface of the device under test, the failure position analysis of the device under test is realized. Compared with the traditional failure analysis method, the cost is lower, and the device under test does not need to be damaged. The overall failure localization method has high reliability. In addition, the device failure location analysis method provided in the present application can be applied to the failure location analysis of large-scale devices.

如图4所示,在其中一个实施例中,步骤S100,即对扫描探头进行校准,获取校准数据的步骤包括以下步骤:As shown in FIG. 4 , in one embodiment, step S100, that is, calibrating the scanning probe, and the step of acquiring calibration data includes the following steps:

步骤S101、仿真获得校准器件在目标高度平面的电磁场信息。Step S101 , obtain electromagnetic field information of the calibration device on the target height plane through simulation.

具体地,可以采用计算机仿真方法例如HFSS仿真,获取校准器件在目标高度Zj平面的电磁场信息。本实施例中,电磁场信息可以包括电场强度信息和/或磁场强度信息。Specifically, a computer simulation method such as HFSS simulation can be used to obtain the electromagnetic field information of the calibration device at the target height Z j plane. In this embodiment, the electromagnetic field information may include electric field strength information and/or magnetic field strength information.

步骤S102、控制扫描探头对校准器件进行扫描,获得第二参数信息,第二参数信息用于表征校准器件在扫描高度平面的电磁场信息。Step S102 , controlling the scanning probe to scan the calibration device to obtain second parameter information, where the second parameter information is used to characterize the electromagnetic field information of the calibration device in the scanning height plane.

采用前述近场探测系统,配置好校准器件、信号分析设备以及扫描探头。控制扫描探头对校准器件进行扫描,信号分析设备获取到扫描探头产生的电信号,分析获得第二参数信息。第二参数信息为信号分析设备,例如网络分析仪根据扫描探头产生的电信号能够直接测出来的参数,用于表征校准器件在扫描高度平面的电磁场信息。Using the aforementioned near-field detection system, configure calibration devices, signal analysis equipment and scanning probes. The scanning probe is controlled to scan the calibration device, and the signal analysis device acquires the electrical signal generated by the scanning probe, and analyzes to obtain the second parameter information. The second parameter information is a signal analysis device, such as a parameter that can be directly measured by a network analyzer according to an electrical signal generated by a scanning probe, which is used to characterize the electromagnetic field information of the calibration device at the scanning height plane.

在其中一个实施例中,步骤S300,即根据第一参数信息和校准数据,确定待测器件目标高度平面的电磁场信息的步骤包括以下步骤:In one embodiment, step S300, that is, the step of determining the electromagnetic field information of the target height plane of the device under test according to the first parameter information and the calibration data includes the following steps:

步骤S301、根据第一参数信息、第二参数信息以及校准器件在目标高度平面的电磁场信息,获得待测器件目标高度平面的电磁场信息。Step S301 , according to the first parameter information, the second parameter information, and the electromagnetic field information of the calibration device on the target height plane, obtain the electromagnetic field information of the device under test at the target height plane.

当获取到了用于表征待测器件扫描高度平面的电磁场信息的第一参数信息、用于表征校准器件在扫描高度平面的电磁场信息的第二参数信息以及校准器件在目标高度平面的电磁场信息,即可通过类比法确定待测器件目标高度平面的电磁场信息。When the first parameter information used to characterize the electromagnetic field information of the device under test at the scanning height plane, the second parameter information used to characterize the electromagnetic field information of the calibration device at the scanning height plane, and the electromagnetic field information of the calibration device at the target height plane are obtained, namely The electromagnetic field information of the target height plane of the device under test can be determined by analogy.

如图5所示,在其中一个实施例中,步骤S301,即根据第一参数信息、第二参数信息以及校准器件在目标高度平面的电磁场信息,获得待测器件目标高度平面的电磁场信息的步骤包括以下步骤:As shown in FIG. 5 , in one embodiment, step S301 is the step of obtaining the electromagnetic field information of the device under test at the target height plane according to the first parameter information, the second parameter information and the electromagnetic field information of the calibration device at the target height plane Include the following steps:

步骤S3011、对第一参数信息进行PWS域变换,得到第一频域信息,对第二参数信息进行PWS域变换,得到第二频域信息,对仿真获得的校准器件在目标高度平面的电磁场信息进行PWS域变换,得到第三频域信息。Step S3011, performing PWS domain transformation on the first parameter information to obtain the first frequency domain information, performing PWS domain transformation on the second parameter information to obtain the second frequency domain information, and comparing the electromagnetic field information of the calibration device obtained by simulation on the target height plane Perform PWS domain transformation to obtain third frequency domain information.

步骤S3012、根据第一频域信息、第二频域信息以及第三频域信息,获得待测器件目标高度平面的电磁场信息所对应的第四频域信息。Step S3012 , according to the first frequency domain information, the second frequency domain information and the third frequency domain information, obtain fourth frequency domain information corresponding to the electromagnetic field information on the target height plane of the device under test.

步骤S3013、对第四频域信息进行PWS域逆变换,得到待测器件目标高度平面的电磁场信息。Step S3013: Perform inverse PWS domain transformation on the fourth frequency domain information to obtain electromagnetic field information on the target height plane of the device under test.

具体地,可根据平面波谱理论对第一参数信息、第二参数信息以及仿真获得的校准器件在目标高度平面的电磁场信息做PWS域变换,即,将位置域转变为对应的频域信息,分别为第一频域信息、第二频域信息以及第三频域信息。再通过校准件的频域类比,将第一频域信息变换为第四频域信息,第四频域信息与待测器件目标高度平面的电磁场信息对应。最后再对第四频域信息进行PWS域逆变换,得到待测器件在目标高度平面的电磁场信息。Specifically, the first parameter information, the second parameter information and the electromagnetic field information of the calibration device obtained by simulation on the target height plane can be transformed into the PWS domain according to the plane wave spectrum theory, that is, the position domain is transformed into the corresponding frequency domain information, respectively. are the first frequency domain information, the second frequency domain information and the third frequency domain information. Then, the first frequency domain information is transformed into fourth frequency domain information through the frequency domain analogy of the calibration piece, and the fourth frequency domain information corresponds to the electromagnetic field information of the target height plane of the device under test. Finally, the fourth frequency domain information is inversely transformed in the PWS domain to obtain the electromagnetic field information of the device under test at the target height plane.

在其中一个实施例中,步骤S3012,即根据第一频域信息、第二频域信息以及第三频域信息,获得待测器件目标高度平面的电磁场信息所对应的第四频域信息的步骤包括以下步骤:In one embodiment, step S3012 is the step of obtaining fourth frequency domain information corresponding to the electromagnetic field information of the target height plane of the device under test according to the first frequency domain information, the second frequency domain information and the third frequency domain information Include the following steps:

通过以下公式获得待测器件目标高度平面的电磁场信息所对应的第四频域信息:The fourth frequency domain information corresponding to the electromagnetic field information of the target height plane of the device under test is obtained by the following formula:

Figure BDA0002688375220000111
Figure BDA0002688375220000111

其中,

Figure BDA0002688375220000112
为所述待测器件目标高度zj平面的电磁场信息所对应的第四频域信息,
Figure BDA0002688375220000113
为仿真获得的校准器件在目标高度zj平面的电磁场信息所对应的第三频域信息,
Figure BDA0002688375220000114
为所述校准器件扫描高度zi平面的电磁场信息所对应的第二频域信息,
Figure BDA0002688375220000115
为所述待测器件扫描高度zi平面的电磁场信息所对应的第一频域信息。in,
Figure BDA0002688375220000112
is the fourth frequency domain information corresponding to the electromagnetic field information of the target height z j plane of the device under test,
Figure BDA0002688375220000113
is the third frequency domain information corresponding to the electromagnetic field information of the calibration device at the target height z j plane obtained by simulation,
Figure BDA0002688375220000114
the second frequency domain information corresponding to the electromagnetic field information of the scanning height zi plane for the calibration device,
Figure BDA0002688375220000115
First frequency domain information corresponding to the electromagnetic field information of the scanning height zi plane for the device under test.

如图6所示,在其中一个实施例中,电磁场信息包括磁场强度信息;As shown in FIG. 6, in one embodiment, the electromagnetic field information includes magnetic field strength information;

步骤S400,即根据待测器件目标高度平面的电磁场信息,确定待测器件表面的电学分布的步骤包括以下步骤:Step S400, that is, according to the electromagnetic field information of the target height plane of the device to be tested, the step of determining the electrical distribution on the surface of the device to be tested includes the following steps:

步骤S401、根据待测器件目标高度平面的磁场强度信息,获得待测器件表面X轴方向和Y轴方向的电流分量。Step S401 , according to the magnetic field intensity information of the target height plane of the device under test, obtain the current components in the X-axis direction and the Y-axis direction of the surface of the device under test.

具体地,可以首先将待测器件目标高度平面的磁场强度信息变换至平面波谱域,然后计算获得X轴方向和Y轴方向的电流分量。Specifically, the magnetic field intensity information of the target height plane of the device under test can be first transformed into the plane wave spectrum domain, and then the current components in the X-axis direction and the Y-axis direction can be obtained by calculation.

步骤S402、根据待测器件表面X轴方向和Y轴方向的电流分量,确定待测器件表面的面电流密度的位置分布。Step S402: Determine the positional distribution of the surface current density on the surface of the device to be tested according to the current components in the X-axis direction and the Y-axis direction of the surface of the device to be tested.

具体地,对获得的X轴方向和Y轴方向的电流分量分别进行逆变换,得到对应的位置域信息,再根据X轴方向的电流分量的位置域信息和Y轴方向的电流分量的位置域信息计算获得待测器件表面的面电流密度的位置分布。Specifically, the obtained current components in the X-axis direction and the Y-axis direction are respectively inversely transformed to obtain the corresponding position domain information, and then according to the position domain information of the current component in the X-axis direction and the position domain of the current component in the Y-axis direction. The information calculation obtains the positional distribution of the surface current density on the surface of the device under test.

在其中一个实施例中,电磁场信息包括电场强度信息;In one of the embodiments, the electromagnetic field information includes electric field strength information;

步骤S400,即根据待测器件目标高度平面的电磁场信息,确定待测器件表面的电学分布的步骤包括以下步骤:Step S400, that is, according to the electromagnetic field information of the target height plane of the device to be tested, the step of determining the electrical distribution on the surface of the device to be tested includes the following steps:

步骤S403、根据待测器件目标高度平面的电场强度信息,确定待测器件表面的面电荷分布。Step S403: Determine the surface charge distribution on the surface of the device to be tested according to the electric field intensity information of the target height plane of the device to be tested.

具体地,可以首先将待测器件目标高度平面的电场强度信息变换至平面波谱域,进而根据待测器件目标高度平面的电场强度信息对应的平面波谱域信息,计算获得待测器件表面的面电荷分布的平面波谱域信息,最后对待测器件表面的面电荷分布的平面波谱域信息逆变换,得到所需的待测器件表面的面电荷分布。Specifically, the electric field intensity information of the target height plane of the device under test can be transformed into the plane wave spectral domain, and then the surface charge on the surface of the device under test can be calculated and obtained according to the plane wave spectral domain information corresponding to the electric field intensity information of the target height plane of the device under test. The distributed plane wave spectral domain information, and finally the inverse transform of the plane wave spectral domain information of the surface charge distribution on the surface of the device under test, to obtain the required surface charge distribution on the surface of the device under test.

如图7所示,在其中一个实施例中,步骤S500,即根据待测器件表面的电学分布,确定待测器件的失效位置的步骤包括以下步骤:As shown in FIG. 7 , in one embodiment, step S500, that is, the step of determining the failure position of the device under test according to the electrical distribution on the surface of the device under test includes the following steps:

步骤S501、根据待测器件表面的面电流密度的位置分布,确定注入至待测器件的电流信号的轨迹。Step S501 , determining the trajectory of the current signal injected into the device under test according to the positional distribution of the surface current density on the surface of the device under test.

步骤S502、根据电流信号的轨迹,确定驻波电流分布曲线。Step S502: Determine the standing wave current distribution curve according to the trajectory of the current signal.

步骤S503、对驻波电流分布曲线进行拟合,确定待测器件开路失效的位置。Step S503 , fitting the standing wave current distribution curve to determine the position of the open-circuit failure of the device under test.

当待测器件内部线路开路时,电流信号的轨迹沿线的电流分布表现为正弦驻波形式,当确定了驻波电流分布曲线后,即可根据拟合公式对驻波电流分布曲线进行拟合,进而确定待测器件开路点的位置。When the internal circuit of the device under test is open, the current distribution along the trajectory of the current signal is in the form of a sine standing wave. After the standing wave current distribution curve is determined, the standing wave current distribution curve can be fitted according to the fitting formula. Then determine the position of the open circuit point of the device under test.

在其中一个实施例中,步骤S500,即根据待测器件表面的电学分布,确定待测器件的失效位置的步骤还包括以下步骤:In one embodiment, step S500, that is, the step of determining the failure position of the device under test according to the electrical distribution on the surface of the device under test further includes the following steps:

步骤S504、根据待测器件表面的面电荷分布,确定注入至待测器件的电流信号的轨迹。Step S504 , determining the trajectory of the current signal injected into the device under test according to the surface charge distribution on the surface of the device under test.

步骤S505、根据电流信号的轨迹,确定驻波电流分布曲线。Step S505: Determine the standing wave current distribution curve according to the trajectory of the current signal.

步骤S506、对驻波电流分布曲线进行拟合,确定待测器件短路失效的位置。Step S506 , fitting the standing wave current distribution curve to determine the short-circuit failure position of the device under test.

当获取得到待测器件表面的面电荷分布时,其可确定待测器件短路失效的位置,方法与前述确定待测器件开路失效位置的方法类似。When the surface charge distribution on the surface of the device under test is obtained, it can determine the position of the short circuit failure of the device under test, and the method is similar to the method for determining the open circuit failure position of the device under test.

在其中一个实施例中,在上述步骤S503和S506中对驻波电流分布曲线进行拟合的步骤包括以下步骤:In one of the embodiments, the step of fitting the standing wave current distribution curve in the above steps S503 and S506 includes the following steps:

通过以下拟合公式对驻波电流分布曲线进行拟合:The standing wave current distribution curve is fitted by the following fitting formula:

Figure BDA0002688375220000131
Figure BDA0002688375220000131

其中,I为电流信号,z为电流信号距离失效位置的距离,β为相位常数,Z0是特性阻抗,PRF为入射功率。Among them, I is the current signal, z is the distance of the current signal from the failure position, β is the phase constant, Z 0 is the characteristic impedance, and P RF is the incident power.

在其中一个实施例中,步骤S300,即在根据第一参数信息和校准数据,确定待测器件目标高度平面的电磁场信息的步骤之后,还包括以下步骤:In one embodiment, step S300, after the step of determining the electromagnetic field information of the target height plane of the device under test according to the first parameter information and the calibration data, further includes the following steps:

步骤S600、对比待测器件目标高度平面的电磁场分布图以及良品器件目标高度平面的电磁场分布图,确定待测器件的失效位置。Step S600 , comparing the electromagnetic field distribution diagram of the target height plane of the device under test with the electromagnetic field distribution diagram of the target height plane of the good device, and determining the failure position of the device under test.

除了前述步骤S501-S503的开路失效定位方法和步骤S504-S506的短路失效定位方法,还可以直接通过电磁场分布图的比对判断失效位置。具体地,可以先获取到良品器件在目标高度平面的电磁场分布图,再将其与待测器件目标高度平面的电磁场分布图进行比对,并记录电磁场分布图的差异位置点,则可确定其可能失效的位置。该方法可以针对电流泄露、虚短续断的失效位置进行判断。In addition to the open-circuit failure locating method in steps S501-S503 and the short-circuit failure locating method in steps S504-S506, the failure position can also be directly judged by comparing the electromagnetic field distribution maps. Specifically, the electromagnetic field distribution map of the good device on the target height plane can be obtained first, then it can be compared with the electromagnetic field distribution map of the target height plane of the device under test, and the difference position points of the electromagnetic field distribution map can be recorded. possible failure locations. This method can judge the failure position of current leakage and virtual short and continuous interruption.

下面结合一个具体示例对本申请所提供的器件失效定位分析方法进行介绍:The following describes the device failure location analysis method provided by this application with a specific example:

第一、对近场探头进行校准,校准所采用的校准件选用微带线。First, calibrate the near-field probe, and use the microstrip line as the calibration part used for calibration.

具体地,通过HFSS仿真获得微带线在目标高度zj平面的电磁场信息

Figure BDA0002688375220000141
其中,sim表示仿真结果,ref表示校准件,x、y表示微带线表面所在的平面,γ表示电磁场信息,可以为磁场强度Hx、Hy和Hz,也可以为电场强度Ex、Ey和Ez。Specifically, the electromagnetic field information of the microstrip line at the target height z j plane is obtained through HFSS simulation
Figure BDA0002688375220000141
Among them, sim represents the simulation result, ref represents the calibration part, x and y represent the plane on which the surface of the microstrip line is located, and γ represents the electromagnetic field information, which can be the magnetic field strengths Hx, Hy, and Hz, or the electric field strengths Ex, Ey, and Ez.

通过近场探头对微带线进行近场扫描,通过网络分析仪读取参数信息(即用于表征微带线扫描高度平面的电磁场信息的第一参数信息),记为

Figure BDA0002688375220000142
其中,meas表示测量结果。The microstrip line is scanned in the near field by the near-field probe, and the parameter information (that is, the first parameter information used to characterize the electromagnetic field information of the scanning height plane of the microstrip line) is read by the network analyzer, which is recorded as
Figure BDA0002688375220000142
Among them, meas represents the measurement result.

根据平面波谱理论,对

Figure BDA0002688375220000143
Figure BDA0002688375220000144
进行PWS域变换,得到对应的频域信息,即第三频域信息
Figure BDA0002688375220000145
和第二频域信息
Figure BDA0002688375220000146
According to the plane-wave spectrum theory,
Figure BDA0002688375220000143
and
Figure BDA0002688375220000144
Perform PWS domain transformation to obtain the corresponding frequency domain information, that is, the third frequency domain information
Figure BDA0002688375220000145
and the second frequency domain information
Figure BDA0002688375220000146

下面是以磁场强度Hx为例的变换公式:The following is the transformation formula of the magnetic field strength Hx as an example:

Figure BDA0002688375220000147
Figure BDA0002688375220000147

第二、对待测器件进行近场扫描以及数据预处理Second, near-field scanning and data preprocessing of the device under test

通过对待测器件进行近场扫描,并通过网络分析仪记录用于表征待测器件扫描高度zi平面的电磁场信息的参数信息,即第一参数信息,用网络分析仪记录为

Figure BDA0002688375220000151
The device under test is scanned in the near field, and the parameter information used to characterize the electromagnetic field information of the device under test scanning height zi plane is recorded by the network analyzer, that is, the first parameter information, which is recorded by the network analyzer as
Figure BDA0002688375220000151

Figure BDA0002688375220000152
进行PWS域变换,得到
Figure BDA0002688375220000153
即第一频域信息,下述为变换公式:right
Figure BDA0002688375220000152
Perform PWS domain transformation to get
Figure BDA0002688375220000153
That is, the first frequency domain information, the following is the transformation formula:

Figure BDA0002688375220000154
Figure BDA0002688375220000154

根据第一频域信息

Figure BDA0002688375220000155
第二频域信息
Figure BDA0002688375220000156
以及第三频域信息
Figure BDA0002688375220000157
通过类比法得到第四频域信息
Figure BDA0002688375220000158
第四频域信息用于表征待测器件目标高度平面的电磁场信息。下面为第四频域信息的计算公式:According to the first frequency domain information
Figure BDA0002688375220000155
second frequency domain information
Figure BDA0002688375220000156
and the third frequency domain information
Figure BDA0002688375220000157
Obtain the fourth frequency domain information by analogy
Figure BDA0002688375220000158
The fourth frequency domain information is used to characterize the electromagnetic field information of the target height plane of the device under test. The following is the calculation formula of the fourth frequency domain information:

Figure BDA0002688375220000159
Figure BDA0002688375220000159

对第四频域信息进行逆变换,得到待测器件目标高度zj平面的电磁场信息:Inversely transform the fourth frequency domain information to obtain the electromagnetic field information of the target height z j plane of the device under test:

Figure BDA00026883752200001510
Figure BDA00026883752200001510

需要说明的是,电磁场信息分为电场强度和磁场强度,若测试结果是水平X轴方向的磁场强度,记为

Figure BDA00026883752200001511
若为Y轴或Z轴方向的磁场强度,记为
Figure BDA00026883752200001512
Figure BDA00026883752200001513
同样地,若测试结果是电场强度,则可记为
Figure BDA00026883752200001514
Figure BDA00026883752200001515
It should be noted that the electromagnetic field information is divided into electric field strength and magnetic field strength. If the test result is the magnetic field strength in the horizontal X-axis direction, it is recorded as
Figure BDA00026883752200001511
If it is the magnetic field strength in the Y-axis or Z-axis direction, it is recorded as
Figure BDA00026883752200001512
or
Figure BDA00026883752200001513
Similarly, if the test result is the electric field strength, it can be recorded as
Figure BDA00026883752200001514
and
Figure BDA00026883752200001515

第三、由磁近场到面电流密度的还原Third, the reduction from the magnetic near field to the surface current density

对上述获得的磁场强度信息

Figure BDA00026883752200001516
进行二维傅里叶变换,得到平面波谱域信息
Figure BDA0002688375220000161
For the magnetic field strength information obtained above
Figure BDA00026883752200001516
Perform two-dimensional Fourier transform to obtain plane-wave spectral domain information
Figure BDA0002688375220000161

Figure BDA0002688375220000162
Figure BDA0002688375220000162

以同样的方式对

Figure BDA0002688375220000163
Figure BDA0002688375220000164
进行二维傅里叶变换,得到对应的平面波谱域信息。in the same way to
Figure BDA0002688375220000163
and
Figure BDA0002688375220000164
Perform a two-dimensional Fourier transform to obtain the corresponding plane wave spectral domain information.

根据上述得到的平面波谱域信息计算获得待测器件X轴方向的电流分量

Figure BDA0002688375220000165
和Y轴方向的电流分量
Figure BDA0002688375220000166
Calculate and obtain the current component in the X-axis direction of the device under test according to the obtained plane wave spectral domain information
Figure BDA0002688375220000165
and the current component in the Y-axis direction
Figure BDA0002688375220000166

具体可根据下面方程式进行电流分量的计算:Specifically, the current component can be calculated according to the following equation:

Figure BDA0002688375220000167
Figure BDA0002688375220000167

Figure BDA0002688375220000168
Figure BDA0002688375220000168

Figure BDA0002688375220000169
Figure BDA0002688375220000169

计算获得的X轴方向的电流分量为:The calculated current component in the X-axis direction is:

Figure BDA00026883752200001610
Figure BDA00026883752200001610

计算获得的Y轴方向的电流分量为:The calculated current component in the Y-axis direction is:

Figure BDA00026883752200001611
Figure BDA00026883752200001611

将上述获得的待测器件X轴方向的电流分量和Y轴方向的电流分量进行逆变换得到

Figure BDA00026883752200001612
Figure BDA00026883752200001613
并对其做平方和运算和开方运算,得到面电流密度的位置分布JDUT(x,y)。The current component in the X-axis direction and the current component in the Y-axis direction of the device under test obtained above are inversely transformed to obtain
Figure BDA00026883752200001612
and
Figure BDA00026883752200001613
And do the square sum operation and the square root operation to get the position distribution J DUT (x, y) of the surface current density.

第四、电近场到面电荷的还原Fourth, the reduction of electric near field to surface charge

对上述获得的电场强度信息

Figure BDA00026883752200001614
进行二维傅里叶变换,得到平面波谱域信息
Figure BDA00026883752200001615
For the electric field strength information obtained above
Figure BDA00026883752200001614
Perform two-dimensional Fourier transform to obtain plane-wave spectral domain information
Figure BDA00026883752200001615

Figure BDA0002688375220000171
Figure BDA0002688375220000171

计算待测器件表面的面电荷分布的平面波谱域表达式:Calculate the plane-wave spectral domain expression for the surface charge distribution on the DUT surface:

Figure BDA0002688375220000172
Figure BDA0002688375220000172

最后对其进行逆变换得到待测器件表面的面电荷分布:Finally, it is inversely transformed to obtain the surface charge distribution on the surface of the device under test:

Figure BDA0002688375220000173
Figure BDA0002688375220000173

第五、失效定位方法Fifth, the failure positioning method

如图8所示,根据前述获得的待测器件表面的面电流密度的位置分布,找出注入电流信号的轨迹,沿着轨迹线即可画出电流密度的强度分布曲线,即驻波电流分布曲线。As shown in Fig. 8, according to the position distribution of the surface current density on the surface of the device under test obtained above, find the trajectory of the injected current signal, and draw the intensity distribution curve of the current density along the trajectory line, that is, the standing wave current distribution curve.

采用下面的拟合公式对驻波电流分布曲线进行拟合,推算出垂直方向可能断裂的位置,即待测器件开路失效的位置点:The following fitting formula is used to fit the standing wave current distribution curve, and calculate the possible fracture position in the vertical direction, that is, the position of the open-circuit failure of the device under test:

Figure BDA0002688375220000174
Figure BDA0002688375220000174

其中,I表示沿线信号,z表示信号距离开路点的距离,Z0表示特性阻抗,β表示相位常数,PRF表示入射功率。Among them, I represents the signal along the line, z represents the distance of the signal from the open point, Z 0 represents the characteristic impedance, β represents the phase constant, and P RF represents the incident power.

同样地,通过前述获得的待测器件表面的面电荷分布,可以采用同样的方式获得待测器件短路失效的位置点。Similarly, through the surface charge distribution on the surface of the device under test obtained above, the position of the short-circuit failure of the device under test can be obtained in the same way.

另外,还可以通过比对良品器件和待测器件的电磁场分布图,来判断待测器件可能出现失效的位置点。该方法可适用于电流泄露、虚短虚短等失效类型。图9示出了一个具体示例中的良品器件和待测器件的电磁场分布图,图10示出了另一个具体示例中的良品器件和待测器件的电磁场分布图,由图中可看出,待测器件的失效位置处的电磁场分布与良品器件同样位置处的电磁场分布存在较大差异,由此可判断出待测器件的失效位置。In addition, by comparing the electromagnetic field distribution diagrams of the good device and the device under test, it is also possible to determine the position where the device under test may fail. This method can be applied to failure types such as current leakage, virtual short and virtual short. Fig. 9 shows the electromagnetic field distribution diagram of the good device and the device under test in a specific example, and Fig. 10 shows the electromagnetic field distribution diagram of the good device and the device under test in another specific example. It can be seen from the figure, There is a big difference between the electromagnetic field distribution at the failure position of the device under test and the electromagnetic field distribution at the same position of the good device, so that the failure position of the device under test can be determined.

以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。The technical features of the above-described embodiments can be combined arbitrarily. For the sake of brevity, all possible combinations of the technical features in the above-described embodiments are not described. However, as long as there is no contradiction between the combinations of these technical features, All should be regarded as the scope described in this specification.

以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only represent several embodiments of the present invention, and the descriptions thereof are specific and detailed, but should not be construed as a limitation on the scope of the invention patent. It should be pointed out that for those of ordinary skill in the art, without departing from the concept of the present invention, several modifications and improvements can also be made, which all belong to the protection scope of the present invention. Therefore, the protection scope of the patent of the present invention shall be subject to the appended claims.

Claims (10)

1.一种器件失效定位分析方法,其特征在于,所述器件失效定位分析方法基于近场探测系统,所述近场探测系统包括扫描探头和信号分析设备,所述扫描探头用于对待测器件进行近场扫描,所述信号分析设备用于注入信号至所述待测器件,以及分析所述扫描探头扫描产生的信号;所述器件失效定位方法包括:1. a device failure location analysis method, is characterized in that, described device failure location analysis method is based on near-field detection system, and described near-field detection system comprises scanning probe and signal analysis equipment, and described scanning probe is used for device to be tested Perform near-field scanning, the signal analysis device is used for injecting a signal into the device under test, and analyzing the signal generated by the scanning of the scanning probe; the device failure locating method includes: 对所述扫描探头进行校准,获取校准数据;Calibrating the scanning probe to obtain calibration data; 控制所述扫描探头对所述待测器件进行扫描,并获得第一参数信息,所述第一参数信息用于表征所述待测器件扫描高度平面的电磁场信息;controlling the scanning probe to scan the device under test, and obtaining first parameter information, where the first parameter information is used to characterize the electromagnetic field information of the scanning height plane of the device under test; 根据所述第一参数信息和所述校准数据,确定所述待测器件目标高度平面的电磁场信息;According to the first parameter information and the calibration data, determine the electromagnetic field information of the target height plane of the device under test; 根据所述待测器件目标高度平面的电磁场信息,确定所述待测器件表面的电学分布;According to the electromagnetic field information of the target height plane of the device under test, determine the electrical distribution on the surface of the device under test; 根据所述待测器件表面的电学分布,确定所述待测器件的失效位置。The failure position of the device under test is determined according to the electrical distribution on the surface of the device under test. 2.根据权利要求1所述的器件失效定位分析方法,其特征在于,所述对所述扫描探头进行校准,获取校准数据的步骤包括:2. The device failure location analysis method according to claim 1, wherein the step of calibrating the scanning probe and acquiring calibration data comprises: 仿真获得校准器件在目标高度平面的电磁场信息;The electromagnetic field information of the calibration device at the target height plane is obtained by simulation; 控制所述扫描探头对所述校准器件进行扫描,获得第二参数信息,所述第二参数信息用于表征所述校准器件在扫描高度平面的电磁场信息;controlling the scanning probe to scan the calibration device to obtain second parameter information, where the second parameter information is used to characterize the electromagnetic field information of the calibration device in the scanning height plane; 所述根据所述第一参数信息和所述校准数据,确定所述待测器件目标高度平面的电磁场信息的步骤包括:The step of determining the electromagnetic field information of the target height plane of the device under test according to the first parameter information and the calibration data includes: 根据所述第一参数信息、所述第二参数信息以及所述校准器件在目标高度平面的电磁场信息,获得所述待测器件目标高度平面的电磁场信息。According to the first parameter information, the second parameter information, and the electromagnetic field information of the calibration device at the target height plane, the electromagnetic field information of the device under test at the target height plane is obtained. 3.根据权利要求2所述的器件失效定位分析方法,其特征在于,所述根据所述第一参数信息、所述第二参数信息以及所述校准器件在目标高度平面的电磁场信息,获得所述待测器件目标高度平面的电磁场信息的步骤包括:3 . The device failure location analysis method according to claim 2 , wherein, according to the first parameter information, the second parameter information and the electromagnetic field information of the calibration device in the target height plane, the obtained 3. The step of describing the electromagnetic field information of the target height plane of the device under test includes: 对所述第一参数信息进行PWS域变换,得到第一频域信息,对所述第二参数信息进行PWS域变换,得到第二频域信息,对仿真获得的校准器件在目标高度平面的电磁场信息进行PWS域变换,得到第三频域信息;Perform PWS domain transformation on the first parameter information to obtain first frequency domain information, perform PWS domain transformation on the second parameter information to obtain second frequency domain information, and perform simulation on the electromagnetic field of the calibration device at the target height plane. The information is transformed in the PWS domain to obtain the third frequency domain information; 根据所述第一频域信息、所述第二频域信息以及所述第三频域信息,获得所述待测器件目标高度平面的电磁场信息所对应的第四频域信息;According to the first frequency domain information, the second frequency domain information and the third frequency domain information, obtain fourth frequency domain information corresponding to the electromagnetic field information of the target height plane of the device under test; 对所述第四频域信息进行PWS域逆变换,得到待测器件目标高度平面的电磁场信息。Perform inverse PWS domain transformation on the fourth frequency domain information to obtain electromagnetic field information on the target height plane of the device under test. 4.根据权利要求3所述的器件失效定位分析方法,其特征在于,所述根据所述第一频域信息、所述第二频域信息以及所述第三频域信息,获得所述待测器件目标高度平面的电磁场信息所对应的第四频域信息的步骤包括:4 . The device failure location analysis method according to claim 3 , wherein, according to the first frequency domain information, the second frequency domain information and the third frequency domain information, the to-be-to-be-domain information is obtained. 5 . The step of measuring the fourth frequency domain information corresponding to the electromagnetic field information of the target height plane of the device includes: 通过以下公式获得所述待测器件目标高度平面的电磁场信息所对应的第四频域信息:The fourth frequency domain information corresponding to the electromagnetic field information of the target height plane of the device under test is obtained by the following formula:
Figure FDA0002688375210000021
Figure FDA0002688375210000021
其中,
Figure FDA0002688375210000022
为所述待测器件目标高度zj平面的电磁场信息所对应的第四频域信息,
Figure FDA0002688375210000023
为仿真获得的校准器件在目标高度zj平面的电磁场信息所对应的第三频域信息,
Figure FDA0002688375210000024
为所述校准器件扫描高度zi平面的电磁场信息所对应的第二频域信息,
Figure FDA0002688375210000025
为所述待测器件扫描高度zi平面的电磁场信息所对应的第一频域信息。
in,
Figure FDA0002688375210000022
is the fourth frequency domain information corresponding to the electromagnetic field information of the target height z j plane of the device under test,
Figure FDA0002688375210000023
is the third frequency domain information corresponding to the electromagnetic field information of the calibration device at the target height z j plane obtained by simulation,
Figure FDA0002688375210000024
the second frequency domain information corresponding to the electromagnetic field information of the scanning height zi plane for the calibration device,
Figure FDA0002688375210000025
First frequency domain information corresponding to the electromagnetic field information of the scanning height zi plane for the device under test.
5.根据权利要求3所述的器件失效定位分析方法,其特征在于,所述电磁场信息包括磁场强度信息;5. The device failure location analysis method according to claim 3, wherein the electromagnetic field information comprises magnetic field strength information; 所述根据所述待测器件目标高度平面的电磁场信息,确定所述待测器件表面的电学分布的步骤包括:The step of determining the electrical distribution on the surface of the device under test according to the electromagnetic field information of the target height plane of the device under test includes: 根据所述待测器件目标高度平面的磁场强度信息,获得所述待测器件表面X轴方向和Y轴方向的电流分量;According to the magnetic field intensity information of the target height plane of the device under test, the current components in the X-axis direction and the Y-axis direction of the surface of the device under test are obtained; 根据所述待测器件表面X轴方向和Y轴方向的电流分量,确定所述待测器件表面的面电流密度的位置分布。The positional distribution of the surface current density on the surface of the device to be tested is determined according to the current components in the X-axis direction and the Y-axis direction of the surface of the device to be tested. 6.根据权利要求3所述的器件失效定位分析方法,其特征在于,所述电磁场信息包括电场强度信息;6. The device failure location analysis method according to claim 3, wherein the electromagnetic field information comprises electric field strength information; 所述根据所述待测器件目标高度平面的电磁场信息,确定所述待测器件表面的电学分布的步骤包括:The step of determining the electrical distribution on the surface of the device under test according to the electromagnetic field information of the target height plane of the device under test includes: 根据所述待测器件目标高度平面的电场强度信息,确定所述待测器件表面的面电荷分布。According to the electric field intensity information of the target height plane of the device under test, the surface charge distribution on the surface of the device under test is determined. 7.根据权利要求5所述的器件失效定位分析方法,其特征在于,所述根据所述待测器件表面的电学分布,确定所述待测器件的失效位置的步骤包括:7. The device failure location analysis method according to claim 5, wherein the step of determining the failure location of the device under test according to the electrical distribution on the surface of the device under test comprises: 根据所述待测器件表面的面电流密度的位置分布,确定注入至所述待测器件的电流信号的轨迹;Determine the trajectory of the current signal injected into the device under test according to the positional distribution of the surface current density on the surface of the device under test; 根据所述电流信号的轨迹,确定驻波电流分布曲线;According to the trajectory of the current signal, determine the standing wave current distribution curve; 对所述驻波电流分布曲线进行拟合,确定所述待测器件开路失效的位置。The standing wave current distribution curve is fitted to determine the position of the open-circuit failure of the device under test. 8.根据权利要求6所述的器件失效定位分析方法,其特征在于,所述根据所述待测器件表面的电学分布,确定所述待测器件的失效位置的步骤还包括:8. The device failure location analysis method according to claim 6, wherein the step of determining the failure location of the device under test according to the electrical distribution on the surface of the device under test further comprises: 根据所述待测器件表面的面电荷分布,确定注入至所述待测器件的电流信号的轨迹;According to the surface charge distribution on the surface of the device under test, determine the trajectory of the current signal injected into the device under test; 根据所述电流信号的轨迹,确定驻波电流分布曲线;According to the trajectory of the current signal, determine the standing wave current distribution curve; 对所述驻波电流分布曲线进行拟合,确定所述待测器件短路失效的位置。The standing wave current distribution curve is fitted to determine the short-circuit failure position of the device under test. 9.根据权利要求7或8所述的器件失效定位分析方法,其特征在于,所述对所述驻波电流分布曲线进行拟合的步骤包括:9. The device failure location analysis method according to claim 7 or 8, wherein the step of fitting the standing wave current distribution curve comprises: 通过以下拟合公式对所述驻波电流分布曲线进行拟合:The standing wave current distribution curve is fitted by the following fitting formula:
Figure FDA0002688375210000041
Figure FDA0002688375210000041
其中,I为电流信号,z为电流信号距离失效位置的距离,β为相位常数,Z0是特性阻抗,PRF为入射功率。Among them, I is the current signal, z is the distance of the current signal from the failure position, β is the phase constant, Z 0 is the characteristic impedance, and P RF is the incident power.
10.根据权利要求1所述的器件失效定位分析方法,其特征在于,在所述根据所述第一参数信息和所述校准数据,确定所述待测器件目标高度平面的电磁场信息的步骤之后,所述器件失效定位分析方法还包括:10 . The device failure location analysis method according to claim 1 , wherein after the step of determining the electromagnetic field information of the target height plane of the device under test according to the first parameter information and the calibration data. 11 . , the device failure location analysis method further includes: 对比所述待测器件目标高度平面的电磁场分布图以及良品器件目标高度平面的电磁场分布图,确定所述待测器件的失效位置。The failure position of the device under test is determined by comparing the electromagnetic field distribution diagram of the target height plane of the device under test with the electromagnetic field distribution diagram of the target height plane of the good device.
CN202010983672.4A 2020-09-18 2020-09-18 Device failure positioning analysis method Active CN112285611B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010983672.4A CN112285611B (en) 2020-09-18 2020-09-18 Device failure positioning analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010983672.4A CN112285611B (en) 2020-09-18 2020-09-18 Device failure positioning analysis method

Publications (2)

Publication Number Publication Date
CN112285611A true CN112285611A (en) 2021-01-29
CN112285611B CN112285611B (en) 2024-06-18

Family

ID=74420059

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010983672.4A Active CN112285611B (en) 2020-09-18 2020-09-18 Device failure positioning analysis method

Country Status (1)

Country Link
CN (1) CN112285611B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103941106A (en) * 2014-04-29 2014-07-23 工业和信息化部电子第五研究所 Electromagnetic field near-field scanning device and scanning method
CN104376878A (en) * 2014-09-15 2015-02-25 武汉新芯集成电路制造有限公司 Semiconductor device failure analysis method
CN108010556A (en) * 2017-11-23 2018-05-08 长江存储科技有限责任公司 A kind of method for the small defect failure address for being used to be accurately positioned large-size device
CN108956756A (en) * 2018-08-14 2018-12-07 浙江科技学院 A kind of highly sensitive ferromagnetic material lossless detection method and system
CN110261753A (en) * 2019-05-06 2019-09-20 长江存储科技有限责任公司 Semiconductor device failure analysis method
CN111650444A (en) * 2020-07-09 2020-09-11 国网江苏省电力有限公司电力科学研究院 TCU failure early warning method in electromagnetic environment based on regression analysis

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103941106A (en) * 2014-04-29 2014-07-23 工业和信息化部电子第五研究所 Electromagnetic field near-field scanning device and scanning method
CN104376878A (en) * 2014-09-15 2015-02-25 武汉新芯集成电路制造有限公司 Semiconductor device failure analysis method
CN108010556A (en) * 2017-11-23 2018-05-08 长江存储科技有限责任公司 A kind of method for the small defect failure address for being used to be accurately positioned large-size device
CN108956756A (en) * 2018-08-14 2018-12-07 浙江科技学院 A kind of highly sensitive ferromagnetic material lossless detection method and system
CN110261753A (en) * 2019-05-06 2019-09-20 长江存储科技有限责任公司 Semiconductor device failure analysis method
CN111650444A (en) * 2020-07-09 2020-09-11 国网江苏省电力有限公司电力科学研究院 TCU failure early warning method in electromagnetic environment based on regression analysis

Also Published As

Publication number Publication date
CN112285611B (en) 2024-06-18

Similar Documents

Publication Publication Date Title
Baudry et al. Characterization of the open-ended coaxial probe used for near-field measurements in EMC applications
Gao et al. Far-field prediction using only magnetic near-field scanning for EMI test
Li et al. Detection of impact damage in carbon fiber composites using an electromagnetic sensor
Pasadas et al. ECT in composite materials using double excitation coils and resonant excitation/sensing circuits
Mei et al. Detection of internal defects of full-size composite insulators based on microwave technique
Giri et al. Dual-laser integrated microwave imaging system for nondestructive testing of construction materials and structures
Mizukami et al. Non-contact visualization of fiber waviness distribution in carbon fiber composites using eddy current testing
Jin et al. Detection of impact damage in glass fibre-reinforced polymer composites using a microwave planar resonator sensor
Bouchelouk et al. Characterization of electromagnetic fields close to microwave devices using electric dipole probes
Dester et al. Two-iris method for the electromagnetic characterization of conductor-backed absorbing materials using an open-ended waveguide probe
Hou et al. Nonintrusive near-field characterization of spatially distributed effects in large-periphery high-power GaN HEMTs
Simm et al. Investigation of the magnetic field response from eddy current inspection of defects
Naumann et al. Efficient Nondestructive 3D Defect Localization by Lock-in Thermography Utilizing Multi-Harmonics Analysis
CN112285611A (en) Device Failure Location Analysis Method
CN113608100A (en) Open circuit failure analysis method and system
Case et al. Millimeter wave thickness evaluation of thermal barrier coatings (tbcs) using open-ended waveguide probes
Ren et al. Measurement of current distribution using infrared thermography
Jiang et al. Fault Diagnosis for Shielded Cables Based on MSST Algorithm and Impedance Polar Plots
CN116190258A (en) Failure positioning method and electronic equipment
Wen et al. Recognizing Microwave Field Contrast of Invisible Microstrip Defects With High Accuracy by Quantum Wide-Field Microscope
Wang et al. Compact near-field microwave microscope based on the multi-port technique
KR100595137B1 (en) Method of inspecting electrical characteristics of semiconductor device using FIV device
Youngs NAMAS-accredited microwave permittivity/permeability measurement system
Cung et al. A model-based approach for inspection of aeronautical multi-layered structures by eddy currents
Haddadi et al. Near-field scanning millimeter-wave microscope combined with a scanning electron microscope

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant