CN112275252B - 高岑土制cha沸石 - Google Patents

高岑土制cha沸石 Download PDF

Info

Publication number
CN112275252B
CN112275252B CN202010194127.7A CN202010194127A CN112275252B CN 112275252 B CN112275252 B CN 112275252B CN 202010194127 A CN202010194127 A CN 202010194127A CN 112275252 B CN112275252 B CN 112275252B
Authority
CN
China
Prior art keywords
cha
zeolite
cha zeolite
mineral powder
exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010194127.7A
Other languages
English (en)
Other versions
CN112275252A (zh
Inventor
龙英才
李瀚文
濮鹏翔
曹宇凡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuyu Zhangjiagang New Material Technology Co ltd
Original Assignee
Fuyu Zhangjiagang New Material Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuyu Zhangjiagang New Material Technology Co ltd filed Critical Fuyu Zhangjiagang New Material Technology Co ltd
Priority to CN202010194127.7A priority Critical patent/CN112275252B/zh
Publication of CN112275252A publication Critical patent/CN112275252A/zh
Application granted granted Critical
Publication of CN112275252B publication Critical patent/CN112275252B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/304Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/308Carbonoxysulfide COS
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/406Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/408Cyanides, e.g. hydrogen cyanide (HCH)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/502Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7022Aliphatic hydrocarbons
    • B01D2257/7025Methane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/20Capture or disposal of greenhouse gases of methane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

本发明提供一种高岑土制CHA沸石,包括:其以偏高岭土矿粉为第一原料,经高温焙烧后得无定形粉,无定形粉中加入适当量CHA晶种,在KOH水溶液中通过水热反应合成K‑CHA沸石。所述K‑CHA沸石经NaCl溶液交换制成的(Na、K)‑CHA沸石显示出小孔沸石的离子交换和吸附性质。本发明所述(Na、K)‑CHA沸石可应用于制离子交换剂和小分子,如CO2与CH4富集、废气中CO、H2S、HCN、COS、NH3、NOx等有毒有害气体的吸附分离和去除。本发明采用的制备方法原料价格低廉,合成工艺简单,无环境污染,易于工业化。

Description

高岑土制CHA沸石
技术领域
本发明涉及沸石分子筛技术领域,尤其涉及一种高岑土制CHA沸石。
背景技术
CHA结构类型沸石早先发现于天然矿物,俗称菱沸石。一种SiO2/Al2O3摩尔比(SAR)为4的Ca型菱沸石,因该天然物储量少、杂质多、SAR太低和稳定性热不高,限制其应用,一般只适用于制吸附剂和阳离子交换剂。
小孔口、大空腔的结构使低硅CHA沸石分子筛吸附剂在气体吸附分离和净化方面具有很突出的应用前景。例如,该沸石吸附剂具有特别强的选择吸附CO2的选择性,其对CH4和N2的分离选择性分别为CO2/CH4=24-51和CO2/N2=127-135,可以应用于从天然气和油田气去除CO2和H2S,回收甲烷和乙烷。在液化空气制氧的工业设备上,用CHA沸石分子筛吸附剂的变压吸附取代13X沸石吸附剂,可以高效低能耗分离除去空气中的水和二氧化碳分子。
CHA沸石分子筛的骨架和孔道开口结构示意图见图1和图2,CHA沸石分子筛的骨架是由[SiO4]和[AlO4]四面体共氧链接成四氧元环和六氧元环初级结构d6r笼和四氧元环八氧元环构建的cha笼,d6r笼与cha笼相互连接进一步有序相联成开口孔径0.38x0.38nm的孔道结构,cha笼的空腔很大,达到0.84X0.84X0.82nm。
CHA沸石分子筛吸附剂在焦化煤气中可以去除其中所含少量的CO2、CO、和CH4,制高纯H2。低硅CHA沸石的另一重要应用是从空气中吸附去除小分子有毒、有害、恶臭气体。表1列举的几种典型的气体名称、化学式和分子尺寸。低硅CHA沸石分子筛的骨架结构孔径是0.36×0.36nm,对所列的有毒、有害、恶臭气体的分子尺寸比较接近,可以通过改变吸附温度和压力,实现有效吸附。此外低硅CHA沸石的硅铝摩尔比在4左右,与骨架平衡的阳离子比较多,可以通过用直径不同的金属阳离子交换制成不同阳离子型CHA沸石分子筛吸附剂,精细调节其吸附孔径,以提高对特定分子的吸附选择性。
表1
分子名称 化学式 分子尺寸/nm
甲醛 CH3CHO 0.33
硫化氢 H2S 0.36
甲氰 CH3CN 0.42
氰化氢 HCN 0.33
二氧化硫 SO2 0.36
一氧化碳 CO 0.37
二氧化碳 CO2 0.37
NH3 0.38
发明内容
在发明内容部分中引入了一系列简化形式的概念,这将在具体实施例部分中进一步详细说明。本发明的发明内容部分并不意味着要试图限定出所要求保护的技术方案的关键特征和必要技术特征,更不意味着试图确定所要求保护的技术方案的保护范围。
为至少部分地解决上述技术问题,本发明提供了一种高岑土制CHA沸石,包括:首先,对矿粉原料进行焙烧。所述矿粉选取高岭土矿粉细度为320目,所述高岭土矿粉经过650~800℃、0.5~3h焙烧使原有的晶体结构崩塌,所述偏高岭土的晶体结构为无定型。
其次,CHA沸石合成过程。所述原料、1mol/L KOH溶液和所述原矿粉5%的CHA晶种混合均匀组成反应混合物,所述反应混合物置于不锈钢耐压反压釜中再放入烘箱加热进行水热反应,所述水热反应温度130℃-150℃,时间48h。最终合成的产物经过滤、洗涤和烘干制成K-CHA沸石。
最后,阳离子交换。所述K-CHA沸石以0.5N NaCl溶液为离子交换液进行阳离子交换得到(Na、K)-CHA阳离子型沸石。
进一步地,所述CHA晶种与无定形偏高岭土矿粉重量之比是1-10:50-500。
进一步地,所述交换的温度为95℃,时间2h。所述K-CHA沸石:NaCl溶液=1:10,交换次数为3次,每次交换后用去离子水洗涤3次,抽滤的滤饼可进行下一次离子交换。
进一步地,所述KOH溶液的浓度不限定于1.0-2.0Mol/L,所述偏高岭土矿粉与KOH溶液的固液比并不是限定为1:9,所述偏高岭土矿粉加入适量CHA晶种的百分比也是不限于5%。所述水热反应的温度并不局限于130-150℃,反应时间也并不局限于24-48h。
进一步地,所述阳离子型沸石(Na、K)-CHA可应用于CO2与CH4富集、废气中CO、H2S、HCN、COS、NH3、NOx等有毒有害气体的吸附分离和去除,具有离子交换和吸附性质。
进一步地,所述CHA沸石的BET表面积12.4cm2/g,微孔面积0cm2/g,总孔容积0.07ml/g,微孔容积0ml/g。所述阳离子型(Na、K)-CHA沸石的BET表面积103.3cm2/g,微孔面积62.0cm2/g,总孔容积0.128ml/g,微孔容积0.025ml/g。显示出所述CHA沸石具有丰富的晶间孔,小的微孔的吸附特征。
进一步地,所述K-CHA沸石为片状或条状晶体的聚集体晶粒,尺寸约2-3微米。
与现有技术相比本发明的技术效果在于:本发明提出的高岑土制CHA沸石是以高岭土矿粉为第一原料,此原料在我国内蒙古蒙西地区储量丰富,价格低廉。用此原料焙烧脱除其吸附和结晶水后,骨架完全被破坏而变成无定形粉,在所述无定形粉中加入适量CHA晶种,在KOH水溶液中通过水热反应合成K-CHA沸石,所述K-CHA沸石经NaCl溶液交换制成的(Na、K)-CHA沸石显示出小孔沸石的离子交换和吸附性质。本发明所述(Na、K)-CHA沸石可应用于制离子交换剂和小分子,例如CO2与CH4富集、废气中CO、H2S、HCN、COS、NH3、NOx等有毒有害气体的吸附分离和去除。同时,本发明采用的制备方法原料价格低廉,合成工艺简单,无环境污染,易于工业化。
附图说明
为了使本发明的优点更容易理解,将通过参考在附图中示出的具体实施方式更详细地描述上文简要描述的本发明。可以理解这些附图只描绘了本发明的典型实施方式,因此不应认为是对其保护范围的限制,通过附图以附加的特性和细节描述和解释本发明。
图1为本发明CHA沸石分子筛的骨架结构示意图;
图2为本发明CHA沸石分子筛的孔道开口结构示意图;
图3为本发明所述矿粉原料焙烧的XRD衍射谱;
图4为本发明所述CHA沸石进行XRD沸石结构作晶相鉴定示意图;
图5为本发明所述CHA沸石的晶体形貌电子显微镜照片;
图6为本发明实施例CHA沸石合成示意图。
具体实施方式
下面描述发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释发明的技术原理,并非在限制发明的保护范围。
本发明实施例提供一种高岑土制CHA沸石,包括如下步骤:
步骤S1,对矿粉原料进行焙烧。所述矿粉选取高岭土矿粉细度为320目,所述高岭土矿粉经过高温焙烧破坏其晶体结构,此时偏高岭土的晶体结构为无定型,在无定型偏高岭土中加入原矿粉5%的CHA晶体。
具体而言,所述原料矿粉经650~800℃、0.5~3h焙烧使原有的晶体结构崩塌,其XRD衍射谱见图3,其中,图3中A为高岭土矿粉的XRD衍射谱,B为偏高岭土的XRD衍射谱;图中无定形粉的结构衍射峰消失,显示为背景较平坦的无定形衍射区域。
具体而言,所述CHA晶种与无定形偏高岭土矿粉重量之比是1-10:50-500。
步骤S2,CHA沸石合成过程。所述原料、1mol/L KOH溶液和所述原矿粉5%的CHA晶种混合均匀组成反应混合物,所述反应混合物置于不锈钢耐压反压釜中再放入烘箱加热进行水热反应,所述水热反应温度130℃-150℃,时间48h。最终合成的产物经过滤、洗涤和烘干制成K-CHA沸石。
具体而言,使用粉末X射线衍射仪对所述产物K-CHA沸石进行XRD沸石结构作晶相鉴定,结果见图4。其中,图4中A为文献标准谱,图4中B为本发明制成的K-CHA沸石。
具体而言,采用北京普析通用仪器公司的XD2型X射线粉末衍射仪测试,扫描范围5-35°/2θ,扫描速度4°/2θ/min。同时,使用荷兰Phenom公司的Phenom Prox型台式扫描电子显微镜观测合成的K-CHA沸石分子筛晶体形貌以及晶粒尺寸,并拍摄照片,详细照片见图5。从而得出结论:所述K-CHA沸石为片状或条状晶体的聚集体晶粒,尺寸约2-3微米。
步骤S3,阳离子交换。所述K-CHA沸石以0.5N NaCl溶液为离子交换液进行阳离子交换得到(Na、K)-CHA阳离子型沸石。
具体而言,采用德国Bruker公司的S8 TIGER X-光荧光散射仪器(XRF)测定本发明所述K-CHA沸石和阳离子型(Na、K)-CHA沸石的化学组成与百分含量,并由其SiO2、Al2O3含量计算出其氧化硅与氧化铝的摩尔比(SAR)。其中,所述K-CHA沸石与(Na、K)-CHA阳离子沸石的成分分析结果如表1所示:
表1
Figure BDA0002416966010000051
Figure BDA0002416966010000061
从上述数据显示结果来看,在KOH溶液中合成的K-CHA沸石其SAR明显高于偏高岭土的SAR,这是因为自然形成的天然矿物Na,Ca-CHA单晶的SAR接近4,显然,该数据是低硅CHA结构沸石晶相的平衡组成。
具体而言,所述交换的温度为95℃,时间2h。所述K-CHA沸石:NaCl溶液=1:10,交换次数为3次,每次交换后用去离子水洗涤3次,抽滤的滤饼可进行下一次离子交换。
具体而言,3次NaCl离子交换,K-CHA沸石的K2O含量从13.5下降到(K,Na)-CHA沸石的5.06%,交换度达到了62.5%。这说明本发明合成的低硅CHA结构小孔沸石分子筛,具有良好沸石分子筛的共同特性-阳离子交换性。
用国产贝士德仪器公司的3H-2000PS2静态容量法比表面及孔径分析仪,对K-CHA沸石和(Na、K)-CHA沸石进行低温氮吸附测试,吸附测定结果见表2:
表2
Figure BDA0002416966010000062
从上述数据分析,表明偏高岭土合成的低硅K-CHA的低温氮吸附性能不突出,并不具有该结构类型沸石应该具有的微孔结构的基本性质。其原因在于,低温氮吸附所用的吸附质氮气的动力学直径是0.3nm,虽然可以进入平均孔口直径0.38nm的K-CHA沸石孔内被吸附,但SAR3.3左右(即Si、Al原子比1.7)左右的K-CHA沸石属于低硅高铝沸石,与其骨架Al所带负电荷平衡的K+含量比较高,而K+直径是0.26nm,K+必然使CHA沸石孔口有效直径分别从0.38nm降低至0.12nm,这样,氮分子不能穿过孔口被吸入K-CHA沸石的孔道中,使其BET表面积仅仅12cm2/g左右,但更直接反映小孔沸石结构性质的微孔表面积、微孔容积均为0。经三次NaCl溶液离子交换,用直径为0.20nm的Na+通过离子交换替代约50%的K+生成的(Na、K)-CHA沸石,其低温氮吸附性质有明显提高,BET表面积达到103cm2/g、微孔表面积和微孔容积分别提高到62.0cm2/g和0.025Ml/g。该数据也提示出要将偏高岭土合成的低硅小孔K-CHA沸石用于小分子气体的吸附分离,必须通过阳离子交换,用离子直径小于钾离子的其它金属阳离子部分或全部替代K-CHA沸石中的钾,使其孔口开放,允许小分子气体分子被吸附和从中脱附。
下面通过实施例对本实施例CHA沸石的制成方法进行说明。
实施例1
选取50g焙烧后的高岭土矿粉与2.5g沸石晶体,放入到450ml浓度为1mol/L KOH溶液中混合均匀组成反应混合物,该反应物倒入750ml耐压不锈钢反应釜中、密封,置于130℃的均相反应烘箱中,反应时间48h。最终合成的产物经过滤、洗涤和烘干制成K-CHA沸石。用粉末X射线衍射仪对合成产物K-CHA沸石进行XRD沸石结构作晶相鉴定。再将所述K-CHA沸石以0.5N NaCl溶液为离子交换液进行阳离子交换得到(Na、K)-CHA阳离子型沸石,可应用于CO2与CH4富集、废气中CO、H2S、HCN、COS、NH3、NOx等有毒有害气体的吸附分离和去除。
实施例2
选取50g焙烧后的高岭土矿粉与2.5g沸石晶体,放入到450ml浓度为1mol/L KOH溶液中混合均匀组成反应混合物,该反应物倒入750ml耐压不锈钢反应釜中、密封,置于150℃的均相反应烘箱中,反应时间24h。最终合成的产物经过滤、洗涤和烘干制成K-CHA沸石。用粉末X射线衍射仪对合成产物K-CHA沸石进行XRD沸石结构作晶相鉴定。再将所述K-CHA沸石以0.5N NaCl溶液为离子交换液进行阳离子交换得到(Na、K)-CHA阳离子型沸石,可应用于CO2与CH4富集、废气中CO、H2S、HCN、COS、NH3、NOx等有毒有害气体的吸附分离和去除。各实施例的工艺参数见表3:
表3
Figure BDA0002416966010000081
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (2)

1.一种应用于制离子交换剂和小分子的高岑土制CHA沸石,其特征在于,包括:
以高岭土矿粉为原料进行高温焙烧得到无定型矿粉,在所述无定型粉中加入适量的CHA晶种和KOH溶液进行均匀混合得到新反应混合物,所述新反应混合物通过水热反应得到产物CHA沸石,所述产物加入到NaCl溶液进行阳离子交换得到阳离子型沸石,其中,所述高岭土矿粉细度为320目,所述焙烧的温度为650~800℃,时间为0.5~3.0h,所述水热反应的温度为130~150℃,时间为24~48h,所述KOH溶液在合成CHA沸石选取浓度为1mol/L,所述无定型粉与KOH溶液之比为1:9,所述CHA晶种与无定型粉重量之比是1-10:50-500,在所述产物加NaCl溶液进行阳离子交换过程中交换的温度为95℃,时间为2h,所述K-CHA沸石:NaCl溶液=1:10,交换次数为3次,每次交换后用去离子水洗涤3次,抽滤的滤饼进行下一次离子交换。
2.根据权利要求1所述的应用于制离子交换剂和小分子的高岑土制CHA沸石,其特征在于,所述阳离子型沸石可用于CO2与CH4富集、废气中有毒有害气体的吸附分离和去除。
CN202010194127.7A 2020-03-19 2020-03-19 高岑土制cha沸石 Active CN112275252B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010194127.7A CN112275252B (zh) 2020-03-19 2020-03-19 高岑土制cha沸石

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010194127.7A CN112275252B (zh) 2020-03-19 2020-03-19 高岑土制cha沸石

Publications (2)

Publication Number Publication Date
CN112275252A CN112275252A (zh) 2021-01-29
CN112275252B true CN112275252B (zh) 2023-05-12

Family

ID=74420161

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010194127.7A Active CN112275252B (zh) 2020-03-19 2020-03-19 高岑土制cha沸石

Country Status (1)

Country Link
CN (1) CN112275252B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114684830A (zh) * 2022-03-16 2022-07-01 美埃(中国)环境科技股份有限公司 一种漂白土制备cha沸石的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1197442A (zh) * 1995-08-04 1998-10-28 克罗斯菲尔德有限公司 硅铝酸盐
CN1311713A (zh) * 1998-07-01 2001-09-05 奇奥凯姆有限责任公司 气体净化用分子筛吸附剂及其制备方法
CN1736866A (zh) * 2005-06-16 2006-02-22 复旦大学 纯相纳米NaY沸石大颗粒团聚体及其制备方法
CN101654258A (zh) * 2009-09-22 2010-02-24 武汉科技大学 一种基于高岭土合成的4a沸石分子筛
CN101704533A (zh) * 2009-09-29 2010-05-12 武汉科技大学 一种基于煤系高岭土合成的lsx型沸石分子筛
CN106943995A (zh) * 2017-04-27 2017-07-14 长春市曦鼎科技有限公司 一种改性斜发沸石和制法及在去除废水中Pb离子的应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1197442A (zh) * 1995-08-04 1998-10-28 克罗斯菲尔德有限公司 硅铝酸盐
CN1311713A (zh) * 1998-07-01 2001-09-05 奇奥凯姆有限责任公司 气体净化用分子筛吸附剂及其制备方法
CN1736866A (zh) * 2005-06-16 2006-02-22 复旦大学 纯相纳米NaY沸石大颗粒团聚体及其制备方法
CN101654258A (zh) * 2009-09-22 2010-02-24 武汉科技大学 一种基于高岭土合成的4a沸石分子筛
CN101704533A (zh) * 2009-09-29 2010-05-12 武汉科技大学 一种基于煤系高岭土合成的lsx型沸石分子筛
CN106943995A (zh) * 2017-04-27 2017-07-14 长春市曦鼎科技有限公司 一种改性斜发沸石和制法及在去除废水中Pb离子的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"以红辉沸石合成分子筛的研究";岳明波;《中国优秀博硕士学位论文全文数据库(硕士) 工程科技Ⅰ辑》;20021215;B016-130 *

Also Published As

Publication number Publication date
CN112275252A (zh) 2021-01-29

Similar Documents

Publication Publication Date Title
CN112427011B (zh) 高岑土制小孔cha和mer沸石
CN111282542B (zh) 一种合成纳米K,Ca-CHA沸石的方法
Yuan et al. Synthesis and adsorption performance of ultra-low silica-to-alumina ratio and hierarchical porous ZSM-5 zeolites prepared from coal gasification fine slag
Tan et al. Synthesis and characterization of zeolites NaA and NaY from rice husk ash
Indira et al. A review on recent developments in Zeolite A synthesis for improved carbon dioxide capture: Implications for the water-energy nexus
CN108862311A (zh) 一种用于VOCs降解的高硅ZSM-5分子筛的制备方法
Reiprich et al. Layer-like FAU-type zeolites: A comparative view on different preparation routes
MX2008011634A (es) Seleccion de intercambio de cation en ets-4 para controlar la resistencia de absorcion y el diametro de poro efectivo.
Madhu et al. Comparison of three different structures of zeolites prepared by template-free hydrothermal method and its CO2 adsorption properties
Menad et al. SYNTHESIS AND STUDY OF CALCINATION TEMPERATURE INFLUENCE ON THE CHANGE OF STRUCTURAL PROPERTIES OF THE LTA ZEOLITE.
Wang et al. A crystal seeds-assisted synthesis of microporous and mesoporous silicalite-1 and their CO2/N2/CH4/C2H6 adsorption properties
CN112275252B (zh) 高岑土制cha沸石
CN110028081A (zh) 一种合成纳米级多级孔ssz-13分子筛的方法
CN113694880A (zh) 一种含稀土Li-LSX沸石及其制备方法和应用
CN115869904B (zh) 一种应用于潮湿环境下co2捕集的掺杂过渡金属的分子筛及其制备方法和应用
Alver et al. Hydrogen (H2) adsorption on natural and cation-exchanged clinoptilolite, mordenite and chabazite
Annen et al. Investigations into the nature of the hexagonal polytype of faujasite
Bahgaat et al. Synthesis and characterization of zeolite-Y from natural clay of Wadi Hagul, Egypt
CN114655963B (zh) 一种ssz-13分子筛复合材料的制备方法
CN103073019B (zh) 一种多级孔沸石分子筛的制备方法
Madhu et al. Rubik’s cube shaped organic template free hydrothermal synthesis and characterization of zeolite NaA for CO2 adsorption
CN103055805A (zh) 用作空分富氧吸附剂的介微孔层序结构lsx分子筛的合成方法
Christidis et al. Synthesis of FAU type zeolite Y from natural raw materials: hydrothermal SiO2-Sinter and Perlite glass
CA3118464A1 (en) Highly siliceous form of zeolite rho
Taguchi et al. Tritium removal from tritiated water using mesoporous silica

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant