CN112279252A - 一种提高Ti2C储氢性能的方法 - Google Patents

一种提高Ti2C储氢性能的方法 Download PDF

Info

Publication number
CN112279252A
CN112279252A CN202010984424.1A CN202010984424A CN112279252A CN 112279252 A CN112279252 A CN 112279252A CN 202010984424 A CN202010984424 A CN 202010984424A CN 112279252 A CN112279252 A CN 112279252A
Authority
CN
China
Prior art keywords
model
doping
atoms
hydrogen
supercell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010984424.1A
Other languages
English (en)
Other versions
CN112279252B (zh
Inventor
李卫
赵建胜
陈剑锋
冯烨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Posts and Telecommunications
Original Assignee
Nanjing University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Posts and Telecommunications filed Critical Nanjing University of Posts and Telecommunications
Priority to CN202010984424.1A priority Critical patent/CN112279252B/zh
Publication of CN112279252A publication Critical patent/CN112279252A/zh
Application granted granted Critical
Publication of CN112279252B publication Critical patent/CN112279252B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/921Titanium carbide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C20/00Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
    • G16C20/20Identification of molecular entities, parts thereof or of chemical compositions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Computing Systems (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

本发明公开了一种提高Ti2C储氢性能的方法,采用密度泛函理论结合平面波赝势方法,在本征Ti2C结构中掺杂Li原子,具体包括以下步骤:(1)构建Ti2C原胞结构模型,并扩展成为Ti2C超胞结构模型;(2)几何优化Ti2C超胞模型;(3)向优化后的Ti2C超胞模型掺杂Li原子,得到掺杂模型;(4)几何优化掺杂模型,筛选得到能量最低掺杂模型;(5)向能量最低掺杂模型中添加H2,进行几何优化;(6)计算氢气在掺杂模型表面的覆盖情况;(7)计算掺杂模型的储氢性能。该方法采用密度泛函理论结合平面波赝势方法,将Li原子均匀地掺杂到Ti2C中,降低了Ti2C表面对氢原子的吸附,使得氢气以分子形式存在,Li原子的掺杂提供了活性点位,提高了材料的储氢性能。

Description

一种提高Ti2C储氢性能的方法
技术领域
本发明涉及一种提高材料储氢性能的方法,更具体地,涉及一种提高Ti2C 储氢性能的方法。
背景技术
氢能源是一种可再生的清洁能源,其具有高能量密度、无污染的优点,但氢气易燃,具有一定危险性,因此需要发展高容量、易释放、安全的储氢技术,固态储氢具有高容量、安全的优点,固态储氢材料众多,其中二维材料石墨烯具有化学性质稳定、比表面积大等优异的性能。Ti2C是一种类石墨烯材料,也具有较大的比表面积,但其拥有高化学活性的表面,与氢气之间的作用十分强,使得氢气以原子的形式强化学吸附在Ti2C表面,占据了许多活性位点,这使得本征Ti2C 运用在储氢领域达不到人们的要求。
发明内容
发明目的:本发明的目的是提供一种能够使氢气以分子的形式储存在Ti2C 中的提高Ti2C储氢性能的方法。
技术方案:本发明所述的提高Ti2C储氢性能的方法,采用密度泛函理论结合平面波赝势方法,在本征Ti2C结构中掺杂Li原子。
其中,包括以下步骤:
(1)选取Ti2AlC晶格,利用VESTA软件从中去除Al原子构建Ti2C原胞结构模型,并扩展成为Ti2C超胞结构模型;
(2)采用Geometry Optimization密度混合方案,几何优化Ti2C超胞模型,以获得最低的能量构型,
(3)向优化后的Ti2C超胞模型掺杂Li原子,使Li原子均匀的分布在Ti2C 的表面,得到掺杂模型;
(4)几何优化掺杂模型,分别优化单个Li在Ti2C不同高对称位置,筛选得到能量最低的吸附位置,然后得到Li均匀分布在Ti2C能量最低的掺杂模型;
(5)向能量最低掺杂模型中添加H2,一个H2在不同高对称位置分别以平行、垂直、倾斜的姿态进行几何优化后对比获得最低能量吸附模型,在此基础上分别优化8或16个H2吸附后的模型以获得最低能量的吸附模型;
(6)采用巨正则配分函数计算氢气在掺杂模型表面的覆盖情况,计算不同温度和压强下,掺杂模型的储氢性能。
其中,步骤1中Ti2AlC晶格的晶格常数
Figure BDA0002688657780000021
Ti2C超胞结构模型为 2×2×1;步骤3中Li原子分布在Ti2C超胞结构模型顶层Ti原子上方、C原子上方、底层Ti原子上方;步骤1中将Ti2C原胞结构模型扩展为Ti2C超胞结构模型后,在C方向上增加
Figure BDA0002688657780000022
的真空层,步骤5中H2倾斜姿态掺杂时其倾斜角度大于15°。
工作原理:本征Ti2C由于其表面是非常活跃的过渡金属Ti,其对氢气有很的吸引力导致氢键断裂以原子的形式吸附在表面不适宜储氢,通过掺杂原子充当桥梁降低表面活性使得氢气以分子形式吸附在掺杂结构表面,Li由于其物理质量轻,在Ti2C表面不易发生聚合影响储氢量,所以被选择掺杂在Ti2C表面。Li 掺杂Ti2C之后Li带正电荷而Ti2C带负电荷周围形成一个局部电场,使得氢气被极化吸附。该方法增加了满足理想储氢需求的氢气重量密度,显著的改善了储氢性能。
有益效果:本发明与现有技术相比,其显著优点是:1、采用密度泛函理论结合平面波赝势方法,将Li原子均匀地掺杂到Ti2C中,降低了Ti2C表面对氢原子的吸附,使得氢气以分子形式存在;2、Li原子的掺杂提供了活性点位,提高了材料的储氢性能,相较于本征Ti2C氢气重量密度,Li原子掺杂的Ti2C提高了 2.8wt%。
附图说明
图1是本征Ti2C结构示意图;
图2是Li原子掺杂的Ti2C结构示意图;
图3是H2吸附在Li掺杂Ti2C的储氢体系结构示意图;
图4是H2吸附在Li掺杂Ti2C的储氢体系吸附H2分子的平均数量图;
图5是Li掺杂Ti2C的储氢体系在不同压力下吸附的H2分子数变化图;
图6是Li掺杂Ti2C的储氢体系在不同温度下吸附的H2分子数变化图。
具体实施方式
在本征Ti2C结构中掺杂Li原子包括以下步骤:
(1)选取晶格常数
Figure BDA0002688657780000023
的Ti2AlC,从中去除Al原子构建Ti2C原胞结构,把它扩展到2×2×1的超胞,并增加C方向上
Figure BDA0002688657780000024
的真空层,以防止Ti2C 层间相互影响,计算中平面波截断能480eV、K点取值5×5×1;
(2)几何优化Ti2C超胞模型,优化后的Ti2C超胞模型见图1(a)、图1(b),结构优化时能量的收敛精度2×10-5eV/atom;
(3)向优化后的Ti2C超胞模型三个高对称位置掺杂Li原子:
A位置:顶层Ti原子上方、B位置:C原子上方、C位置:底层Ti原子上方,使Li原子均匀的分布在Ti2C的表面,得到掺杂模型;
(4)几何优化掺杂模型,对比分析三个高对称位置的吸附能量,筛选得到能量最低掺杂模型,然后得到Li原子均匀分布在Ti2C表面最低能量的构型如图 2所示,图2(a)为Li原子吸附在Ti2C的俯视图,图2(b)为侧视图;
(5)向能量最低掺杂模型中添加H2,一个H2在不同高对称位置分别以平行、垂直、倾斜(>15°)的姿态进行几何优化后对比以获得最低能量吸附模型,在此基础上分别优化8、16个H2吸附后的模型以获得最低能量的吸附模型,优化后的模型如图3(a)、图3(b)、图3(c)和图3(d)所示,图中分别显示是吸附8个H2优化后的俯视图以及侧视图和吸附16个H2优化后的俯视图以及侧视图,其氢气重量密度为6.21wt%,而纯Ti2C氢气重量密度为3.4wt%;
(6)采用巨正则配分函数计算氢气在掺杂模型表面的覆盖情况,如图4所示在不同温度与压强下其吸附氢气的数量,
(7)通过分析氢气在掺杂模型表面的覆盖情况,计算不同温度和压强下,掺杂模型的储氢性能,如图5所示在25℃下不同压强的氢气吸附量,如图6所示在3atm下不同温度的氢气吸附量,可以看出在25℃/30atm存储条件和100℃ /3atm为解离条件下吸氢数量分别为14.66和1.44,可逆的容量为5.19wt%。25℃ /30atm存储条件和100℃/3atm为解离条件。

Claims (7)

1.一种提高Ti2C储氢性能的方法,其特征在于,采用密度泛函理论结合平面波赝势方法,在本征Ti2C结构中掺杂Li原子。
2.根据权利要求1所述的提高Ti2C储氢性能的方法,其特征在于,包括以下步骤:
(1)选取Ti2AlC晶格,利用VESTA软件从中去除Al原子构建Ti2C原胞结构模型,并扩展成为Ti2C超胞结构模型;
(2)采用Geometry Optimization密度混合方案,几何优化Ti2C超胞模型,以获得最低的能量构型,
(3)向优化后的Ti2C超胞模型掺杂Li原子,使Li原子均匀的分布在Ti2C的表面,得到掺杂模型;
(4)几何优化掺杂模型,分别优化单个Li在Ti2C不同高对称位置,筛选得到能量最低的吸附位置,然后得到Li均匀分布在Ti2C能量最低的掺杂模型;
(5)向能量最低掺杂模型中添加H2,一个H2在不同高对称位置分别以平行、垂直、倾斜的姿态进行几何优化后对比获得最低能量吸附模型,在此基础上分别优化8或16个H2吸附后的模型以获得最低能量的吸附模型;
(6)采用巨正则配分函数计算氢气在掺杂模型表面的覆盖情况,计算不同温度和压强下,掺杂模型的储氢性能。
3.根据权利要求2所述的提高Ti2C储氢性能的方法,其特征在于,所述步骤1中Ti2AlC晶格的晶格常数
Figure FDA0002688657770000011
4.根据权利要求2所述的提高Ti2C储氢性能的方法,其特征在于,所述步骤1中Ti2C超胞结构模型为2×2×1。
5.根据权利要求4所述的提高Ti2C储氢性能的方法,其特征在于,所述步骤3中Li原子分布在Ti2C超胞结构模型顶层Ti原子上方、C原子上方、底层Ti原子上方。
6.根据权利要求2或3所述的提高Ti2C储氢性能的方法,其特征在于,所述步骤1中将Ti2C原胞结构模型扩展为Ti2C超胞结构模型后,在C方向上增加
Figure FDA0002688657770000012
的真空层。
7.根据权利要求2所述的提高Ti2C储氢性能的方法,其特征在于,所述步骤5中H2倾斜姿态掺杂时其倾斜角度大于15°。
CN202010984424.1A 2020-09-18 2020-09-18 一种提高Ti2C储氢性能的方法 Active CN112279252B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010984424.1A CN112279252B (zh) 2020-09-18 2020-09-18 一种提高Ti2C储氢性能的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010984424.1A CN112279252B (zh) 2020-09-18 2020-09-18 一种提高Ti2C储氢性能的方法

Publications (2)

Publication Number Publication Date
CN112279252A true CN112279252A (zh) 2021-01-29
CN112279252B CN112279252B (zh) 2022-05-10

Family

ID=74420474

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010984424.1A Active CN112279252B (zh) 2020-09-18 2020-09-18 一种提高Ti2C储氢性能的方法

Country Status (1)

Country Link
CN (1) CN112279252B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009051888A1 (en) * 2007-10-17 2009-04-23 Ppg Industries Ohio, Inc. Doped ultrafine metal carbide particles
CN108178157A (zh) * 2018-05-02 2018-06-19 中航锂电(江苏)有限公司 一种钠离子电池用负极材料及其应用和制备方法
CN110164509A (zh) * 2019-06-03 2019-08-23 南京邮电大学 石墨烯掺杂结构的模拟仿真方法
CN110436408A (zh) * 2019-09-18 2019-11-12 桂林电子科技大学 一种二维碳化钛掺杂氢化铝钠储氢材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009051888A1 (en) * 2007-10-17 2009-04-23 Ppg Industries Ohio, Inc. Doped ultrafine metal carbide particles
CN108178157A (zh) * 2018-05-02 2018-06-19 中航锂电(江苏)有限公司 一种钠离子电池用负极材料及其应用和制备方法
CN110164509A (zh) * 2019-06-03 2019-08-23 南京邮电大学 石墨烯掺杂结构的模拟仿真方法
CN110436408A (zh) * 2019-09-18 2019-11-12 桂林电子科技大学 一种二维碳化钛掺杂氢化铝钠储氢材料及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ZHAO, SJ: "Role of Strain and Concentration on the Li Adsorption and Diffusion Properties on Ti2C Layer", 《JOURNAL OF PHYSICAL CHEMISTRY C》 *
张燕青: "Ti3C2和Ti2C的第一性原理计算", 《中国优秀博硕士学位论文全文数据库(硕士)》 *
王彬: "《石墨烯基础及氢气刻蚀》", 30 September 2019, 冶金工业出版社 *
陈进峰等: "二维碳化物与石墨烯相互作用的第一性原理研究", 《现代技术陶瓷》 *

Also Published As

Publication number Publication date
CN112279252B (zh) 2022-05-10

Similar Documents

Publication Publication Date Title
Zhao et al. Status and prospects of MXene‐based lithium–sulfur batteries
Yoon et al. Mesoporous silicon hollow nanocubes derived from metal–organic framework template for advanced lithium-ion battery anode
Wang et al. Porous carbon hosts for lithium–sulfur batteries
Wang et al. Metal–organic framework-derived one-dimensional porous or hollow carbon-based nanofibers for energy storage and conversion
Shao et al. Facile synthesis of metal-organic framework-derived Co3O4 with different morphologies coated graphene foam as integrated anodes for lithium-ion batteries
Candelaria et al. Nanostructured carbon for energy storage and conversion
Li et al. N-carbon supported hierarchical Ni/Ni0. 2Mo0. 8N nanosheets as high-efficiency oxygen evolution electrocatalysts
WO2016110127A1 (zh) 一种锂离子/钠离子电池用负极活性材料、负极及电池
CN107742702A (zh) 三维“面‑线‑面”结构的碳纳米管和二氧化锡改性碳化钛锂离子电池负极材料及制备方法
Wu et al. Cobalt oxide nanosheets anchored onto nitrogen‐doped carbon nanotubes as dual purpose electrodes for lithium‐ion batteries and oxygen evolution reaction
Liu et al. Dual carbon decorated germanium-carbon composite as a stable anode for sodium/potassium-ion batteries
Banerjee et al. Carbon nanomaterials in renewable energy production and storage applications
Zheng et al. 2D materials boost advanced Zn anodes: principles, advances, and challenges
Liu et al. Porous CuCo2O4/CuO microspheres and nanosheets as cathode materials for advanced hybrid supercapacitors
Wang et al. Metal-organic framework-based materials as platforms for energy applications
Pu et al. Effect of Heterostructure‐Modified Separator in Lithium–Sulfur Batteries
Galashev et al. Improved lithium-ion batteries and their communication with hydrogen power
Meng et al. In situ coupling of MnO and Co@ N-doped graphite carbon derived from prussian blue analogous achieves high-performance reversible oxygen electrocatalysis for Zn–Air batteries
Muchuweni et al. Lithium-ion batteries: Recent progress in improving the cycling and rate performances of transition metal oxide anodes by incorporating graphene-based materials
Wang et al. Synergistic Effects of Co3Se4 and Ti2C3T x for Performance Enhancement on Lithium–Sulfur Batteries
Wang et al. Atomic surface modification strategy of MXene materials for high‐performance metal sulfur batteries
CN112279252B (zh) 一种提高Ti2C储氢性能的方法
Lin et al. Theoretical study of Mo 2 N supported transition metal single-atom catalyst for OER/ORR bifunctional electrocatalysis
Dhanabalan et al. Perspective and advanced development of lead–carbon battery for inhibition of hydrogen evolution
CN112164777A (zh) 三维层状氧化锡量子点/石墨烯骨架复合材料及制备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant