CN112261907A - 表面肌电信号测量中降噪的屏蔽技术及相关系统和方法 - Google Patents

表面肌电信号测量中降噪的屏蔽技术及相关系统和方法 Download PDF

Info

Publication number
CN112261907A
CN112261907A CN201980035465.1A CN201980035465A CN112261907A CN 112261907 A CN112261907 A CN 112261907A CN 201980035465 A CN201980035465 A CN 201980035465A CN 112261907 A CN112261907 A CN 112261907A
Authority
CN
China
Prior art keywords
wearable device
semg
electromagnetic shield
electrodes
wearer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201980035465.1A
Other languages
English (en)
Inventor
郭宁
亚历山大·巴拉尚
乔纳森·里德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meta Platforms Technologies LLC
Original Assignee
Facebook Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Facebook Technologies LLC filed Critical Facebook Technologies LLC
Publication of CN112261907A publication Critical patent/CN112261907A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/681Wristwatch-type devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6824Arm or wrist
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/296Bioelectric electrodes therefor specially adapted for particular uses for electromyography [EMG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/389Electromyography [EMG]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/26Modifications of amplifiers to reduce influence of noise generated by amplifying elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0007Casings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/04Arrangements of multiple sensors of the same type
    • A61B2562/043Arrangements of multiple sensors of the same type in a linear array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/18Shielding or protection of sensors from environmental influences, e.g. protection from mechanical damage
    • A61B2562/182Electrical shielding, e.g. using a Faraday cage
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/30Input circuits therefor
    • A61B5/307Input circuits therefor specially adapted for particular uses
    • A61B5/313Input circuits therefor specially adapted for particular uses for electromyography [EMG]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/261Amplifier which being suitable for instrumentation applications
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45544Indexing scheme relating to differential amplifiers the IC comprising one or more capacitors, e.g. coupling capacitors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45548Indexing scheme relating to differential amplifiers the IC comprising one or more capacitors as shunts to earth or as short circuit between inputs
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45604Indexing scheme relating to differential amplifiers the IC comprising a input shunting resistor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45475Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using IC blocks as the active amplifying circuit

Abstract

描述了用于屏蔽可穿戴表面肌电描记术(sEMG)设备的技术。根据一些方面,sEMG设备可以包括包含至少第一差分放大器的放大电路和电气地连接到放大电路的至少两个sEMG电极。该设备还可以包括:不电气地连接到放大电路的至少一个辅助导体,其中至少一个辅助导体被配置为电气地耦合到可穿戴设备的穿戴者;以及至少部分地围绕可穿戴设备并电气地连接到至少一个辅助导体的电磁屏蔽物。

Description

表面肌电信号测量中降噪的屏蔽技术及相关系统和方法
背景
表面肌电描记术(sEMG)是涉及检测由一组或更多组肌肉在休息时和/或在活动期间产生的电活动的过程。高质量sEMG信号通常在实验室环境中使用皮肤制剂从湿电极获取,该皮肤制剂需要在电极-皮肤界面处的凝胶或糊剂的应用以提高在皮肤和电极之间的导电性。在无线通信应用中,屏蔽通常用于减少射频干扰,且通常通过用连接到接地面(ground plane)的屏蔽材料覆盖电路的全部或部分来实现。
概述
根据一些方面,提供了一种可穿戴设备,该可穿戴设备包括:放大电路,其包括至少第一差分放大器;至少两个sEMG电极,其电气地连接到放大电路;至少一个辅助导体,其不电气地连接到放大电路,其中至少一个辅助导体被配置为电气地耦合到可穿戴设备的穿戴者;以及电磁屏蔽物,其至少部分地围绕可穿戴设备并电气地连接到至少一个辅助导体。
根据一些方面,提供了一种使可穿戴设备中的噪声衰减的方法,可穿戴设备包括放大电路、电气地连接到放大电路的输入端的至少两个sEMG电极以及至少部分地围绕可穿戴设备的电磁屏蔽物,该方法包括将至少两个sEMG电极电气地耦合到可穿戴设备的穿戴者,以及将电磁屏蔽物电气地耦合到穿戴者而除了经由穿戴者以及经由在电磁屏蔽物和放大电路之间的空气以外不将电磁屏蔽物电气地耦合到放大电路。
应当认识到,前述概念和下面更详细讨论的额外概念的所有组合(假定这样的概念不相互不一致)被设想为本文公开的创造性主题的一部分。特别是,出现在本公开的结尾处的所主张的主题的所有组合被设想为本文公开的创造性主题的一部分。
附图简述
将参考下面的附图描述该技术的各种非限制性实施例。应当认识到,附图不一定按比例绘制。
图1是根据本文所述的技术的一些实施例的sEMG系统的部件的示意图;
图2示出了根据本文所述的技术的一些实施例的腕带,其具有周向地布置在其上的sEMG传感器;
图3示出了根据本文所述的技术的一些实施例的戴着图2的腕带同时在键盘上打字的用户;
图4描绘了根据一些实施例的sEMG设备的说明性放大器;
图5描绘了根据一些实施例的sEMG设备的说明性放大器,其中屏蔽物减轻由外部噪声源产生的干扰;以及
图6A-6D描绘了根据一些实施例的sEMG设备的说明性横截面视图,该sEMG设备包括围绕sEMG设备的电子器件的屏蔽物。
详细描述
使用sEMG电极和常规信号调节和处理技术获得一致的高质量sEMG信号是有挑战性的,这是部分地由于由肌纤维产生的低电压。此外,从干sEMG电极获得高质量sEMG信号通常比用湿sEMG电极更具挑战性,因为湿sEMG电极通常通过介入凝胶具有在电极和皮肤之间的较低阻抗导电路径。然而使用干sEMG电极,在电极和皮肤之间可能存在各种低电导率材料,例如空气、体毛和/或湿气,导致可能表现出相当多的噪声的不一致的电极信号。对于需要使用干电极对sEMG信号进行近实时分析的应用,从用户体验角度和开发角度两者来看,使用可靠的设备获取一致的高质量信号是重要的。如在本文提到的,sEMG信号是由一个或更多个sEMG电极产生的信号,并且通常由电极响应于由一个或更多个肌肉或肌肉组产生的电信号而产生。
发明人已经认识到并意识到,sEMG信号在本质上是低振幅的(例如在几μV到几mV的范围内),并且特别易受外部噪声源的影响,外部噪声源可以通过空气电容地耦合到包含sEMG电极的电路。例如,外部噪声可通过空气耦合到sEMG数据采集系统的输入,尤其是在高阻抗输入的情况下。外部噪声源可包括例如AC电源线和AC供电设备,其可产生50Hz或60Hz噪声的源。虽然空气的电容比较小(例如,约为毫微微法拉(femtofarads)),但是sEMG信号的电压可以足够低,使得即使是严重衰减的外部噪声源也可以产生干扰sEMG信号的准确测量的信号。
发明人进一步认识到并意识到,屏蔽电路的常规方法在sEMG设备(即,包括一个或更多个sEMG电极的设备)中拙劣地运行。例如,常规屏蔽技术通常将导体放置在电路周围,并将导体直接连接到电路地或某个其他定义明确的电位。然而,发明人已经观察到,这种方法不明显抑制由外部噪声源在sEMG设备内产生的信号,并且在一些情况下可甚至增加在sEMG信号中的噪声量。
一些实施例目的在于用于通过将屏蔽结构电气地耦合到可穿戴设备的穿戴者的皮肤来抑制由外部噪声源在sEMG设备内产生的信号的技术,可穿戴设备包括布置在其上的sEMG传感器。屏蔽结构起作用来相当大地抑制由外部噪声源在sEMG设备中产生的信号。可以发生这样的噪声抑制,即使穿戴者的身体提供通常不定义明确的也不一定在稳定电位处的接地。
图1示意性地描绘了根据一些实施例的说明性sEMG系统100的部件。系统100包括一对sEMG电极110,其可以包括湿sEMG电极和/或干sEMG电极的任何组合。在一些实施例中,电极110可被布置为被配置成戴在用户的身体的部分上或周围的可穿戴设备的一部分。例如,在一个非限制性示例中,包括sEMG电极(例如电极110)的多个sEMG传感器周向地布置在可调整和/或弹性带例如被配置成戴在用户的手腕或臂周围的腕带或臂带周围。可替代地,至少一些sEMG传感器可以布置在被配置成固定到用户的身体的一部分的可穿戴贴片上。
在一些实施例中,sEMG电极可以是最低限度地侵入性的,并且可以包括放置在用户的真皮的全部或部分中或穿过用户的真皮的全部或部分放置的一个或更多个导电部件。在上述布置的至少一些情况中,得到的EMG信号在严格的技术意义上可以不被认为是“表面”EMG信号。尽管如此,减少外部噪声源也是最低限度地侵入性的EMG记录的基本挑战。
在一个实现中,包括sEMG电极的16个sEMG传感器周向地布置在被配置成戴在用户的下臂周围的弹性带周围。例如,图2示出了周向地布置在弹性带202周围的sEMG传感器204。应当认识到,可以使用具有任意合适数量的sEMG电极(包括湿sEMG电极和/或干sEMG电极)的任意合适数量的sEMG传感器,并且传感器/电极的数量和布置可以取决于可穿戴设备所用于的特定应用。例如,如图2所示,一些sEMG传感器204包括两个sEMG电极,而其他sEMG传感器204包括三个sEMG电极,三个电极中的中间电极是接地电极。接地电极可以被包括在一个或更多个sEMG传感器204上,以例如进一步使皮肤电位偏置和/或滤出噪声。尽管图1、图4和图5中的示意图仅示出了连接到放大器的两个或三个电极,但应当认识到,对于三个(或更多个)电极被使用的sEMG传感器204,将包括在电极和放大电路之间的相应数量的连接。在本文描述的技术的一个示例应用中,图3示出了用户306在手308上戴着弹性带302。以这种方式,sEMG传感器304可以被配置成在用户使用手指310控制键盘312时记录sEMG信号。
由sEMG电极记录的表面电位通常很小,且由sEMG电极记录的信号的放大通常是需要的。如图1所示,sEMG电极110耦合到被配置为放大由电极记录的sEMG信号的放大电路112。放大电路112的输出被提供到模数转换器(ADC)电路114,模数转换器电路114将放大的sEMG信号转换成数字信号,用于由微处理器116进一步处理。微处理器116可以由一个或更多个硬件处理器实现。从微处理器116输出的经处理的信号可以由主机120解译,主机120的示例包括但不限于台式计算机、膝上型计算机、智能手表、智能手机或任何其他计算设备。在一些实现中,主机120可以被配置为输出一个或更多个控制信号,以用于至少部分地基于从微处理器116输出的信号的分析来控制物理或虚拟设备。
如所示,sEMG系统100还包括传感器118,传感器118可以被配置为记录除了sEMG信息之外的关于用户的状态的信息的类型。例如,传感器118可以包括但不限于被配置为测量皮肤/电极温度的温度传感器、被配置为测量运动信息例如旋转和加速度的惯性测量单元(IMU)传感器、湿度传感器、心率监测传感器以及被配置为提供关于用户和/或用户的环境的信息的其他生化传感器。
根据一些实施例,图1所示的放大电路112的一个说明性实现在图4中示出。在图4所示的sEMG设备400的示例中,sEMG电极441、442和443(其例如是图1所示的电极110的实例,并且可以包括湿sEMG电极和/或干sEMG电极的任何组合)电气地耦合到用户的身体450。由于由sEMG电极提供的接触的性质,在电极441、442、443中的每一个和身体450之间的耦合分别与电阻Rin+、Rin0、Rin-相关联并且分别与电容Cin+、Cin0、Cin-相关联。这些电阻和电容的值可能由于例如下列项中的一个或更多个而期望在电极之间变化:皮肤状况(例如水合水平、介入体毛的数量)的变化、在相应电极和皮肤之间的物理接触的不同量和/或在电极441、442和443之间的制造变化。
在图4的示例中,由电极441和443感测的信号被提供到差分放大器420的输入,差分放大器420使用双电源被供电,相对于地(424),电压+VCC(423)作为正电源以及电压-VCC(426)作为负电源。在425输出由放大器420产生的放大信号。电极442连接到电路地424。在至少一些情况下,电极442到电路地424的连接可以起作用来使身体450偏置;例如,该连接可以使在电路地处的体DC电位稳定。
如上所述,在一些情况下,外部噪声源可以通过空气耦合到sEMG设备。例如,在图4的示例中,噪声源410可以通过空气耦合到在图4中由电容器431和432代表的放大器电路的输入,电容器431和432代表在噪声源410和放大器420的输入之间的寄生电容。因此可以在输出425中产生不需要的噪声。
例如,基于来自图4所示的电极441和443的空气和放大器输入的所示寄生电容且为了简单起见忽略电阻Rin+、Rin0、Rin-,噪声源410产生的作为放大器420的输入的电压信号可以被表示为:
Figure BDA0002799632960000061
Figure BDA0002799632960000062
其中V噪声是由噪声源410产生的噪声信号(例如,由AC电力电缆和/或AC供电设备产生的60Hz信号)。注意,除了由电极441和443从身体450感测的sEMG电压信号之外,电压Vin+,噪声和Vin-,噪声也是输入到放大器420的电压信号。此外,应当认识到,在一些情况下,由于在噪声源和放大器之间的距离的微小差异,空气的电容在上述每个等式中可以不是相同的,但是为了简单起见被这样处理。
如等式1和2所示的,噪声信号V噪声被空气衰减,但是因为Cin+和Cin-通常不相等,Vin+,噪声和Vin-,噪声也不相等。作为结果,在放大器420的输入处产生差分噪声输入。此外,尽管空气的电容可以在毫微微法拉的数量级上,但是电容Cin+和Cin-通常可以在毫微法拉(nanofarads)的数量级上。作为结果,在等式1和2中的衰减因子可以约为10-6。对于许多设备,噪声信号的这样的水平的衰减(例如,导致数量级1μV的噪声信号)导致远低于设备内的信号的水平的噪声。然而,对于sEMG电极设备,由电极记录的电压通常也很小(在μV或更小的数量级上),使得甚至所衰减的噪声信号也是有问题的,并且干扰输入到放大器420的sEMG信号。此外,因为sEMG设备常常被用在包含多个电子设备(例如,AC输电干线设备、计算机处理器、显示器等)的环境中,这种噪声的多个源可能加重这个问题。
图5描绘了根据一些实施例的sEMG设备500的说明性放大器520,其中屏蔽物560被布置成减轻由外部噪声引起的干扰。屏蔽物560可以被称为“电磁屏蔽物”,因为它减轻了电磁干扰,尽管可以认识到,在至少一些情况下,当屏蔽外部干扰源时,屏蔽物可以不与电场和磁场两者相互作用。
如同图4的示例一样,在设备500中,外部噪声源510在放大器520的输入处产生噪声信号Vin+,噪声和Vin-,噪声。为了减少这个噪声的影响,屏蔽物560布置在噪声源510和放大器520之间,并且耦合到用户的身体550。屏蔽物560产生噪声信号V噪声的额外衰减,如下面更详细描述的。屏蔽物560可以包括任何合适的一种或更多种导电材料,该导电材料包括但不限于一种或更多种金属和/或合金(例如铝、铜和/或mu金属)、导电涂料(例如基于银和/或碳的涂料)、导电织物(例如银纳米线)、导电聚合物(例如碳或石墨烯填充的聚乳酸(PLA))、导电塑料、导电橡胶、导电硅酮或其组合。屏蔽物560还可以包括可以与任一个或更多个导电部件组合的一个或更多个非导电部件,例如前述示例。
基于空气的所示寄生电容(C空气和C’空气)、来自图5所示的电极541和543的放大器输入和表示屏蔽物560到用户的身体550的耦合的电容C,噪声源510产生的作为放大器520的输入的电压信号可以被表示为:
Figure BDA0002799632960000071
Figure BDA0002799632960000072
其中电阻R、Rin+、Rin0、Rin-为了简单起见再一次被忽略。
C的大小可以被预期在毫微法拉的数量级上,且因此与在等式1和2中的单个衰减因子比较的存在于等式3和4中的
Figure BDA0002799632960000073
的额外衰减因子使用在图5的示例中所示的电路配置导致在放大器520的输入处的噪声的更大衰减。
将认识到,空气531和532的寄生电容可以由于在噪声源和屏蔽物之间的环境中的微小差异而在所有情况下彼此不相同,但是为了简单起见在上面的讨论中被这样处理。类似地,将认识到,空气533和534的寄生电容可以由于在屏蔽物和放大器之间的环境中的微小差异而在所有情况下彼此不相同,但是为了简单起见在上面的讨论中被这样处理。
将认识到,屏蔽物560可以以多种方式布置在噪声源510和放大器520之间,并且屏蔽物560可以具有任何合适的几何结构以实现这种布置。在一些实施例中,屏蔽物560围住(例如完全围绕)放大器,使得屏蔽物布置在放大器和外部噪声源之间。在一些实施例中,屏蔽物560可以围绕放大器,使得屏蔽物布置在放大器和噪声源之间,噪声源可以从一些方向入射到放大器上,但是在某些方向上屏蔽物没有完全围住放大器。还将认识到,屏蔽物560可以完全围绕或部分地围绕整个sEMG系统,例如图1所示的sEMG系统100。
例如,在图2和图3所示的说明性sEMG设备的情况下,屏蔽物560可以被实现为围绕sEMG传感器204和/或304的导电层而屏蔽物不位于sEMG传感器204和/或304和穿戴者的皮肤之间。这种布置可以通过以各种方式中的任一种将屏蔽物耦合到穿戴者的身体来实现噪声的衰减,这些方式的示例将在下面被讨论。
此外,尽管在图5的示例中屏蔽物560通过sEMG电极545耦合到穿戴者的身体,屏蔽物通常可以使用任意数量的辅助导体(即,除了连接到设备的一个或更多个放大器输入的sEMG电极之外的导体)以任何合适的方式电气地耦合到穿戴者的身体。例如,屏蔽物可以通过除了sEMG电极之外的一个或更多个电极和/或通过一个或更多个其他导体电气地耦合到穿戴者的身体。在一些实现中,辅助导体可以是屏蔽物本身的一部分。
屏蔽物560可以电气地耦合到穿戴者的身体的任何合适的一个或更多个部分。例如,在被配置为戴在臂上的sEMG设备的情况下,屏蔽物可以被配置为电气地耦合到同一臂,包括臂的腹侧和/或背侧和/或身体的其他部分(例如另一只臂)。在身体的表面上的体毛的存在是用于针对表面安装电极实现与身体的良好电接触的复杂因素。将屏蔽物电气地耦合到臂的腹侧可能是有利的,因为臂的腹侧通常比背侧具有更少的体毛,导致屏蔽物到身体的更好耦合。应当认识到,根据一个或更多个因素,这些因素包括但不限于体毛的密度、可穿戴sEMG设备的类型和用户偏好,连接到屏蔽物560的电极/导体在用户的身体上的期望或最佳放置可以因用户的不同而改变。
尽管上面关于图1、图2、图3、图4和图5讨论的技术是在差分输入放大器的上下文中被讨论,但将认识到,本文描述的屏蔽技术也可以用其他类型的放大器例如单端输入放大器代替在上述示例中的差分输入放大器来实现。如可以从上面的等式3和4注意到的,噪声的振幅可以在放大器的每个单独输入处被衰减,对于除了差分输入放大器以外的放大器可能也是这种情况。
图6A-6C描绘了根据一些实施例的sEMG设备的说明性横截面视图,该sEMG设备包括完全或部分围绕sEMG设备的电子器件(例如,一个或更多个放大器或者甚至整个sEMG系统)的屏蔽物。在图6A的示例中,sEMG设备600包括围绕设备电子器件602和sEMG电极604的屏蔽物603。屏蔽物603延伸到穿戴者的身体601上以将屏蔽物电气地耦合到身体,如上面关于图5所讨论的。作为结果,屏蔽物603使可以耦合到设备电子器件602的各方位(aspect)的外部噪声源(未示出)衰减。
根据一些实施例,屏蔽物603可以包括和/或可以形成sEMG设备600的壳体的一部分。作为非限制性示例,屏蔽物603可以包括刚性导体,其形成围绕设备电子器件602的壳体并接触身体601;屏蔽物603可以包括导电材料,其布置在设备电子器件602的外部、内部上和/或嵌在围绕设备电子器件602的壳体内,使得导电材料接触身体601(例如,施加到壳体的导电涂料);和/或屏蔽物603可以包括导电织物,其可以或者可以不附着到在设备电子器件602周围的壳体。
在图6B的示例中,sEMG设备620包括围绕设备电子器件622和sEMG电极624的屏蔽物623,并且还包括连接到屏蔽物的导电环625(以横截面示出),导电环625将屏蔽物电气地耦合到身体,如上面关于图5所讨论的。作为结果,屏蔽物623使可以耦合到设备电子器件622的各方位的外部噪声源(未描绘)衰减。在一些实施例中,导电环可以是在穿戴者的身体621周围部分地或完全延伸的金属环。
根据一些实施例,屏蔽物623可以包括和/或可以形成sEMG设备620的壳体的一部分。作为非限制性示例,屏蔽物623可以包括形成围绕设备电子器件622的壳体并接触身体621的刚性导体;屏蔽物623可以包括导电材料,其布置在设备电子器件622的外部、内部上和/或嵌在围绕设备电子器件622的壳体内,使得导电材料接触身体621(例如,施加到壳体的导电涂料);和/或屏蔽物623可以包括导电织物,其可以或者可以不附着到在设备电子器件622周围的壳体。
在图6C的示例中,sEMG设备640包括围绕设备电子器件642和sEMG电极644的屏蔽物643,并且还包括连接到屏蔽物的电极646,该电极646将屏蔽物电气地耦合到身体,如上面关于图5所讨论的。作为结果,屏蔽物643使可以耦合到设备电子器件642的各方位的外部噪声源(未描绘)衰减。在一些实施例中,电极646可以是sEMG电极。
根据一些实施例,屏蔽物643可以包括和/或可以形成sEMG设备640的壳体的一部分。作为非限制性示例,屏蔽物643可以包括形成围绕设备电子器件642的壳体并接触身体641的刚性导体;屏蔽物643可以包括导电材料,其布置在设备电子器件642的外部、内部上和/或嵌在围绕设备电子器件642的壳体内,使得导电材料接触身体641(例如,施加到壳体的导电涂料);和/或屏蔽物643可以包括导电织物,其可以或者可以不附着到在设备电子器件642周围的壳体。
在图6D的示例中,设备电子器件的部件662a和电路板662b被示为单独的元件,电路板662b的导电迹线662c也被示出。说明性sEMG设备660包括覆盖设备电路板662b和在电路板662b上布线的导电迹线662c的屏蔽物663。设备660还包括sEMG电极664和连接到屏蔽物的电极666,该电极666将屏蔽物电气地耦合到身体,如上面关于图5所讨论的。作为结果,屏蔽物663使可以耦合到导电迹线662c的外部噪声源(未描绘)衰减。在一些实施例中,电极666可以是sEMG电极。作为非限制性示例,屏蔽物663可以被实现为层压到电路板662b上的屏蔽膜层。在图6D的示例中,因此屏蔽物布置在设备电子器件的一部分(即,设备电路板662b)周围,但是不一定布置在设备电子器件的部件662a周围,以便使屏蔽物使外部噪声源衰减。
在这样描述了本发明的至少一个实施例的几个方面后,应认识到,本领域中的技术人员将容易想到各种改变、修改和改进。
这种改变、修改和改进被规定为是本公开的一部分,并且被规定为在本发明的精神和范围内。此外,尽管本发明的优点被指出,但是应当认识到,不是本文描述的技术的每个实施例都将包括每个所描述的优点。一些实施例可以不实现如在本文被描述为有利的任何特征,并且在一些实例中一个或更多个所描述的特征可以被实现以实现另外的实施例。因此,前述描述和附图仅仅作为示例。
如在本文所使用的,被称为电气地耦合到彼此的元件被布置成使得在一个元件中的电位的变化可以引起在另一个元件中的电位的变化。以这种方式,在图5的示例中的噪声源510电气地耦合到放大器520和屏蔽物560。此外,如在本文所使用的,被称为电气地连接到彼此的元件被布置成使得电导体将元件直接连接在一起。例如,在图5的示例中的电极545可以电气地连接到屏蔽物560。
本文描述的DC耦合放大电路的实现采用分立的模拟电路部件。然而,应当认识到,在信号链中的放大电路和/或相关电路的全部或部分可以可选地使用AC耦合放大电路、一个或更多个专用集成电路(ASIC)和/或任何商业或定制硅实现来实现,因为实施例在这个方面中不被限制。此外,将认识到,在一些实施例中,放大电路可以不被包括在sEMG设备中,而更确切地是模数转换器(ADC)可以直接获取sEMG信号。
虽然在与EMG传感器的接口的上下文中讨论了上面讨论的示例,但是应当理解,本文描述的用于噪声降低的屏蔽技术也可以在与其他类型的传感器——包括但不限于心电图(ECG)、脑电图(EEG)、机械肌图(MMG)传感器、声肌图(SMG)传感器和电阻抗断层成像(EIT)传感器——的可穿戴接口中实现。
本文所描述的装置和技术的各种方面可以单独地、组合地或者在前述描述中所述的实施例中没有具体讨论的各种布置中被使用,且因此在它们的应用中不限于在前述描述中阐述的或者在附图中示出的部件的细节和布置。例如,在一个实施例中描述的方面可以以任何方式与在其他实施例中描述的方面组合。
在权利要求中使用顺序术语例如“第一”、“第二”、“第三”等来修饰权利要求要素并不单独地暗示一个权利要求要素相对于另一个权利要求要素的任何优先级、先后次序或顺序或其中方法的动作被执行的时间顺序,而是仅仅用作标签以区分开具有某个名称的一个权利要求要素与具有相同名称的另一个权利要求要素(但针对顺序术语的使用),从而区分权利要求要素。
另外,本文使用的措辞和术语是为了描述的目的,而不应被视为限制性的。在本文中“包括(including)”、“包括(comprising)”、或“具有”、“包含”、“涉及”及其变形的使用意欲包括其后列举的项目和其等价物以及额外的项目。

Claims (24)

1.一种可穿戴设备,包括:
放大电路,其包括至少第一差分放大器;
至少两个sEMG电极,其电气地连接到所述放大电路;
至少一个辅助导体,其不电气地连接到所述放大电路,其中所述至少一个辅助导体被配置为电气地耦合到所述可穿戴设备的穿戴者;以及
电磁屏蔽物,其至少部分地围绕所述可穿戴设备,并且电气地连接到所述至少一个辅助导体。
2.根据权利要求1所述的可穿戴设备,其中所述至少两个sEMG电极中的一个或更多个是干sEMG电极。
3.根据权利要求2所述的可穿戴设备,其中所述至少两个sEMG电极是干sEMG电极。
4.根据权利要求1所述的可穿戴设备,其中所述电磁屏蔽物围绕所述第一差分放大器的至少一个输入端。
5.根据权利要求1所述的可穿戴设备,其中所述电磁屏蔽物包括金属。
6.根据权利要求1所述的可穿戴设备,其中所述电磁屏蔽物包括导电织物。
7.根据权利要求1所述的可穿戴设备,其中所述电磁屏蔽物包括施加到所述可穿戴设备的所述至少一部分的导电涂料。
8.根据权利要求1所述的可穿戴设备,其中所述电磁屏蔽物包括导电带。
9.根据权利要求1所述的可穿戴设备,其中所述电磁屏蔽物包括导电塑料。
10.根据权利要求1所述的可穿戴设备,其中所述第一差分放大器包括场效应晶体管(FET)。
11.根据权利要求1所述的可穿戴设备,其中所述第一差分放大器被配置为具有至少1GΩ的输入阻抗。
12.根据权利要求1所述的可穿戴设备,其中所述至少一个辅助导体包括一个或更多个sEMG电极。
13.根据权利要求1所述的可穿戴设备,其中所述至少一个辅助导体包括导电圆柱体、环和/或环面。
14.根据权利要求1所述的可穿戴设备,还包括壳体,并且其中所述电磁屏蔽物布置在所述壳体内。
15.根据权利要求1所述的可穿戴设备,还包括壳体,并且其中所述电磁屏蔽物包括施加到所述壳体的导电涂料。
16.根据权利要求1所述的可穿戴设备,其中所述至少两个sEMG电极中的一个或更多个被配置为穿过穿戴者的真皮的至少某一部分。
17.一种使可穿戴设备中的噪声衰减的方法,所述可穿戴设备包括放大电路、电气地连接到所述放大电路的输入端的至少两个sEMG电极以及至少部分围绕所述可穿戴设备的电磁屏蔽物,所述方法包括:
将所述至少两个sEMG电极电气地耦合到所述可穿戴设备的穿戴者;以及
将所述电磁屏蔽物电气地耦合到所述穿戴者,而除了经由所述穿戴者以及经由所述电磁屏蔽物和所述放大电路之间的空气以外不将所述电磁屏蔽物电气地耦合到所述放大电路。
18.根据权利要求17所述的方法,其中所述至少两个sEMG电极中的一个或更多个是干sEMG电极。
19.根据权利要求18所述的方法,其中所述至少两个sEMG电极是干sEMG电极。
20.根据权利要求17所述的方法,其中将所述电磁屏蔽物电气地耦合到所述穿戴者包括将所述电磁屏蔽物电气地连接到所述可穿戴设备的不同于所述至少两个sEMG电极的至少一个辅助电极。
21.根据权利要求17所述的方法,其中将所述至少两个sEMG电极电气地耦合到所述可穿戴设备的所述穿戴者包括将包括所述至少两个sEMG电极的所述可穿戴设备布置在所述穿戴者的臂上。
22.根据权利要求17所述的方法,其中将所述电磁屏蔽物电气地耦合到所述穿戴者包括将所述电磁屏蔽物电气地耦合到所述穿戴者的臂的腹侧。
23.根据权利要求17所述的方法,其中所述电磁屏蔽物围绕所述第一差分放大器的至少一个输入端。
24.根据权利要求17所述的方法,其中所述放大电路包括第一电接地,并且所述穿戴者的身体具有第二电接地,并且其中所述第一电接地和所述第二电接地在不同的电位处。
CN201980035465.1A 2018-05-29 2019-05-28 表面肌电信号测量中降噪的屏蔽技术及相关系统和方法 Pending CN112261907A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201862677574P 2018-05-29 2018-05-29
US62/677,574 2018-05-29
US201862696242P 2018-07-10 2018-07-10
US62/696,242 2018-07-10
PCT/US2019/034173 WO2019231911A1 (en) 2018-05-29 2019-05-28 Shielding techniques for noise reduction in surface electromyography signal measurement and related systems and methods

Publications (1)

Publication Number Publication Date
CN112261907A true CN112261907A (zh) 2021-01-22

Family

ID=68694889

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980035465.1A Pending CN112261907A (zh) 2018-05-29 2019-05-28 表面肌电信号测量中降噪的屏蔽技术及相关系统和方法

Country Status (4)

Country Link
US (2) US10687759B2 (zh)
EP (1) EP3801216A1 (zh)
CN (1) CN112261907A (zh)
WO (1) WO2019231911A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11921471B2 (en) 2013-08-16 2024-03-05 Meta Platforms Technologies, Llc Systems, articles, and methods for wearable devices having secondary power sources in links of a band for providing secondary power in addition to a primary power source
US20150124566A1 (en) 2013-10-04 2015-05-07 Thalmic Labs Inc. Systems, articles and methods for wearable electronic devices employing contact sensors
WO2015081113A1 (en) 2013-11-27 2015-06-04 Cezar Morun Systems, articles, and methods for electromyography sensors
WO2020112986A1 (en) 2018-11-27 2020-06-04 Facebook Technologies, Inc. Methods and apparatus for autocalibration of a wearable electrode sensor system
WO2019079757A1 (en) 2017-10-19 2019-04-25 Ctrl-Labs Corporation SYSTEMS AND METHODS FOR IDENTIFYING BIOLOGICAL STRUCTURES ASSOCIATED WITH NEUROMUSCULAR SOURCE SIGNALS
US11567573B2 (en) 2018-09-20 2023-01-31 Meta Platforms Technologies, Llc Neuromuscular text entry, writing and drawing in augmented reality systems
US11493993B2 (en) 2019-09-04 2022-11-08 Meta Platforms Technologies, Llc Systems, methods, and interfaces for performing inputs based on neuromuscular control
US11150730B1 (en) 2019-04-30 2021-10-19 Facebook Technologies, Llc Devices, systems, and methods for controlling computing devices via neuromuscular signals of users
US11907423B2 (en) 2019-11-25 2024-02-20 Meta Platforms Technologies, Llc Systems and methods for contextualized interactions with an environment
US11481030B2 (en) 2019-03-29 2022-10-25 Meta Platforms Technologies, Llc Methods and apparatus for gesture detection and classification
US11961494B1 (en) 2019-03-29 2024-04-16 Meta Platforms Technologies, Llc Electromagnetic interference reduction in extended reality environments
CN112261907A (zh) 2018-05-29 2021-01-22 脸谱科技有限责任公司 表面肌电信号测量中降噪的屏蔽技术及相关系统和方法
NO20200093A1 (zh) * 2020-01-24 2021-07-26
SE544237C2 (en) * 2020-03-16 2022-03-08 Piotrode Medical Ab Shielded body electrode for recording electrophysiological signals from a body providing a contact between the shield and the skin of the body
US11868531B1 (en) 2021-04-08 2024-01-09 Meta Platforms Technologies, Llc Wearable device providing for thumb-to-finger-based input gestures detected based on neuromuscular signals, and systems and methods of use thereof
WO2023164211A1 (en) * 2022-02-25 2023-08-31 Meta Platforms Technologies, Llc Smart electrodes for sensing signals and processing signals using internally-housed signal-processing components at wearable devices and wearable devices incorporating the smart electrodes
CN115444426B (zh) * 2022-11-09 2023-04-28 之江实验室 片上电极集成的无线肌电SoC系统、芯片及采集装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3735425A (en) * 1971-02-10 1973-05-29 Us Of America The Secretary Of Myoelectrically controlled prothesis
US20150045689A1 (en) * 2011-11-08 2015-02-12 Bitron S.P.A. Device for measuing electromyographic signals with high resolution and high number channels
US20150141784A1 (en) * 2013-11-12 2015-05-21 Thalmic Labs Inc. Systems, articles, and methods for capacitive electromyography sensors
US20150223716A1 (en) * 2013-05-15 2015-08-13 Polar Electro Oy Heart activity sensor structure

Family Cites Families (247)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4055168A (en) * 1976-09-21 1977-10-25 The Rockefeller University Posture training device
IL78244A0 (en) 1986-03-24 1986-07-31 Zvi Kamil Instrumentation amplifier arrangement
US5625577A (en) 1990-12-25 1997-04-29 Shukyohojin, Kongo Zen Sohonzan Shorinji Computer-implemented motion analysis method using dynamics
JP3103427B2 (ja) 1992-04-01 2000-10-30 ダイヤメディカルシステム株式会社 生体電気現象検出装置
WO1995027341A1 (en) * 1994-04-04 1995-10-12 Motorola Inc. Shielded circuit assembly and method for forming same
EP0959444A4 (en) 1996-08-14 2005-12-07 Nurakhmed Nurislamovic Latypov METHOD FOR TRACKING AND REPRESENTING THE POSITION AND ORIENTATION OF A SUBJECT IN THE SPACE, METHOD FOR PRESENTING A VIRTUAL SPACE THEREON, AND SYSTEMS FOR CARRYING OUT SAID METHODS
US6009210A (en) 1997-03-05 1999-12-28 Digital Equipment Corporation Hands-free interface to a virtual reality environment using head tracking
WO2000010455A1 (en) 1998-08-24 2000-03-02 Emory University Method and apparatus for predicting the onset of seizures based on features derived from signals indicative of brain activity
US6745062B1 (en) 1998-10-05 2004-06-01 Advanced Imaging Systems, Inc. Emg electrode apparatus and positioning system
US6244873B1 (en) 1998-10-16 2001-06-12 At&T Corp. Wireless myoelectric control apparatus and methods
US6774885B1 (en) 1999-01-20 2004-08-10 Motek B.V. System for dynamic registration, evaluation, and correction of functional human behavior
US6411843B1 (en) 1999-05-28 2002-06-25 Respironics, Inc. Method and apparatus for producing a model EMG signal from a measured EMG signal
US6720984B1 (en) 2000-06-13 2004-04-13 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Characterization of bioelectric potentials
AU2001278318A1 (en) 2000-07-24 2002-02-05 Jean Nicholson Prudent Modeling human beings by symbol manipulation
WO2002037827A2 (en) 2000-10-30 2002-05-10 Naval Postgraduate School Method and apparatus for motion tracking of an articulated rigid body
US20030144829A1 (en) 2002-01-25 2003-07-31 Geatz Michael W. System and method for sensing and evaluating physiological parameters and modeling an adaptable predictive analysis for symptoms management
JP2003255993A (ja) 2002-03-04 2003-09-10 Ntt Docomo Inc 音声認識システム、音声認識方法、音声認識プログラム、音声合成システム、音声合成方法、音声合成プログラム
US6942621B2 (en) 2002-07-11 2005-09-13 Ge Medical Systems Information Technologies, Inc. Method and apparatus for detecting weak physiological signals
WO2004023996A1 (ja) 2002-09-11 2004-03-25 National Institute Of Information And Communications Technology Incorporated Administrative Agency 活動筋肉表示装置
KR100506084B1 (ko) 2002-10-24 2005-08-05 삼성전자주식회사 경혈점 탐색 장치 및 방법
EP2008581B1 (en) 2003-08-18 2011-08-17 Cardiac Pacemakers, Inc. Patient monitoring, diagnosis, and/or therapy systems and methods
CN1838933B (zh) 2003-08-21 2010-12-08 国立大学法人筑波大学 穿着式动作辅助装置、穿着式动作辅助装置的控制方法和控制用程序
JP4178186B2 (ja) 2003-08-21 2008-11-12 国立大学法人 筑波大学 装着式動作補助装置、装着式動作補助装置の制御方法および制御用プログラム
US7565295B1 (en) 2003-08-28 2009-07-21 The George Washington University Method and apparatus for translating hand gestures
US7574253B2 (en) 2003-09-26 2009-08-11 Northwestern University Signal processing using non-linear regression with a sinusoidal model
US7961909B2 (en) 2006-03-08 2011-06-14 Electronic Scripting Products, Inc. Computer interface employing a manipulated object with absolute pose detection component and a display
JP4590640B2 (ja) 2004-06-16 2010-12-01 国立大学法人 東京大学 筋骨格モデルに基づく筋力取得方法及び装置
US7901368B2 (en) 2005-01-06 2011-03-08 Braingate Co., Llc Neurally controlled patient ambulation system
US7351975B2 (en) 2005-03-29 2008-04-01 Duke University Sensor system for identifying and tracking movements of multiple sources
US7428516B2 (en) 2005-06-23 2008-09-23 Microsoft Corporation Handwriting recognition using neural networks
US8190249B1 (en) 2005-08-01 2012-05-29 Infinite Biomedical Technologies, Llc Multi-parametric quantitative analysis of bioelectrical signals
US7725147B2 (en) 2005-09-29 2010-05-25 Nellcor Puritan Bennett Llc System and method for removing artifacts from waveforms
US8280503B2 (en) 2008-10-27 2012-10-02 Michael Linderman EMG measured during controlled hand movement for biometric analysis, medical diagnosis and related analysis
JP4826459B2 (ja) 2006-01-12 2011-11-30 株式会社豊田中央研究所 筋骨格モデル作成方法、人体応力/ひずみ推定方法、プログラムおよび記録媒体
US8762733B2 (en) 2006-01-30 2014-06-24 Adidas Ag System and method for identity confirmation using physiologic biometrics to determine a physiologic fingerprint
US7580742B2 (en) 2006-02-07 2009-08-25 Microsoft Corporation Using electroencephalograph signals for task classification and activity recognition
US7827000B2 (en) 2006-03-03 2010-11-02 Garmin Switzerland Gmbh Method and apparatus for estimating a motion parameter
US8311623B2 (en) 2006-04-15 2012-11-13 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for estimating surface electromyography
WO2008054511A2 (en) 2006-04-21 2008-05-08 Quantum Applied Science & Research, Inc. System for measuring electric signals
US7805386B2 (en) 2006-05-16 2010-09-28 Greer Douglas S Method of generating an encoded output signal using a manifold association processor having a plurality of pairs of processing elements trained to store a plurality of reciprocal signal pairs
US7661068B2 (en) 2006-06-12 2010-02-09 Microsoft Corporation Extended eraser functions
US9405372B2 (en) 2006-07-14 2016-08-02 Ailive, Inc. Self-contained inertial navigation system for interactive control using movable controllers
US7848797B2 (en) 2006-08-17 2010-12-07 Neurometrix, Inc. Motor unit number estimation (MUNE) for the assessment of neuromuscular function
US8437844B2 (en) 2006-08-21 2013-05-07 Holland Bloorview Kids Rehabilitation Hospital Method, system and apparatus for real-time classification of muscle signals from self-selected intentional movements
JP4267648B2 (ja) 2006-08-25 2009-05-27 株式会社東芝 インターフェース装置及びその方法
US7885732B2 (en) 2006-10-25 2011-02-08 The Boeing Company Systems and methods for haptics-enabled teleoperation of vehicles and other devices
US20080221487A1 (en) 2007-03-07 2008-09-11 Motek Bv Method for real time interactive visualization of muscle forces and joint torques in the human body
US8583206B2 (en) 2007-04-24 2013-11-12 Koninklijke Philips N.V. Sensor arrangement and method for monitoring physiological parameters
FR2916069B1 (fr) 2007-05-11 2009-07-31 Commissariat Energie Atomique Procede de traitement pour la capture de mouvement d'une structure articulee
DE102007044555A1 (de) 2007-07-18 2009-01-22 Siemens Ag Optische Koppelvorrichtung und Verfahren zu deren Herstellung
US8726194B2 (en) 2007-07-27 2014-05-13 Qualcomm Incorporated Item selection using enhanced control
CN101874404B (zh) 2007-09-24 2013-09-18 高通股份有限公司 用于语音和视频通信的增强接口
US20090082692A1 (en) 2007-09-25 2009-03-26 Hale Kelly S System And Method For The Real-Time Evaluation Of Time-Locked Physiological Measures
US7714757B2 (en) 2007-09-26 2010-05-11 Medtronic, Inc. Chopper-stabilized analog-to-digital converter
US8343079B2 (en) 2007-10-18 2013-01-01 Innovative Surgical Solutions, Llc Neural monitoring sensor
FI20075798A0 (fi) * 2007-11-12 2007-11-12 Polar Electro Oy Elektrodirakenne
GB0800144D0 (en) 2008-01-04 2008-02-13 Fitzpatrick Adam P Electrocardiographic device and method
US9597015B2 (en) 2008-02-12 2017-03-21 Portland State University Joint angle tracking with inertial sensors
US20100030532A1 (en) 2008-06-12 2010-02-04 Jasbir Arora System and methods for digital human model prediction and simulation
US9037530B2 (en) 2008-06-26 2015-05-19 Microsoft Technology Licensing, Llc Wearable electromyography-based human-computer interface
US8170656B2 (en) * 2008-06-26 2012-05-01 Microsoft Corporation Wearable electromyography-based controllers for human-computer interface
US8447704B2 (en) 2008-06-26 2013-05-21 Microsoft Corporation Recognizing gestures from forearm EMG signals
US8444564B2 (en) 2009-02-02 2013-05-21 Jointvue, Llc Noninvasive diagnostic system
WO2010129922A2 (en) 2009-05-07 2010-11-11 Massachusetts Eye & Ear Infirmary Signal processing in physiological noise
US8376968B2 (en) 2009-05-15 2013-02-19 The Hong Kong Polytechnic University Method and system for quantifying an intention of movement of a user
US20100315266A1 (en) 2009-06-15 2010-12-16 Microsoft Corporation Predictive interfaces with usability constraints
EP2459062A4 (en) 2009-07-30 2017-04-05 University of Cape Town Non-invasive deep muscle electromyography
US8718980B2 (en) 2009-09-11 2014-05-06 Qualcomm Incorporated Method and apparatus for artifacts mitigation with multiple wireless sensors
US20110077484A1 (en) 2009-09-30 2011-03-31 Nellcor Puritan Bennett Ireland Systems And Methods For Identifying Non-Corrupted Signal Segments For Use In Determining Physiological Parameters
TWI496558B (zh) 2009-10-20 2015-08-21 Tatung Co 使用二極電極貼片量測心電圖與呼吸訊號之系統及方法
US8421634B2 (en) 2009-12-04 2013-04-16 Microsoft Corporation Sensing mechanical energy to appropriate the body for data input
EP2512331A4 (en) 2009-12-16 2015-01-14 Ictalcare As SYSTEM FOR PREDICTING EPILEPTIC INCIDENTS
US9268404B2 (en) 2010-01-08 2016-02-23 Microsoft Technology Licensing, Llc Application gesture interpretation
US8631355B2 (en) 2010-01-08 2014-01-14 Microsoft Corporation Assigning gesture dictionaries
JP5471490B2 (ja) 2010-01-20 2014-04-16 オムロンヘルスケア株式会社 体動検出装置
WO2011113478A1 (de) 2010-03-16 2011-09-22 Carlo Trugenberger Authentifizierungssystem, verfahren zur authentifizierung eines objekts, vorrichtung zur erzeugung einer identifikationseinrichtung, verfahren zur erzeugung einer identifikationseinrichtung
US8351651B2 (en) 2010-04-26 2013-01-08 Microsoft Corporation Hand-location post-process refinement in a tracking system
US8588884B2 (en) * 2010-05-28 2013-11-19 Emkinetics, Inc. Microneedle electrode
US8754862B2 (en) 2010-07-11 2014-06-17 Lester F. Ludwig Sequential classification recognition of gesture primitives and window-based parameter smoothing for high dimensional touchpad (HDTP) user interfaces
FR2962821B1 (fr) 2010-07-13 2013-02-22 Commissariat Energie Atomique Procede et systeme de classification de signaux neuronaux, et procede de selection d'electrodes pour commande neuronale directe.
JP5782515B2 (ja) 2010-08-02 2015-09-24 ザ・ジョンズ・ホプキンス・ユニバーシティ ロボットの協働制御および音声フィードバックを用いて力覚センサ情報を提示する方法
US20120066163A1 (en) 2010-09-13 2012-03-15 Nottingham Trent University Time to event data analysis method and system
US20130123656A1 (en) 2010-11-15 2013-05-16 Sandy L. Heck Control System and Apparatus Utilizing Signals Originating in the Periauricular Neuromuscular System
WO2012155157A1 (en) 2011-05-06 2012-11-15 Azoteq (Pty) Ltd Multiple media capacitive sensor
US9251588B2 (en) 2011-06-20 2016-02-02 Nokia Technologies Oy Methods, apparatuses and computer program products for performing accurate pose estimation of objects
US9128521B2 (en) 2011-07-13 2015-09-08 Lumo Bodytech, Inc. System and method of biomechanical posture detection and feedback including sensor normalization
WO2013029196A1 (zh) 2011-08-26 2013-03-07 国立云林科技大学 回馈控制的穿戴式上肢电刺激装置
KR20220032059A (ko) 2011-09-19 2022-03-15 아이사이트 모빌 테크놀로지 엘티디 증강 현실 시스템용 터치프리 인터페이스
US20130077820A1 (en) 2011-09-26 2013-03-28 Microsoft Corporation Machine learning gesture detection
FR2981561B1 (fr) 2011-10-21 2015-03-20 Commissariat Energie Atomique Procede de detection d'activite a capteur de mouvements, dispositif et programme d'ordinateur correspondants
US10176299B2 (en) 2011-11-11 2019-01-08 Rutgers, The State University Of New Jersey Methods for the diagnosis and treatment of neurological disorders
US10430066B2 (en) 2011-12-06 2019-10-01 Nri R&D Patent Licensing, Llc Gesteme (gesture primitive) recognition for advanced touch user interfaces
JP2013206273A (ja) 2012-03-29 2013-10-07 Sony Corp 情報処理装置、情報処理方法、および情報処理システム
WO2013151770A1 (en) 2012-04-03 2013-10-10 Carnegie Mellon University Musculoskeletal activity recognition system and method
US9867548B2 (en) 2012-05-25 2018-01-16 Emotiv, Inc. System and method for providing and aggregating biosignals and action data
US9278453B2 (en) 2012-05-25 2016-03-08 California Institute Of Technology Biosleeve human-machine interface
US20150366504A1 (en) 2014-06-20 2015-12-24 Medibotics Llc Electromyographic Clothing
US9891718B2 (en) 2015-04-22 2018-02-13 Medibotics Llc Devices for measuring finger motion and recognizing hand gestures
US10921886B2 (en) 2012-06-14 2021-02-16 Medibotics Llc Circumferential array of electromyographic (EMG) sensors
US9582072B2 (en) 2013-09-17 2017-02-28 Medibotics Llc Motion recognition clothing [TM] with flexible electromagnetic, light, or sonic energy pathways
US9814426B2 (en) 2012-06-14 2017-11-14 Medibotics Llc Mobile wearable electromagnetic brain activity monitor
US8484022B1 (en) 2012-07-27 2013-07-09 Google Inc. Adaptive auto-encoders
US20150182165A1 (en) 2012-08-03 2015-07-02 Neurotopia, Inc. Neurophysiological training headset
US10234941B2 (en) 2012-10-04 2019-03-19 Microsoft Technology Licensing, Llc Wearable sensor for tracking articulated body-parts
US10413251B2 (en) * 2012-10-07 2019-09-17 Rhythm Diagnostic Systems, Inc. Wearable cardiac monitor
US9351653B1 (en) 2012-11-29 2016-05-31 Intan Technologies, LLC Multi-channel reconfigurable systems and methods for sensing biopotential signals
US10009644B2 (en) 2012-12-04 2018-06-26 Interaxon Inc System and method for enhancing content using brain-state data
US20140196131A1 (en) 2013-01-07 2014-07-10 Salutron, Inc. User authentication based on a wrist vein pattern
US10528135B2 (en) 2013-01-14 2020-01-07 Ctrl-Labs Corporation Wearable muscle interface systems, devices and methods that interact with content displayed on an electronic display
US9459697B2 (en) 2013-01-15 2016-10-04 Leap Motion, Inc. Dynamic, free-space user interactions for machine control
JP2016507851A (ja) 2013-02-22 2016-03-10 サルミック ラブス インコーポレイテッド ジェスチャに基づいて制御するための筋活動センサ信号と慣性センサ信号とを結合する方法および装置
US20140245200A1 (en) 2013-02-25 2014-08-28 Leap Motion, Inc. Display control with gesture-selectable control paradigms
US20140249397A1 (en) 2013-03-01 2014-09-04 Thalmic Labs Inc. Differential non-contact biopotential sensor
US20140277622A1 (en) 2013-03-15 2014-09-18 First Principles, Inc. System and method for bio-signal control of an electronic device
US9766709B2 (en) 2013-03-15 2017-09-19 Leap Motion, Inc. Dynamic user interactions for display control
US9436287B2 (en) 2013-03-15 2016-09-06 Qualcomm Incorporated Systems and methods for switching processing modes using gestures
US9361411B2 (en) 2013-03-15 2016-06-07 Honeywell International, Inc. System and method for selecting a respirator
IN2013MU01148A (zh) 2013-03-26 2015-04-24 Tata Consultancy Services Ltd
US10620709B2 (en) 2013-04-05 2020-04-14 Ultrahaptics IP Two Limited Customized gesture interpretation
US9717440B2 (en) 2013-05-03 2017-08-01 The Florida International University Board Of Trustees Systems and methods for decoding intended motor commands from recorded neural signals for the control of external devices or to interact in virtual environments
WO2014186370A1 (en) 2013-05-13 2014-11-20 Thalmic Labs Inc. Systems, articles and methods for wearable electronic devices that accommodate different user forms
US10620775B2 (en) 2013-05-17 2020-04-14 Ultrahaptics IP Two Limited Dynamic interactive objects
US9218574B2 (en) 2013-05-29 2015-12-22 Purepredictive, Inc. User interface for machine learning
CA2911275A1 (en) 2013-05-31 2014-12-04 President And Fellows Of Harvard College Soft exosuit for assistance with human motion
US9383819B2 (en) 2013-06-03 2016-07-05 Daqri, Llc Manipulation of virtual object in augmented reality via intent
KR101933921B1 (ko) 2013-06-03 2018-12-31 삼성전자주식회사 포즈 추정 방법 및 장치
WO2014197443A1 (en) 2013-06-03 2014-12-11 Kacyvenski Isaiah Motion sensor and analysis
US11083402B2 (en) 2013-06-04 2021-08-10 Medtronic, Inc. Patient state determination based on one or more spectral characteristics of a bioelectrical brain signal
KR101501661B1 (ko) 2013-06-10 2015-03-12 한국과학기술연구원 착용형 근전도 센서 시스템
WO2014204330A1 (en) 2013-06-17 2014-12-24 3Divi Company Methods and systems for determining 6dof location and orientation of head-mounted display and associated user movements
US20140376773A1 (en) 2013-06-21 2014-12-25 Leap Motion, Inc. Tunable operational parameters in motion-capture and touchless interface operation
US10402517B2 (en) 2013-06-26 2019-09-03 Dassault Systémes Simulia Corp. Musculo-skeletal modeling using finite element analysis, process integration, and design optimization
US9408316B2 (en) 2013-07-22 2016-08-02 Thalmic Labs Inc. Systems, articles and methods for strain mitigation in wearable electronic devices
US20150029092A1 (en) 2013-07-23 2015-01-29 Leap Motion, Inc. Systems and methods of interpreting complex gestures
US11426123B2 (en) 2013-08-16 2022-08-30 Meta Platforms Technologies, Llc Systems, articles and methods for signal routing in wearable electronic devices that detect muscle activity of a user using a set of discrete and separately enclosed pod structures
US20150057770A1 (en) 2013-08-23 2015-02-26 Thaimic Labs Inc. Systems, articles, and methods for human-electronics interfaces
US20150124566A1 (en) 2013-10-04 2015-05-07 Thalmic Labs Inc. Systems, articles and methods for wearable electronic devices employing contact sensors
US9788789B2 (en) 2013-08-30 2017-10-17 Thalmic Labs Inc. Systems, articles, and methods for stretchable printed circuit boards
US9372535B2 (en) 2013-09-06 2016-06-21 Thalmic Labs Inc. Systems, articles, and methods for electromyography-based human-electronics interfaces
US9483123B2 (en) 2013-09-23 2016-11-01 Thalmic Labs Inc. Systems, articles, and methods for gesture identification in wearable electromyography devices
EP3048955A2 (en) 2013-09-25 2016-08-03 MindMaze SA Physiological parameter measurement and feedback system
US9389694B2 (en) 2013-10-22 2016-07-12 Thalmic Labs Inc. Systems, articles, and methods for gesture identification in wearable electromyography devices
CN103777752A (zh) 2013-11-02 2014-05-07 上海威璞电子科技有限公司 基于手臂肌肉电流检测和运动传感器的手势识别设备
GB2519987B (en) 2013-11-04 2021-03-03 Imperial College Innovations Ltd Biomechanical activity monitoring
US9594433B2 (en) 2013-11-05 2017-03-14 At&T Intellectual Property I, L.P. Gesture-based controls via bone conduction
CN105722479B (zh) 2013-11-13 2018-04-13 赫尔实验室有限公司 用于控制大脑机器接口和神经假肢系统的系统
WO2015081113A1 (en) 2013-11-27 2015-06-04 Cezar Morun Systems, articles, and methods for electromyography sensors
US20150157944A1 (en) 2013-12-06 2015-06-11 Glenn I. Gottlieb Software Application for Generating a Virtual Simulation for a Sport-Related Activity
US9367139B2 (en) 2013-12-12 2016-06-14 Thalmic Labs Inc. Systems, articles, and methods for gesture identification in wearable electromyography devices
US9524580B2 (en) 2014-01-06 2016-12-20 Oculus Vr, Llc Calibration of virtual reality systems
US9659403B1 (en) 2014-01-06 2017-05-23 Leap Motion, Inc. Initializing orientation in space for predictive information for free space gesture control and communication
US9613262B2 (en) 2014-01-15 2017-04-04 Leap Motion, Inc. Object detection and tracking for providing a virtual device experience
KR102372544B1 (ko) 2014-02-14 2022-03-10 페이스북 테크놀로지스, 엘엘씨 탄성 전기 케이블 및 이를 사용하는 웨어러블 전자 장치를 위한 시스템, 물품, 및 방법
WO2015131157A1 (en) 2014-02-28 2015-09-03 Vikas Gupta Gesture operated wrist mounted camera system
US10613642B2 (en) 2014-03-12 2020-04-07 Microsoft Technology Licensing, Llc Gesture parameter tuning
US20150261306A1 (en) 2014-03-17 2015-09-17 Thalmic Labs Inc. Systems, devices, and methods for selecting between multiple wireless connections
US10199008B2 (en) 2014-03-27 2019-02-05 North Inc. Systems, devices, and methods for wearable electronic devices as state machines
US10409382B2 (en) 2014-04-03 2019-09-10 Honda Motor Co., Ltd. Smart tutorial for gesture control system
US20150296553A1 (en) 2014-04-11 2015-10-15 Thalmic Labs Inc. Systems, devices, and methods that establish proximity-based wireless connections
US9858391B2 (en) 2014-04-17 2018-01-02 The Boeing Company Method and system for tuning a musculoskeletal model
WO2015164951A1 (en) 2014-05-01 2015-11-05 Abbas Mohamad Methods and systems relating to personalized evolving avatars
US20150325202A1 (en) 2014-05-07 2015-11-12 Thalmic Labs Inc. Systems, devices, and methods for wearable computers with heads-up displays
US9785247B1 (en) 2014-05-14 2017-10-10 Leap Motion, Inc. Systems and methods of tracking moving hands and recognizing gestural interactions
KR101666399B1 (ko) 2014-05-15 2016-10-14 한국과학기술연구원 다중 채널 표면 근전도에서의 신체 관절 운동학 정보 추출 방법, 이를 수행하기 위한 기록 매체 및 장치
USD717685S1 (en) 2014-05-15 2014-11-18 Thalmic Labs Inc. Expandable armband
USD756359S1 (en) 2014-05-15 2016-05-17 Thalmic Labs Inc. Expandable armband device
US9741169B1 (en) 2014-05-20 2017-08-22 Leap Motion, Inc. Wearable augmented reality devices with object detection and tracking
US10782657B2 (en) 2014-05-27 2020-09-22 Ultrahaptics IP Two Limited Systems and methods of gestural interaction in a pervasive computing environment
US9880632B2 (en) 2014-06-19 2018-01-30 Thalmic Labs Inc. Systems, devices, and methods for gesture identification
WO2015199747A1 (en) 2014-06-23 2015-12-30 Thalmic Labs Inc. Systems, articles, and methods for wearable human-electronics interface devices
US10216274B2 (en) 2014-06-23 2019-02-26 North Inc. Systems, articles, and methods for wearable human-electronics interface devices
US9552069B2 (en) 2014-07-11 2017-01-24 Microsoft Technology Licensing, Llc 3D gesture recognition
US9734704B2 (en) 2014-08-12 2017-08-15 Dominick S. LEE Wireless gauntlet for electronic control
WO2016041088A1 (en) 2014-09-19 2016-03-24 Sulon Technologies Inc. System and method for tracking wearable peripherals in augmented reality and virtual reality applications
US9811555B2 (en) 2014-09-27 2017-11-07 Intel Corporation Recognition of free-form gestures from orientation tracking of a handheld or wearable device
JP6415592B2 (ja) 2014-11-12 2018-10-31 京セラ株式会社 ウェアラブル装置
US9720515B2 (en) 2015-01-02 2017-08-01 Wearable Devices Ltd. Method and apparatus for a gesture controlled interface for wearable devices
US9612661B2 (en) 2015-01-02 2017-04-04 Wearable Devices Ltd. Closed loop feedback interface for wearable devices
US9696795B2 (en) 2015-02-13 2017-07-04 Leap Motion, Inc. Systems and methods of creating a realistic grab experience in virtual reality/augmented reality environments
US20160274758A1 (en) 2015-03-20 2016-09-22 Thalmic Labs Inc. Systems, devices, and methods for mitigating false positives in human-electronics interfaces
US10432842B2 (en) 2015-04-06 2019-10-01 The Texas A&M University System Fusion of inertial and depth sensors for movement measurements and recognition
CN108883335A (zh) 2015-04-14 2018-11-23 约翰·詹姆斯·丹尼尔斯 用于人与机器或人与人的可穿戴式的电子多感官接口
US9804733B2 (en) 2015-04-21 2017-10-31 Dell Products L.P. Dynamic cursor focus in a multi-display information handling system environment
US10078435B2 (en) 2015-04-24 2018-09-18 Thalmic Labs Inc. Systems, methods, and computer program products for interacting with electronically displayed presentation materials
GB2537899B (en) 2015-04-30 2018-02-21 Hy5Pro As Control of digits for artificial hand
US9654477B1 (en) 2015-05-05 2017-05-16 Wells Fargo Bank, N. A. Adaptive authentication
US9898864B2 (en) 2015-05-28 2018-02-20 Microsoft Technology Licensing, Llc Shared tactile interaction and user safety in shared space multi-person immersive virtual reality
EP3556429B1 (en) 2015-06-02 2021-10-13 Battelle Memorial Institute Non-invasive motor impairment rehabilitation system
WO2016196797A1 (en) 2015-06-02 2016-12-08 Battelle Memorial Institute Systems for neural bridging of the nervous system
MX2017015590A (es) 2015-06-02 2018-07-06 Battelle Memorial Institute Manga neuronal para estimulacion, deteccion y registro neuromuscular.
WO2016210441A1 (en) 2015-06-26 2016-12-29 Carnegie Mellon University System for wearable, low-cost electrical impedance tomography for non-invasive gesture recognition
US9240069B1 (en) 2015-06-30 2016-01-19 Ariadne's Thread (Usa), Inc. Low-latency virtual reality display system
CN108140360B (zh) 2015-07-29 2020-12-04 森赛尔股份有限公司 用于操纵虚拟环境的系统和方法
KR101626748B1 (ko) 2015-08-03 2016-06-14 숭실대학교산학협력단 뇌파와 근전도를 이용한 움직임 패턴 측정 장치 및 그 방법
US10854104B2 (en) 2015-08-28 2020-12-01 Icuemotion Llc System for movement skill analysis and skill augmentation and cueing
US10387034B2 (en) 2015-09-03 2019-08-20 Microsoft Technology Licensing, Llc Modifying captured stroke information into an actionable form
US9824287B2 (en) 2015-09-29 2017-11-21 Huami Inc. Method, apparatus and system for biometric identification
US10459537B2 (en) 2015-09-30 2019-10-29 Stmicroelectronics, Inc. Encapsulated pressure sensor
WO2017062544A1 (en) 2015-10-06 2017-04-13 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Method, device and system for sensing neuromuscular, physiological, biomechanical, and musculoskeletal activity
US9881273B2 (en) 2015-10-28 2018-01-30 Disney Interprises, Inc. Automatic object detection and state estimation via electronic emissions sensing
US10595941B2 (en) 2015-10-30 2020-03-24 Orthosensor Inc. Spine measurement system and method therefor
US11106273B2 (en) 2015-10-30 2021-08-31 Ostendo Technologies, Inc. System and methods for on-body gestural interfaces and projection displays
US10776712B2 (en) 2015-12-02 2020-09-15 Preferred Networks, Inc. Generative machine learning systems for drug design
CN105511615B (zh) 2015-12-04 2019-03-05 深圳大学 基于emg的可穿戴式文本输入系统及方法
US20170188980A1 (en) 2016-01-06 2017-07-06 Empire Technology Development Llc Wearable sensor based body modeling
WO2017120669A1 (en) 2016-01-12 2017-07-20 Bigmotion Technologies Inc. Systems and methods for human body motion capture
US20170259167A1 (en) 2016-03-14 2017-09-14 Nathan Sterling Cook Brainwave virtual reality apparatus and method
US9864434B2 (en) 2016-03-30 2018-01-09 Huami Inc. Gesture control of interactive events using multiple wearable devices
WO2017173386A1 (en) 2016-03-31 2017-10-05 Sensel Inc. Human-computer interface system
US10503253B2 (en) 2016-03-31 2019-12-10 Intel Corporation Sensor signal processing to determine finger and/or hand position
US10852835B2 (en) 2016-04-15 2020-12-01 Board Of Regents, The University Of Texas System Systems, apparatuses and methods for controlling prosthetic devices by gestures and other modalities
KR102504859B1 (ko) * 2016-04-19 2023-03-02 스카이워크스 솔루션즈, 인코포레이티드 무선 주파수 모듈의 선택적 차폐
US9864431B2 (en) 2016-05-11 2018-01-09 Microsoft Technology Licensing, Llc Changing an application state using neurological data
US10203751B2 (en) 2016-05-11 2019-02-12 Microsoft Technology Licensing, Llc Continuous motion controls operable using neurological data
WO2017208167A1 (en) 2016-05-31 2017-12-07 Lab Schöpfergeist Ag Nerve stimulation apparatus and method
US10426371B2 (en) 2016-06-07 2019-10-01 Smk Corporation Muscle condition measurement sheet
KR101790147B1 (ko) 2016-06-22 2017-10-25 재단법인 실감교류인체감응솔루션연구단 가상 객체 조작 시스템 및 방법
KR20190025965A (ko) 2016-07-01 2019-03-12 엘.아이.에프.이. 코포레이션 에스.에이. 복수의 센서들을 갖는 의복들에 의한 바이오메트릭 식별
EP3487395A4 (en) 2016-07-25 2020-03-04 CTRL-Labs Corporation METHODS AND APPARATUS FOR PREDICTING MUSCULOSKELETAL POSITION INFORMATION USING PORTABLE SELF-CONTAINED SENSORS
US10409371B2 (en) 2016-07-25 2019-09-10 Ctrl-Labs Corporation Methods and apparatus for inferring user intent based on neuromuscular signals
US11000211B2 (en) 2016-07-25 2021-05-11 Facebook Technologies, Llc Adaptive system for deriving control signals from measurements of neuromuscular activity
EP3487595A4 (en) 2016-07-25 2019-12-25 CTRL-Labs Corporation SYSTEM AND METHOD FOR MEASURING MOVEMENTS OF ARTICULATED RIGID BODIES
US10489986B2 (en) 2018-01-25 2019-11-26 Ctrl-Labs Corporation User-controlled tuning of handstate representation model parameters
US10765363B2 (en) 2016-09-30 2020-09-08 Cognionics, Inc. Headgear for dry electroencephalogram sensors
US10162422B2 (en) 2016-10-10 2018-12-25 Deere & Company Control of machines through detection of gestures by optical and muscle sensors
KR102038120B1 (ko) 2016-12-02 2019-10-30 피손 테크놀로지, 인크. 신체 조직 전기 신호의 검출 및 사용
US10646139B2 (en) 2016-12-05 2020-05-12 Intel Corporation Body movement tracking
US20190025919A1 (en) 2017-01-19 2019-01-24 Mindmaze Holding Sa System, method and apparatus for detecting facial expression in an augmented reality system
US10796599B2 (en) 2017-04-14 2020-10-06 Rehabilitation Institute Of Chicago Prosthetic virtual reality training interface and related methods
US11259746B2 (en) 2017-07-10 2022-03-01 General Electric Company Method and system for neuromuscular transmission measurement
US10481699B2 (en) 2017-07-27 2019-11-19 Facebook Technologies, Llc Armband for tracking hand motion using electrical impedance measurement
US20190076716A1 (en) 2017-09-12 2019-03-14 Intel Corporation Activity training system
WO2019079757A1 (en) 2017-10-19 2019-04-25 Ctrl-Labs Corporation SYSTEMS AND METHODS FOR IDENTIFYING BIOLOGICAL STRUCTURES ASSOCIATED WITH NEUROMUSCULAR SOURCE SIGNALS
US10606620B2 (en) 2017-11-16 2020-03-31 International Business Machines Corporation Notification interaction in a touchscreen user interface
US20190150777A1 (en) 2017-11-17 2019-05-23 Ctrl-Labs Corporation Dual-supply analog circuitry for sensing surface emg signals
US10827942B2 (en) 2018-01-03 2020-11-10 Intel Corporation Detecting fatigue based on electroencephalogram (EEG) data
EP3743901A4 (en) 2018-01-25 2021-03-31 Facebook Technologies, Inc. REAL-TIME PROCESSING OF HAND REPRESENTATION MODEL ESTIMATES
EP3743790A4 (en) 2018-01-25 2021-03-17 Facebook Technologies, Inc. RECONSTRUCTION OF HAND STATE ON THE BASIS OF MULTIPLE ENTRIES
US10504286B2 (en) 2018-01-25 2019-12-10 Ctrl-Labs Corporation Techniques for anonymizing neuromuscular signal data
US11069148B2 (en) 2018-01-25 2021-07-20 Facebook Technologies, Llc Visualization of reconstructed handstate information
WO2019147996A1 (en) 2018-01-25 2019-08-01 Ctrl-Labs Corporation Calibration techniques for handstate representation modeling using neuromuscular signals
EP3742962A4 (en) 2018-01-25 2021-04-28 Facebook Technologies, LLC. NEUROMUSCULAR SIGNAL ARTIFACT MITIGATION METHODS AND APPARATUS
US20190247650A1 (en) 2018-02-14 2019-08-15 Bao Tran Systems and methods for augmenting human muscle controls
US20190324549A1 (en) 2018-04-20 2019-10-24 Immersion Corporation Systems, devices, and methods for providing immersive reality interface modes
JP7341166B2 (ja) 2018-05-22 2023-09-08 マジック リープ, インコーポレイテッド ウェアラブルシステムのためのトランスモード入力融合
CN112469469A (zh) 2018-05-25 2021-03-09 脸谱科技有限责任公司 用于提供肌肉下控制的方法和装置
CN112261907A (zh) 2018-05-29 2021-01-22 脸谱科技有限责任公司 表面肌电信号测量中降噪的屏蔽技术及相关系统和方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3735425A (en) * 1971-02-10 1973-05-29 Us Of America The Secretary Of Myoelectrically controlled prothesis
US20150045689A1 (en) * 2011-11-08 2015-02-12 Bitron S.P.A. Device for measuing electromyographic signals with high resolution and high number channels
US20150223716A1 (en) * 2013-05-15 2015-08-13 Polar Electro Oy Heart activity sensor structure
US20150141784A1 (en) * 2013-11-12 2015-05-21 Thalmic Labs Inc. Systems, articles, and methods for capacitive electromyography sensors

Also Published As

Publication number Publication date
EP3801216A4 (en) 2021-04-14
EP3801216A1 (en) 2021-04-14
US10687759B2 (en) 2020-06-23
WO2019231911A1 (en) 2019-12-05
US11129569B1 (en) 2021-09-28
US20190365318A1 (en) 2019-12-05

Similar Documents

Publication Publication Date Title
US10687759B2 (en) Shielding techniques for noise reduction in surface electromyography signal measurement and related systems and methods
Sullivan et al. A low-noise, non-contact EEG/ECG sensor
CN105814443B (zh) 应用于神经感测的超高阻抗传感器
US20110166434A1 (en) System for sensing electrophysiological signals
US10729379B2 (en) Electrical wearable capacitive biosensor and noise artifact suppression method
Gargiulo et al. An ultra-high input impedance ECG amplifier for long-term monitoring of athletes
CN112040863A (zh) 用于感测表面emg信号的双电源模拟电路
US11607126B2 (en) Electrodes for biopotential measurement, biopotential measuring apparatus, and biopotential measuring method
JP2012187404A (ja) 生体信号測定装置と方法、そのための単位測定器、及びその方法に係る記録媒体
CN105310681B (zh) 生物电极以及使用生物电极处理生物信号的方法和设备
TW201705904A (zh) 藉由具受控電容之電容性電極感測器以測量電生理參數之方法
US9588146B2 (en) Electrode for measuring biosignal and biosignal measurement device
Ding et al. A novel front-end design for bioelectrical signal wearable acquisition
US20210267524A1 (en) Contactless electrode for sensing physiological electrical activity
Hazrati et al. Wireless brain signal recordings based on capacitive electrodes
JP2017018205A (ja) 生体センサー装置
US20230270367A1 (en) Apparatus for biopotential measurement
Xu et al. Design and optimization of ICs for wearable EEG sensors
CN111132612B (zh) 用于感测生物信号的设备
WO2023106160A1 (ja) 生体信号検出装置
KR20220131130A (ko) 능동 전자기 차폐를 적용한 근거리 비접촉식 능동 생체 전극
Su et al. A non-contact biopotential sensing system with motion artifact suppression
Murali et al. Nullification of electromagnetic radiation: 50 Hz artifact during electroencephalogram recording

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: California, USA

Applicant after: Yuan Platform Technology Co.,Ltd.

Address before: California, USA

Applicant before: Facebook Technologies, LLC

CB02 Change of applicant information